JPH0251117B2 - - Google Patents

Info

Publication number
JPH0251117B2
JPH0251117B2 JP59232613A JP23261384A JPH0251117B2 JP H0251117 B2 JPH0251117 B2 JP H0251117B2 JP 59232613 A JP59232613 A JP 59232613A JP 23261384 A JP23261384 A JP 23261384A JP H0251117 B2 JPH0251117 B2 JP H0251117B2
Authority
JP
Japan
Prior art keywords
flow rate
refrigerant flow
defrosting
heat exchanger
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59232613A
Other languages
Japanese (ja)
Other versions
JPS61110848A (en
Inventor
Toshio Wakabayashi
Koji Murozono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59232613A priority Critical patent/JPS61110848A/en
Publication of JPS61110848A publication Critical patent/JPS61110848A/en
Publication of JPH0251117B2 publication Critical patent/JPH0251117B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプ式空調機の除霜制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a heat pump type air conditioner.

従来例の構成とその問題点 ヒートポンプ式空調機の暖房運転時、低外気温
下では運転時間の経過とともに室外熱交換器表面
に霜が生じ暖房能力が大巾に低下する。これを防
止するために適当な時期に例えば冷媒の流れを逆
転させるなどして室外熱交換器の除霜を行なう必
要がある。
Conventional configuration and its problems During heating operation of a heat pump type air conditioner, under low outside temperatures, frost forms on the surface of the outdoor heat exchanger as the operating time passes, and the heating capacity decreases significantly. To prevent this, it is necessary to defrost the outdoor heat exchanger at an appropriate time by, for example, reversing the flow of the refrigerant.

従来よりヒートポンプ式空調機の除霜制御装置
において、特に着霜検知手段としては室外熱交換
器温度や外気温を検出するものがほとんどであ
り、これらは設置場所によつては強風や突風の影
響を受け易く温度検出を誤まり必要でない時に除
霜を開始するなど誤動作を起こし易いという問題
があつた。
Traditionally, most defrosting control devices for heat pump type air conditioners have detected outdoor heat exchanger temperature or outside air temperature as frost detection means, and depending on the installation location, these may be affected by strong winds or gusts. There was a problem in that the temperature was easily detected and malfunctions were easily caused, such as starting defrosting when it was not necessary.

発明の目的 本発明は以上のような問題点を解消するもの
で、室外熱交換器の着霜状態を冷媒流量の変化状
況で検知することにより、強風や突風の影響を受
け易い従来の温度検出方式よりもさらに確実にか
つ適確な時期に除霜を開始することのできるヒー
トポンプ式空調機の除霜制御装置を提供すること
を目的とする。
Purpose of the Invention The present invention solves the above-mentioned problems by detecting the frosting state of the outdoor heat exchanger based on changes in the refrigerant flow rate, thereby eliminating the need for conventional temperature detection, which is susceptible to the effects of strong winds and gusts. It is an object of the present invention to provide a defrosting control device for a heat pump type air conditioner that can start defrosting more reliably and at a more accurate time than the other methods.

発明の構成 この目的を達成するために本発明のヒートポン
プ式空調機の除霜制御装置は、冷媒流量Grを検
出する流量検出手段を有し、この冷媒流量Grの
時間τに関する微分値dGr/dτを演算する演算回路 と、上記微分値dGr/dτと負の設定値Kとを比較す る比較回路と、上記微分値dGr/dτがこの負の設定 値K以下の状態が所定時間Lの間継続した時に室
外熱交換器の除霜を開始する信号を出力する出力
回路とから成るものである。
Structure of the Invention In order to achieve this object, the defrosting control device for a heat pump type air conditioner of the present invention has a flow rate detection means for detecting a refrigerant flow rate Gr, and a differential value dGr/dτ of the refrigerant flow rate Gr with respect to time τ. a comparator circuit that compares the differential value dGr/dτ with a negative set value K, and a state in which the differential value dGr/dτ remains equal to or less than the negative set value K for a predetermined time L. and an output circuit that outputs a signal to start defrosting the outdoor heat exchanger when

本発明の除霜制御装置は、暖房運転中に室外熱
交換器に霜が生じ伝熱性能が落ちてくるに従がい
圧縮機の吸入圧力も徐々に低下してきて冷凍サイ
クルを循環する冷媒流量が徐々に減少し、しかも
着霜量が増加するに従がいこの冷媒流量の減少傾
向が急激になることに着目したものである。
In the defrosting control device of the present invention, as frost forms on the outdoor heat exchanger during heating operation and the heat transfer performance decreases, the suction pressure of the compressor gradually decreases and the flow rate of refrigerant circulating through the refrigeration cycle decreases. This study focuses on the fact that the refrigerant flow rate gradually decreases, and as the amount of frost increases, the decreasing tendency of the refrigerant flow rate becomes more rapid.

実施例の説明 以下に本発明の実施例を図を参照しつつ説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の除霜制御装置を備えたヒート
ポンプ式空調機の一例を示すものである。
FIG. 1 shows an example of a heat pump type air conditioner equipped with a defrosting control device of the present invention.

1はヒートポンプ式空調機で、圧縮機2、室内
熱交換器3、絞り装置4、室外熱交換器5、四方
弁6、流量センサ7を順次連結して冷凍サイクル
を構成するとともに、除霜制御装置8、室内フア
ン9、室外フアン10を備えている。冷媒流量検
知手段として用いた流量センサ7はこの場合圧縮
機2の吐出側に設けており、その形式としては多
翼形のタービン式流量センサである。
Reference numeral 1 denotes a heat pump type air conditioner, in which a compressor 2, an indoor heat exchanger 3, a throttle device 4, an outdoor heat exchanger 5, a four-way valve 6, and a flow rate sensor 7 are connected in sequence to constitute a refrigeration cycle, and also performs defrosting control. It includes a device 8, an indoor fan 9, and an outdoor fan 10. The flow rate sensor 7 used as a refrigerant flow rate detection means is provided on the discharge side of the compressor 2 in this case, and is a multi-blade turbine type flow sensor.

図中に示す実線の矢印方向は暖房運転時の冷媒
の流れ方向を示すもので、室外熱交換器5は蒸発
器として作用し外気より吸熱する。暖房運転時間
の経過とともに室外熱交換器5に霜が生じ成長し
てくると流量センサ7からの冷媒流量信号を入力
信号とする除霜制御装置8が除霜開始か否かを判
定して、除霜を開始する場合には四方弁6を切替
えて冷媒の流れ方向を図中の破線の矢印方向とし
て室外熱交換器5の除霜を開始する。
The solid arrow direction shown in the figure indicates the flow direction of the refrigerant during heating operation, and the outdoor heat exchanger 5 acts as an evaporator and absorbs heat from the outside air. When frost forms and grows on the outdoor heat exchanger 5 as the heating operation time elapses, the defrost control device 8, which receives the refrigerant flow rate signal from the flow rate sensor 7 as an input signal, determines whether or not defrosting has started. When starting defrosting, the four-way valve 6 is switched to set the flow direction of the refrigerant in the direction of the broken line arrow in the figure, and defrosting of the outdoor heat exchanger 5 is started.

第2図は本発明の一実施例であるヒートポンプ
式空調機の除霜制御装置のブロツク図を示す。
FIG. 2 shows a block diagram of a defrosting control device for a heat pump type air conditioner, which is an embodiment of the present invention.

11は演算回路、12は比較回路、13は出力
回路である。
11 is an arithmetic circuit, 12 is a comparison circuit, and 13 is an output circuit.

第3図は第2図に示す除霜制御装置の作用をさ
らに詳細に説明するフローチヤートである。第4
図は暖房運転中の冷媒流量Grの時間変化の一例
を示すものである。
FIG. 3 is a flowchart illustrating the operation of the defrosting control device shown in FIG. 2 in more detail. Fourth
The figure shows an example of a time change in the refrigerant flow rate Gr during heating operation.

第4図で示されるように一般に低外気温下で
は、暖房運転時間τの経過とともに冷媒流量Gr
は起動直後を除くとほゞ安定した状態から徐々に
減少していき、この安定状態が過ぎると冷媒流量
Grの減少傾向は急激になる。これは室外熱交換
器への着霜量が伝熱性能に大きく影響を及ぼし始
めた時期と見られヒートポンプ式空調機の暖房時
における連続運転の限界を示し始めたことにな
る。
As shown in Figure 4, under low outside temperatures, the refrigerant flow rate G increases as the heating operation time τ elapses.
The refrigerant flow rate gradually decreases from a stable state except immediately after startup, and after this stable state passes, the refrigerant flow rate decreases.
The decreasing trend of Gr becomes rapid. This appears to be the time when the amount of frost on the outdoor heat exchanger began to have a significant effect on heat transfer performance, and the continuous operation of the heat pump air conditioner during heating began to show its limits.

第2図に示すようにこのような冷媒流量Grを
流量センサ7で検出し、この冷媒流量信号を除霜
制御装置8に入力する。除霜制御装置8では演算
回路11にて冷媒流量Grの時間τに関する微分
値dGr/dτを演算する。この演算は例えば冷媒流量 信号の取りこみ時間間隔をΔτとすれば時間Δτの
間におけるGrの変化量として求まる。次に比較
回路12において微分値dGr/dτと負の設定値Kと を比較する。第3図に示すようにこの微分値
dGr/dτがKより大きい場合にはさほど室外熱交換 器5には着霜していないと判断しそのまま暖房運
転を継続するとともに時間Δτ後に再び冷媒流量
Grを検出する。一方この微分値dGr/dτがKに等し いか小さくなつた場合(第4図でτ=τf時)には
室外熱交換器5には相当量の着霜が生じていると
判断し出力回路13においてタイマ機能が作動す
る。つまり第3図でdGr/dτ≦Kなる状態が継続し て生じた回数をIとすれば、この状態が継続して
いる時間はΔτf=I・Δτで表わせる。この継続時
間Δτfが設定された所定時間Lよりも小さい場合
には引き続き暖房運転を続行するとともに元に戻
つて冷媒流量Grを検出する。
As shown in FIG. 2, such a refrigerant flow rate Gr is detected by a flow rate sensor 7, and this refrigerant flow rate signal is inputted to a defrosting control device 8. In the defrosting control device 8, a calculation circuit 11 calculates a differential value dGr/dτ of the refrigerant flow rate Gr with respect to time τ. For example, if the refrigerant flow rate signal acquisition time interval is Δτ, this calculation is calculated as the amount of change in Gr during the time Δτ. Next, the comparison circuit 12 compares the differential value dGr/dτ and the negative set value K. As shown in Figure 3, this differential value
If dGr/dτ is larger than K, it is determined that there is not much frost on the outdoor heat exchanger 5, and the heating operation is continued and the refrigerant flow rate is increased again after a time Δτ.
Detect Gr. On the other hand, when this differential value dGr/dτ becomes equal to or smaller than K (when τ=τf in FIG. 4), it is determined that a considerable amount of frost has formed on the outdoor heat exchanger 5, and the output circuit 13 The timer function operates. In other words, if I is the number of times that the state dGr/dτ≦K occurs continuously in FIG. 3, then the time during which this state continues can be expressed as Δτf=I·Δτ. If this duration Δτf is smaller than the predetermined time L, the heating operation continues and the refrigerant flow rate Gr is detected again.

一方、この継続時間Δτfが所定時間Lを越える
と、室外熱交換器5の着霜量がきわめて多く連続
運転の限界であることを判断し第2図に示す出力
回路13が除霜開始の信号を発する。
On the other hand, when this duration Δτf exceeds the predetermined time L, it is determined that the amount of frost on the outdoor heat exchanger 5 is extremely large and that continuous operation is at its limit, and the output circuit 13 shown in FIG. 2 sends a signal to start defrosting. emits.

以上のようにして除霜制御装置8の発する除霜
開始信号を受けて四方弁6を切替え逆サイクルに
よる室外熱交換器5の除霜運転を開始する。第4
図で示すように暖房運転開始から通算すると除霜
開始時間はτd=τf+Δτfで表わされる。その後例
えば所定時間または室外熱交換器5の温度が所定
温度に達するまで除霜運転を続けた後暖房運転に
戻り、再び以上に述べた一連の動作を繰り返す。
なお上記実施例では流量検出手段として圧縮機の
吐出側にタービン式流量センサを設けた場合で説
明したが、流量センサの種類やその設置位置に限
定されるものではないことは明らかである。
As described above, upon receiving the defrost start signal issued by the defrost control device 8, the four-way valve 6 is switched to start defrosting operation of the outdoor heat exchanger 5 in a reverse cycle. Fourth
As shown in the figure, the defrosting start time is expressed as τd=τf+Δτf when totaled from the start of heating operation. Thereafter, for example, the defrosting operation is continued for a predetermined time or until the temperature of the outdoor heat exchanger 5 reaches a predetermined temperature, and then the heating operation is resumed, and the series of operations described above is repeated again.
In the above embodiment, a case has been described in which a turbine type flow rate sensor is provided on the discharge side of the compressor as the flow rate detection means, but it is clear that the type of flow rate sensor and its installation position are not limited.

また、上記実施例では冷媒流量Grを検出する
流量検出手段として流量センサを用いた場合で説
明したが必ずしも流量センサを設けなくともよ
い。つまり膨張弁やキヤピラリなどの減圧装置の
流量特性や、圧縮機の流量特性を利用すれば冷媒
流量を知ることは可能である。第5図は減圧装置
の流量特性の一例を示したもので、横軸に減圧装
置入口圧力:P、縦軸に冷媒流量Grのそれぞれ
対数をとり、減圧装置入口サブクールSCをパラ
メータとしたものである。したがつて図示はしな
いが流量検出手段として減圧装置入口の圧力と温
度(又はサブクール)を検出すれば、第5図によ
り冷媒流量Grを知ることができる。
Further, in the above embodiment, a case has been described in which a flow rate sensor is used as the flow rate detection means for detecting the refrigerant flow rate Gr, but the flow rate sensor does not necessarily need to be provided. In other words, it is possible to know the refrigerant flow rate by using the flow rate characteristics of a pressure reducing device such as an expansion valve or a capillary, or the flow rate characteristics of a compressor. Figure 5 shows an example of the flow rate characteristics of a pressure reducing device, where the horizontal axis is the pressure reducing device inlet pressure: P, the vertical axis is the logarithm of the refrigerant flow rate Gr, and the pressure reducing device inlet subcool SC is taken as a parameter. be. Therefore, although not shown, if the pressure and temperature (or subcool) at the inlet of the pressure reducing device are detected using a flow rate detection means, the refrigerant flow rate Gr can be determined from FIG.

また第6図は圧縮機の流量特性の一例を示した
もので、吸入過熱度SH=11degCの状態で横軸に
吸入圧力Psを、縦軸に冷媒流量Gr※をとり、吐
出圧力Pdをパラメータとしたものである。
Figure 6 shows an example of the flow rate characteristics of the compressor, where the horizontal axis shows the suction pressure Ps, the vertical axis shows the refrigerant flow rate Gr*, and the discharge pressure Pd is the parameter when the suction superheat degree SH = 11 degC. That is.

第7図は吸入過熱度SHに対する吸入冷媒密度
比の一例を示したものである。
FIG. 7 shows an example of the suction refrigerant density ratio with respect to the suction superheat degree SH.

したがつて図示はしないが流量検出手段として
圧縮機の吸入圧力、吸入温度及び吐出圧力を検出
すれば第6図によりSH=11degCにおける冷媒流
量Gr※を知ることができる。さらに検出された
吸入温度より吸入過熱度SHを求め第7図により
その時の吸入冷媒密度比を知ることができる。
したがつて実際の冷媒流量Gr=・Gr※として
知ることができる。
Therefore, although not shown, if the suction pressure, suction temperature, and discharge pressure of the compressor are detected as a flow rate detection means, the refrigerant flow rate Gr* at SH=11 degC can be determined from FIG. 6. Furthermore, the suction superheat degree SH is determined from the detected suction temperature, and the suction refrigerant density ratio at that time can be determined from FIG.
Therefore, the actual refrigerant flow rate can be known as Gr=・Gr*.

また以上の実施例では室外熱交換器の除霜を四
方弁を切替えての逆サイクル方式で説明したが、
四方弁を切替えないで圧縮機からの吐出ガスを直
接室外熱交換器に導くホツトガスバイパス方式で
も同等の効果を有することは言うまでもない。
In addition, in the above embodiment, the defrosting of the outdoor heat exchanger was explained using a reverse cycle method by switching a four-way valve.
It goes without saying that a hot gas bypass system in which the discharge gas from the compressor is directly guided to the outdoor heat exchanger without switching the four-way valve has the same effect.

発明の効果 以上述べてきたように本発明のヒートポンプ式
空調機の除霜制御装置は、冷媒流量Grを検出す
る流量検出手段を有し、この冷媒流量Grの時間
τに関する微分値dGr/dτを演算する演算回路と、 上記微分値dGr/dτと負の設定値Kとを比較する比 較回路と、上記微分値dGr/dτがこの負の設定値K 以下の状態が所定時間Lの間継続した時に室外熱
交換器の除霜を開始する信号を出力する出力回路
とから成るようにしたので、従来より広く一般に
用いられている室外熱交換器温度や外気温を検出
して除霜制御を行なう温度検出方式の突風や強風
による除霜開始の誤動作をほぼ完全に解消し得る
とともに、確実にかつ適確な時期に除霜を開始す
ることができる効果の高いものである。
Effects of the Invention As described above, the defrosting control device for a heat pump air conditioner of the present invention has a flow rate detection means for detecting the refrigerant flow rate Gr, and calculates the differential value dGr/dτ of the refrigerant flow rate Gr with respect to time τ. an arithmetic circuit that performs calculations; a comparison circuit that compares the differential value dGr/dτ with a negative set value K; The output circuit also includes an output circuit that outputs a signal to start defrosting the outdoor heat exchanger at the same time, so defrosting control can be performed by detecting the outdoor heat exchanger temperature or outside air temperature, which is more widely used than before. This is a highly effective method that can almost completely eliminate malfunctions of the temperature detection method in starting defrosting due to gusts or strong winds, and can also start defrosting reliably and at an appropriate time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を備えたヒート
ポンプ式空調機の一例を示す図、第2図は本発明
の一実施例であるヒートポンプ式空調機の除霜制
御装置のブロツク図、第3図は第2図の作用を詳
細に説明する為のフローチヤート、第4図は暖房
運転中の冷媒流量Grの時間変化を示す図、第5
図は減圧装置の流量特性を示す図、第6図は圧縮
機の流量特性を示す図、第7図は吸入過熱度SH
に対する吸入冷媒密度比の関係を示す図であ
る。 1……ヒートポンプ式空調機、7……流量セン
サ(流量検出手段)、8……ヒートポンプ式空調
機の除霜制御装置、11……演算回路、12……
比較回路、13……出力回路。
FIG. 1 is a diagram showing an example of a heat pump air conditioner equipped with a defrosting control device of the present invention, and FIG. 2 is a block diagram of a defrosting control device for a heat pump air conditioner that is an embodiment of the present invention. Figure 3 is a flowchart for explaining the action of Figure 2 in detail, Figure 4 is a diagram showing time changes in refrigerant flow rate Gr during heating operation, and Figure 5
The figure shows the flow rate characteristics of the pressure reducing device, Figure 6 shows the flow rate characteristics of the compressor, and Figure 7 shows the suction superheat degree SH.
FIG. 3 is a diagram showing the relationship of the suction refrigerant density ratio to DESCRIPTION OF SYMBOLS 1...Heat pump type air conditioner, 7...Flow rate sensor (flow rate detection means), 8...Defrosting control device for heat pump type air conditioner, 11...Arithmetic circuit, 12...
Comparison circuit, 13...output circuit.

Claims (1)

【特許請求の範囲】 1 冷媒流量Grを検出する流量検出手段を有し、
この冷媒流量Grの時間τに関する微分値dGr/dτを 演算する演算回路と、前記微分値dGr/dτと負の設 定値Kとを比較する比較回路と、上記微分値
dGr/dτがこの負の設定値K以下の状態が所定時間 Lの間継続した時に室外熱交換器の除霜を開始す
る信号を出力する出力回路とから成るヒートポン
プ式空調機の除霜制御装置。
[Claims] 1. A flow rate detection means for detecting a refrigerant flow rate Gr,
an arithmetic circuit that calculates a differential value dGr/dτ of the refrigerant flow rate Gr with respect to time τ; a comparison circuit that compares the differential value dGr/dτ with a negative set value K;
A defrosting control device for a heat pump air conditioner comprising an output circuit that outputs a signal to start defrosting an outdoor heat exchanger when dGr/dτ remains below this negative set value K for a predetermined time L. .
JP59232613A 1984-11-05 1984-11-05 Defrostation controller for heat pump type air conditioner Granted JPS61110848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232613A JPS61110848A (en) 1984-11-05 1984-11-05 Defrostation controller for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232613A JPS61110848A (en) 1984-11-05 1984-11-05 Defrostation controller for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS61110848A JPS61110848A (en) 1986-05-29
JPH0251117B2 true JPH0251117B2 (en) 1990-11-06

Family

ID=16942082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232613A Granted JPS61110848A (en) 1984-11-05 1984-11-05 Defrostation controller for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS61110848A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932636B2 (en) * 2007-08-10 2012-05-16 ダイキン工業株式会社 Compressor internal state estimation device and air conditioner
JP4642100B2 (en) * 2008-09-01 2011-03-02 三菱電機株式会社 Heat pump equipment

Also Published As

Publication number Publication date
JPS61110848A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
CN106016628B (en) Defrosting control method and device for air conditioner
JPH0278844A (en) Air conditioner
JPH0251117B2 (en)
JPH1038398A (en) Controller of electric expansion valve
JPH0319457B2 (en)
JPS61153332A (en) Defrosting control device
JPH0443173B2 (en)
KR100256317B1 (en) Defrost device and algorithm of heat pump
JPH0739897B2 (en) Refrigeration cycle equipment
KR950012152B1 (en) Controlling method removing frost of airconditioner
JPH02136637A (en) Heat pump type air conditioner
JPS60218551A (en) Defrosting device for heat pump type air conditioner
JPH0772648B2 (en) Refrigerant flow control method
JP3337264B2 (en) Air conditioner defroster
JP2507369B2 (en) Air conditioner
JPH0225104Y2 (en)
JP2664690B2 (en) Air conditioner
KR20000055144A (en) Method for preventing freezing of the heat exchanger in the air conditioner
JPS60251354A (en) Method of controlling refrigeration cycle
JPH10332232A (en) Heat pump type air conditioner
KR100309281B1 (en) Defrost control method in heat pump type air-conditioner
JPS61122463A (en) Defrostation controller for heat pump type air conditioner
JPH0260940B2 (en)
JPH07103596A (en) Air-conditioner
JPH04369368A (en) Defrosting operation controller