JPH0251288A - Sample temperature controller - Google Patents

Sample temperature controller

Info

Publication number
JPH0251288A
JPH0251288A JP63201846A JP20184688A JPH0251288A JP H0251288 A JPH0251288 A JP H0251288A JP 63201846 A JP63201846 A JP 63201846A JP 20184688 A JP20184688 A JP 20184688A JP H0251288 A JPH0251288 A JP H0251288A
Authority
JP
Japan
Prior art keywords
sample
temperature
sample chamber
copper block
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63201846A
Other languages
Japanese (ja)
Inventor
Hisanao Ogata
久直 尾形
Hideaki Mori
英明 森
Takeo Nemoto
武夫 根本
Norihide Saho
典英 佐保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63201846A priority Critical patent/JPH0251288A/en
Publication of JPH0251288A publication Critical patent/JPH0251288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to easily exchange a sample without disjointing a heat insulating vacuum vessel by opening one end of a sample chamber to the air side, and installing a sample introduction mechanism to seal this opening part airtightly from the air side and a gas charging mechanism. CONSTITUTION:After removing a cover, and setting a sample 12 to a sample supporter 11, and then wiring a measuring wire, the sample is inserted into a sample chamber 8, which is made air tight by fastening a clamp 9. Next, after exhausting the airinside the sample chamber into vacuum, helium gas is introduced by a gas charging mechanism 23 connected to a valve 23, and then the valve 13 is closed. A small cooler driving source is turned on, and with the temperature drop of the second stage the temperature of a copper block 7 is also lowered. Since noncondensing helium gas is charged into the sample chamber 8, the region at the same height as the copper block 7 is made almost uniform temperature, and the sample 12 is also made almost the same temperature as the copper block 7. For the exchange of the sample 12, in the condition that the temperature of the sample returned to the room temperature, the clamp 9 is removed and the inside of the sample 8 is made the atmospheric pressure, and the sample supporter 11 is pulled out, and the sample is exchanged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料の温度を室温以下まで下げろる小形冷凍
機及びヒータを併用した試料温度制御装置に関する・ 〔従来の技術〕 従来の試料温度制御装置の一つとして、寒剤を寒冷源と
したものに特開昭61−151482号公報に記載のよ
うな試料位置変化による温度制御、また冷凍機を使った
ものに日経メカニカル1987年6月15日号第58頁
から第60′M記載の図1に見られるような装置がある
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sample temperature control device that uses a compact refrigerator and a heater to lower the temperature of a sample to below room temperature. [Prior Art] Conventional sample temperature control device One type of control device is one using a cryogen as a cold source, the temperature control by changing the sample position as described in Japanese Patent Application Laid-Open No. 151482/1982, and one using a refrigerator as described in Nikkei Mechanical June 15, 1987. There is a device such as that shown in FIG. 1 of the Japanese issue, pages 58 to 60'M.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、−200℃以下に試料を冷却するに
は、寒剤として液体ヘリウムを使用するが小形冷凍機を
使用することになる。前者では、寒剤の入手が自由でな
いこと、後者では、試料交換の為には、その都度、試料
室を内蔵する断熱真空槽を解体するため手間がかかると
いう問題があった。
In the above-mentioned conventional technology, liquid helium is used as a cryogen to cool the sample to -200° C. or lower, but a small refrigerator is also used. In the former case, there was a problem that the cryogen was not freely available, and in the latter case, each time a sample was to be replaced, the insulated vacuum chamber containing the sample chamber had to be dismantled, which required time and effort.

本発明の目的は、小形冷凍機を使用した試料温度制御装
置において、断熱真空槽を解体することなく、容易に試
料交換を行うことにある。
An object of the present invention is to easily exchange a sample in a sample temperature control device using a small refrigerator without dismantling the adiabatic vacuum chamber.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、試料室の一端を大気側に開
口し、この開口部を大気側とを気密に隔離する試料導入
機構とガス密封機構とを備えつけた。
In order to achieve the above object, one end of the sample chamber is opened to the atmosphere, and a sample introduction mechanism and a gas sealing mechanism are provided to airtightly isolate this opening from the atmosphere.

〔作用〕[Effect]

試料導入機構に保持された試料は、上記間L1を経て試
料室まで導入設定される。さらに、試料室の内部は、ガ
ス封入機構により不凝縮ガスが封入され、試料室内部の
温度均一化が行われる。試料室は、外側に取り付けられ
た小形冷凍機およびヒータにより任意の温度に制御され
る。
The sample held in the sample introduction mechanism is set to be introduced to the sample chamber via the above-mentioned interval L1. Further, the inside of the sample chamber is filled with non-condensable gas by a gas filling mechanism, and the temperature inside the sample chamber is made uniform. The sample chamber is controlled to an arbitrary temperature by a small refrigerator and heater attached to the outside.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1は
ギホード・サイクルもしくはソルベー・サイクルで動作
する小形冷凍機の頭部でモータなどが内蔵されていて、
架台2に取り付けられている。3及び4は、小形冷凍機
の寒冷発生部署で、それぞれ温度70に前後になる第1
ステージ及び15に前後になる第2ステージと呼ぶこと
にする。
An embodiment of the present invention will be described below with reference to FIG. 1 is the head of a small refrigerator that operates on the Gifford cycle or Solvay cycle, and has a built-in motor and other components.
It is attached to the pedestal 2. 3 and 4 are the cold generation sections of the small refrigerator, and the first section has a temperature of around 70, respectively.
This will be referred to as the second stage, which occurs before and after stage 15.

第2ステージには、ヒータ5及び温度センサ6を具えた
銅ブロック7が熱的接触を保って取り付けである。この
銅ブロック7には薄肉ステンレス鋼製の試料室が挿入さ
れていて、その上端はクランプ9によって、大気中に開
放できる。蓋10には試料支持体11が取り付けてあり
、銅ブロック7の部分に試料12が設定されている。1
3は試料室と連通ずる配管のバルブ、14は試料室から
導出された計?1Ill線の端子である。銅ブロック7
及び第2ステージ4は、銅製のふく射シールド15によ
ってほぼ包囲される。さらに、第1ステージ3とふく射
シールド15の外側は、真空容器16 a及び16bに
より包囲され弁17により真空にして密封しである。
In the second stage, a copper block 7 with a heater 5 and a temperature sensor 6 is mounted in thermal contact. A sample chamber made of thin stainless steel is inserted into this copper block 7, and its upper end can be opened to the atmosphere by a clamp 9. A sample support 11 is attached to the lid 10, and a sample 12 is set on the copper block 7. 1
3 is a valve on the piping that communicates with the sample chamber, and 14 is a meter led out from the sample chamber. This is the terminal for the 1Ill line. copper block 7
The second stage 4 is substantially surrounded by a radiation shield 15 made of copper. Further, the outside of the first stage 3 and the radiation shield 15 are surrounded by vacuum containers 16a and 16b, which are evacuated by a valve 17 and sealed.

以下、この実施例の動作を説明する。まず真空容器16
a及び16bの内部は弁17に連結した真空排気系18
により排気した後、弁17を閉じておく。小形冷凍機の
頭部1には、ガス配管19が引き出されており、圧縮機
を主体とした小形冷凍機駆動源20に連結されている。
The operation of this embodiment will be explained below. First, vacuum container 16
The inside of a and 16b is a vacuum exhaust system 18 connected to a valve 17.
After exhausting the air, valve 17 is closed. A gas pipe 19 is drawn out from the head 1 of the small refrigerator, and is connected to a small refrigerator drive source 20 mainly consisting of a compressor.

ヒータ5及び温度センサ6は端子21を経て、温度調節
器22に接続されている。蓋10をはずし、試料支持体
11に試料12をセットし、計測線を配線後、試料室8
に挿入し、クランプ9を締めて気密状態にする。次に、
バルブ13に接続したガス封入機構23により、試料室
内を真空排気後、ヘリウムガスを導入し、バルブ13を
閉じる。小形冷凍機駆動源20を起動すると、第2ステ
ージの温度が降下し、それとともに銅ブロック7の温度
も下る。
The heater 5 and the temperature sensor 6 are connected to a temperature regulator 22 via a terminal 21. After removing the lid 10, setting the sample 12 on the sample support 11, and wiring the measurement wire, open the sample chamber 8.
, and tighten the clamp 9 to make it airtight. next,
After the sample chamber is evacuated by a gas filling mechanism 23 connected to the valve 13, helium gas is introduced, and the valve 13 is closed. When the small refrigerator drive source 20 is started, the temperature of the second stage decreases, and the temperature of the copper block 7 also decreases accordingly.

銅ブロック7と試料室8の間は、半田あるいはグリース
等により熱接触を図っておく。試料室8内には不凝縮性
のヘリウムガスが封入されているので、熱の伝導及び対
流により、銅ブロック7と同一高さの領域はほぼ−様な
温度になり、試料12もおおよそ銅ブロック7と同じ温
度になる。温度調節器22および小形冷凍機駆動源20
を使って試料12の温度を自由に設定することができる
Thermal contact is established between the copper block 7 and the sample chamber 8 using solder, grease, or the like. Since the sample chamber 8 is filled with non-condensable helium gas, due to heat conduction and convection, the area at the same height as the copper block 7 has a temperature of approximately -, and the sample 12 is also approximately at the same height as the copper block. The temperature will be the same as 7. Temperature regulator 22 and small refrigerator drive source 20
can be used to freely set the temperature of the sample 12.

測定データはデータ処理装置24に収録、処理する。The measurement data is recorded and processed in the data processing device 24.

試料12の交換は、試料の温度が室温に復帰した状態で
、クランプ9をはずし、試料室8内を大気圧にして、試
料支持体11を外へ引き出し、試料12を取り換えれば
よい。
The sample 12 can be replaced by removing the clamp 9 after the sample temperature has returned to room temperature, making the sample chamber 8 atmospheric pressure, pulling the sample support 11 out, and replacing the sample 12.

次に、他の実施例を第2図により説明する。第2図は、
第1図に示した装置の試料室8の周辺における他の実施
例である。真空容器16aの上部にさらにフランジ16
cを配置し、これはボート:30 a 、 30 b 
、 30 cを立てる。このボート30aに試料室8を
挿入し、Oリングを使ったシール31により真空気密を
確保する。さらに、試料室8の上端にはシール32を介
してアダプタ33が取り付けれ、これにバルブ13が連
結している。試料支持体11にはシールド板34が複数
個及び、サーマルアンカ35が取り付けである。
Next, another embodiment will be explained with reference to FIG. Figure 2 shows
This is another example of the area around the sample chamber 8 of the apparatus shown in FIG. 1. A flange 16 is further provided on the top of the vacuum container 16a.
Place c, which is a boat: 30 a, 30 b
, 30 c. The sample chamber 8 is inserted into this boat 30a, and vacuum tightness is ensured by a seal 31 using an O-ring. Further, an adapter 33 is attached to the upper end of the sample chamber 8 via a seal 32, and a valve 13 is connected to the adapter 33. A plurality of shield plates 34 and a thermal anchor 35 are attached to the sample support 11 .

試料12及び計測線はサーマルアンカ35に支持される
。ボート30b及び30cには配管36a及び36 b
が接続され、銅ブロック7に巻回された管37と連通し
ている。
The sample 12 and the measurement line are supported by a thermal anchor 35. Boats 30b and 30c have piping 36a and 36b.
is connected and communicates with a tube 37 wound around the copper block 7.

ボート30aと試料室8との接続を摺動可能なシール3
1としたので、組立性が容易であり、試料室8と銅ブロ
ック7とを半田等で接続しても、熱変形は容易に吸収で
きる。管37には、熱媒又は冷媒を流し、小形冷凍機の
第2ステージ4とヒータ5で実現できないような温度レ
ベルを達成するのに用いる。例えば、冷媒として液体ヘ
リウムを使えば4に付近まで温度を下げることができる
A sliding seal 3 connects the boat 30a and the sample chamber 8.
1, it is easy to assemble, and even if the sample chamber 8 and the copper block 7 are connected by soldering or the like, thermal deformation can be easily absorbed. The tubes 37 carry a heating or cooling medium and are used to achieve temperature levels that cannot be achieved with the second stage 4 and heater 5 of the compact refrigerator. For example, if liquid helium is used as a refrigerant, the temperature can be lowered to around 4.

このような試料室構成では1例えばペロブスカイト型超
電導材料の超電導臨界温度を電気抵抗法あるいは交流磁
化率計測法により測定したりできる。
With such a sample chamber configuration, for example, the superconducting critical temperature of a perovskite superconducting material can be measured by an electrical resistance method or an alternating current magnetic susceptibility measurement method.

また、試料室の中に更に試料を封入する真空容器を設け
れば、比熱や熱伝導率のような熱測定も可能である。
Furthermore, if a vacuum container for enclosing a sample is further provided in the sample chamber, thermal measurements such as specific heat and thermal conductivity are also possible.

また、銅ブロック7に気密窓を設ければ光学測定も可能
である。
Furthermore, if the copper block 7 is provided with an airtight window, optical measurement is also possible.

第3図は本発明の他の実施例を示すもので、材料の熱膨
張率を測定するのに適した試料温度制御装置である。試
料室8の周辺のみを示す。試料室8の中には、石英ガラ
ス製の外管40と!#4]、が同心状に挿入され、外管
40の下端を塞ぎ、銅製の円筒42の内側に円柱状の試
料12を入れ、棒41の下端を載せる。アダプター33
内には、外管40の上端に支持された支柱43に変位セ
ンサ44が固定され、センサ先端が捧41を軽く押して
いる。銅ブロック7と小形冷凍機の第2ステージ4との
間には、凸起を有する良熱伝導性の下板45と上板46
が離れて噛み合わされ、ステンレス鋼のような低熱伝導
性の円筒47で気密に連結され、内部から配管48が引
き出される。
FIG. 3 shows another embodiment of the present invention, which is a sample temperature control device suitable for measuring the coefficient of thermal expansion of a material. Only the vicinity of the sample chamber 8 is shown. Inside the sample chamber 8 is an outer tube 40 made of quartz glass! #4] are inserted concentrically to close the lower end of the outer tube 40, the cylindrical sample 12 is placed inside the copper cylinder 42, and the lower end of the rod 41 is placed. adapter 33
Inside, a displacement sensor 44 is fixed to a column 43 supported at the upper end of the outer tube 40, and the tip of the sensor lightly presses the support 41. Between the copper block 7 and the second stage 4 of the small refrigerator, there are a lower plate 45 and an upper plate 46 having good thermal conductivity and having protrusions.
are separated and engaged, airtightly connected by a cylinder 47 of low thermal conductivity such as stainless steel, and a pipe 48 is drawn out from inside.

このような構成によると、試料の温度を室温以上に上げ
ることができる。すなわち、円柱47の内部を真空にす
ることで、下板45と上板46間の熱接触が断たれ、ヒ
ータ5により自由に温度を、];げることかできる。逆
に熱接触を得るには、外に通じた配管48よりヘリウム
ガスを溝入すれば、ガスの熱伝導と対流により、第2ス
テージ4からの寒冷が銅ブロツク側へ伝えられる。
According to such a configuration, the temperature of the sample can be raised to above room temperature. That is, by creating a vacuum inside the cylinder 47, the thermal contact between the lower plate 45 and the upper plate 46 is broken, and the temperature can be freely increased by the heater 5. Conversely, in order to obtain thermal contact, if helium gas is injected from the pipe 48 leading to the outside, the cold from the second stage 4 will be transferred to the copper block side by heat conduction and convection of the gas.

もし、磁界の影響を調べたい場合には、銅ブロック7の
外側に電磁石9を設置すればよい。とくに、超電導体を
使った電磁石の場合、真空断熱部が真空容器16a、1
6b、16cと共用にできる。
If it is desired to examine the influence of the magnetic field, an electromagnet 9 may be installed outside the copper block 7. In particular, in the case of an electromagnet using a superconductor, the vacuum insulation part is the vacuum vessel 16a, 1
Can be used in common with 6b and 16c.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、試料室が直接大気開放
が可能なため試料の交換が容易になるという効果がある
As described above, according to the present invention, since the sample chamber can be directly opened to the atmosphere, the sample can be easily replaced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体描成の断面図、第
2図は第1図に示した試料室周辺の他の実施例を示す部
分断面図、第3図は第1図に示した試料室周辺の更に他
の実施例を示す部分断面図である。 4・・・小形冷凍機の第2ステージ、5・・・ヒータ、
7・・・銅ブロック、8・・・試料室、11・・・試料
支持体、12・・・試料、23・・・ガス封入機構、3
3・・・アダプタ、37・・・管、44・・・変位セン
サ、47・・・円筒。
FIG. 1 is an overall sectional view showing one embodiment of the present invention, FIG. 2 is a partial sectional view showing another embodiment around the sample chamber shown in FIG. 1, and FIG. 3 is the same as that shown in FIG. FIG. 6 is a partial cross-sectional view showing still another embodiment around the sample chamber shown in FIG. 4... Second stage of small refrigerator, 5... Heater,
7... Copper block, 8... Sample chamber, 11... Sample support, 12... Sample, 23... Gas filling mechanism, 3
3...Adapter, 37...Pipe, 44...Displacement sensor, 47...Cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1、試料の温度を小形冷凍機とヒータの併用により設定
する試料温度制御装置において、一端が大気中に開口し
た試料室と、前記試料室の開口部に気密に取り付けられ
た試料導入機構及びガス封入機構とを備えたことを特徴
とする試料温度制御装置。
1. A sample temperature control device that sets the temperature of a sample using a combination of a small refrigerator and a heater, which includes a sample chamber with one end open to the atmosphere, and a sample introduction mechanism and gas airtightly attached to the opening of the sample chamber. A sample temperature control device comprising: an enclosure mechanism;
JP63201846A 1988-08-15 1988-08-15 Sample temperature controller Pending JPH0251288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201846A JPH0251288A (en) 1988-08-15 1988-08-15 Sample temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201846A JPH0251288A (en) 1988-08-15 1988-08-15 Sample temperature controller

Publications (1)

Publication Number Publication Date
JPH0251288A true JPH0251288A (en) 1990-02-21

Family

ID=16447860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201846A Pending JPH0251288A (en) 1988-08-15 1988-08-15 Sample temperature controller

Country Status (1)

Country Link
JP (1) JPH0251288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214457A (en) * 1990-05-31 1993-05-25 Victor Company Of Japan, Ltd. Reflective overhead projector with light-to-light converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214457A (en) * 1990-05-31 1993-05-25 Victor Company Of Japan, Ltd. Reflective overhead projector with light-to-light converter

Similar Documents

Publication Publication Date Title
US20070051115A1 (en) Cryostat configuration with cryocooler and gas gap heat transfer device
JP3374273B2 (en) High magnetic field low temperature physical property measurement device
US5237825A (en) Method and apparatus for cryogenically cooling samples
JPH0251288A (en) Sample temperature controller
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
JP3180856B2 (en) Superconducting critical current measuring device
JP2645346B2 (en) Low temperature physical property test equipment
JPH08248001A (en) Apparatus for measuring physical properties under magnetic field
JPH04258103A (en) Cooling device of superconducting coil
US3443632A (en) Unitary dual function heat exchanger for gaseous heat carriers
JP2991566B2 (en) Physical property measurement device under magnetic field
JP3247714B2 (en) Element heating / cooling test equipment
JP2582377B2 (en) Low temperature physical property measurement device
JP2000146333A (en) Device and method of overhaul of cryogenic refrigerating machine
SU1702127A1 (en) Cryostat
Ferri et al. A Closed-cycle Refrigerator for Realizing Low-Temperature Fixed Points
CN115077290B (en) Apparatus and method for processing metal frost
SU1735682A1 (en) Cryostat for investigation of superconducting material
SU670864A1 (en) Unit for investigating heat-exchange of cryogenic liquids or gases moving throcgh ducts in field of centrifugal forces
JP2005019884A (en) Cryogenic cooling device
JPS62131159A (en) Refrigerator
CN115290690B (en) High-low temperature experiment testing arrangement
JPH0629582A (en) Cryostat
JPH05315130A (en) Superconducting apparatus
Austerman Compact High‐Temperature Vacuum Furnace