JPH0250631B2 - - Google Patents

Info

Publication number
JPH0250631B2
JPH0250631B2 JP56065424A JP6542481A JPH0250631B2 JP H0250631 B2 JPH0250631 B2 JP H0250631B2 JP 56065424 A JP56065424 A JP 56065424A JP 6542481 A JP6542481 A JP 6542481A JP H0250631 B2 JPH0250631 B2 JP H0250631B2
Authority
JP
Japan
Prior art keywords
film
layer
well
insulating film
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56065424A
Other languages
Japanese (ja)
Other versions
JPS57180178A (en
Inventor
Akira Takei
Yoshihiko Higa
Takashi Mitsuida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56065424A priority Critical patent/JPS57180178A/en
Priority to EP81306143A priority patent/EP0056195B1/en
Priority to DE8181306143T priority patent/DE3174858D1/en
Publication of JPS57180178A publication Critical patent/JPS57180178A/en
Priority to US06/746,452 priority patent/US4672409A/en
Publication of JPH0250631B2 publication Critical patent/JPH0250631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8616Charge trapping diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Abstract

PURPOSE:To ensure a prolonged service life for memory by a method wherein a floating gate type semiconductor memory is provided in an n type Si substrate p well and an erase electrode is provided in a p<+> layer in the well. CONSTITUTION:The SiO2 layer 12 laid on an n type Si substrate 11 is provided with p well covered with an Si3N4 mask and B<+> ion implantation is accomplished for a channel stop feature. Oxidation follows for the formation of a field oxide film 12 and a part thereof is removed for the creation of a 100Angstrom thick SiO2 film 12''. Next, a doped polycrystalline Si film 16 is laid for the creation of an oxide film 17, which is further covered with a doped polycrystalline Si film 18 wherewith a floating gate 16 and a controlling gate 18 are produced with help of a resist mask. The product is covered with an SiO2 film 19, polycrystalline line Si films 20 and 20'' are provided, a p well is ion implanted with the layer 20 as a mask for the creation of an n<+> layer, a p<+> layer is selectively formed, and terminals for an erase line E, a word line W, a bit line B, and wirings for a CMOS are provided. In this construction, zero voltage V is applied to the terminal W at the time of read. Positive voltage here being 5V at the maximum thanks to the insulator film 12'' being extremely thin, information stored remains free of erasure for a prolonged period of time.

Description

【発明の詳細な説明】 本発明は、半導体記憶装置特に不揮発性半導体
記憶装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in semiconductor memory devices, particularly nonvolatile semiconductor memory devices.

本出願人は、昭和55年12月25日提出の特許願特
願昭55−182745号(以下において先願という)に
おいて、不揮発性半導体記憶装置なる名称の発明
を開示した。この発明の一実施例としてのフロー
テイング形の不揮発性半導体記憶装置を断面で示
す第1図を参照すると、当該発明は、チヤネル領
域4およびそれに隣接する唯一の不純物拡散領域
3が形成された半導体基板1、この半導体基板1
のチヤネル領域4上に形成された第1の絶縁膜
5、この絶縁膜5上に形成されたフローテイング
ゲート6、このフローテイングゲート6上に形成
された第2の絶縁膜7、およびこの絶縁膜7上に
形成されたコントロール8から成ることを特徴と
するものである。なお、図において1′はチヤネ
ルストツプ用拡散層である。
The present applicant disclosed an invention named a nonvolatile semiconductor memory device in patent application No. 182745/1982 (hereinafter referred to as the earlier application) filed on December 25, 1980. Referring to FIG. 1, which shows a cross section of a floating type nonvolatile semiconductor memory device as an embodiment of the present invention, the present invention is a semiconductor device in which a channel region 4 and the only impurity diffusion region 3 adjacent to the channel region 4 are formed. substrate 1, this semiconductor substrate 1
a first insulating film 5 formed on the channel region 4, a floating gate 6 formed on this insulating film 5, a second insulating film 7 formed on this floating gate 6, and a second insulating film 7 formed on this insulating film 5; It is characterized by consisting of a control 8 formed on a membrane 7. In the figure, 1' is a channel stop diffusion layer.

かかる装置の書込および消去動作はトンネル効
果またはアバランシブレークダウンを利用して行
う。例えば、トンネル効果を利用して電子を半導
体基板1からフローテイングゲート6に注入する
場合には、ビツト線端子Bの電位をゼロとし、か
つ、ワード線端子Wの電位を正の高電圧にする。
また、フローテイングゲート6の電子を半導体基
板1に掃出する場合には、ビツト線端子Bの電位
を正の電圧にし、かつ、ワード線端子Wの電位を
負の高電圧にする。
Write and erase operations in such devices utilize tunneling or avalanche breakdown. For example, when injecting electrons from the semiconductor substrate 1 to the floating gate 6 using the tunnel effect, the potential of the bit line terminal B is set to zero, and the potential of the word line terminal W is set to a positive high voltage. .
Further, when the electrons in the floating gate 6 are to be swept to the semiconductor substrate 1, the potential of the bit line terminal B is set to a positive voltage, and the potential of the word line terminal W is set to a negative high voltage.

次に、第1図の装置の読出動作について説明す
る。第2図aおよびそのbは第1図の装置読出動
作を説明するための概略的な断面図であり、チヤ
ネルストツプ用拡散層1′は省略してある。第2
図aはフローテイングゲート6に電子が蓄積され
ている状態を示し、そのbはフローテイングゲー
ト6に電子が存在しない状態を示す。なお、第2
図のaとbにおいて、ビツト線端子Bは浮遊状態
にし、ワード端子Wには所定の正電圧(ただし、
比較的低い)を印加してある。
Next, the reading operation of the apparatus shown in FIG. 1 will be explained. FIGS. 2a and 2b are schematic cross-sectional views for explaining the readout operation of the device shown in FIG. 1, and the channel stop diffusion layer 1' is omitted. Second
Figure a shows a state in which electrons are accumulated in the floating gate 6, and figure b shows a state in which there are no electrons in the floating gate 6. In addition, the second
In figures a and b, the bit line terminal B is left in a floating state, and the word terminal W is supplied with a predetermined positive voltage (however,
(relatively low) is applied.

第2図aに示すように、フローテイングゲート
6に電子が存在するために、チヤネル領域4に小
さい空乏層9が存在するのに対し、第2図bに示
すように、フローテイングゲート6に電子が存在
しないとチヤネル領域4に大きな空乏層9′が存
在する。従つて、第2図bにおいて、ワード線端
子Wに正電圧を印加した瞬間には、空乏層が拡が
るので、矢印Xに示すように電子が不純物拡散領
域3から空乏層へ向つて流れる。従つて、このよ
うにして生ずる電流を検知することにより、記憶
状態「1」または「0」を読出すことができる。
As shown in FIG. 2a, a small depletion layer 9 exists in the channel region 4 due to the presence of electrons in the floating gate 6, whereas as shown in FIG. In the absence of electrons, a large depletion layer 9' exists in the channel region 4. Therefore, in FIG. 2b, the moment a positive voltage is applied to the word line terminal W, the depletion layer expands, and electrons flow from the impurity diffusion region 3 toward the depletion layer as shown by the arrow X. Therefore, by detecting the current generated in this way, the memory state "1" or "0" can be read.

かかる装置において、読出動作のときだけでな
く、消去動作のとき、上述したようにピツト線端
子Bの電位を正の電圧にし、かつ、ワード線端子
Wの電位を負の高電圧又は雰電圧にする、従つ
て、ビツト線端子Bの電位を高電位にするため、
それが原因となつて、長時間の使用の間に電子が
消え去り情報がなくなるおそれがある。
In such a device, not only during a read operation but also during an erase operation, as described above, the potential of the pit line terminal B is set to a positive voltage, and the potential of the word line terminal W is set to a negative high voltage or an ambient voltage. Therefore, in order to make the potential of bit line terminal B high,
As a result, there is a risk that the electrons will disappear and information will be lost during long-term use.

本発明の目的は上記の課題を解決し、電気的な
書込と消去が容易で10年から20年の使用に耐えう
る不揮発生半導体記憶装置を提供するにある。か
かる目的を実現するために、本発明の半導体記憶
装置においては、n形基板に形成されたpウエル
内に先願の場合の如く唯一つのn形不純物拡散領
域を有する素子を形成し、基板上に形成される第
1の絶縁膜、フローテイングゲート、第2の絶縁
膜、コントロールゲートを先願の装置の場合と同
様に形成するが、不純物拡散領域に近いところで
は第1と第2の絶縁膜の膜厚を先願の場合と同様
に形成するものの、基板のチヤネル領域上でフイ
ールド酸化膜に近いところ、すなわち唯一の不純
物拡散領域から隔つたところでは第1の絶縁膜を
100〔Å〕程度と薄く形成し、チヤネル部分に接す
るフイールド絶縁膜の反対側においては基板のp
ウエル内に高濃度のp形不純物を拡散し、かくし
て形成された高濃度p形不純物拡散領域から電極
を取出してこの電極を全ビツト又はワード単位ご
とにpウエルを形成すればワード単位ごとの消去
用に用いるものである。
An object of the present invention is to solve the above-mentioned problems and provide a non-volatile semiconductor memory device that is easy to write and erase electrically and can withstand use for 10 to 20 years. In order to achieve this object, in the semiconductor memory device of the present invention, an element having only one n-type impurity diffusion region is formed in a p-well formed in an n-type substrate, as in the case of the previous application, and The first insulating film, the floating gate, the second insulating film, and the control gate are formed in the same manner as in the device of the prior application, but the first and second insulating films are Although the thickness of the film is the same as in the case of the previous application, the first insulating film is formed on the channel region of the substrate near the field oxide film, that is, in the region separated from the only impurity diffusion region.
It is formed as thin as about 100 Å, and on the opposite side of the field insulating film that is in contact with the channel part, the p
If a high concentration p-type impurity is diffused into the well, an electrode is taken out from the thus formed high concentration p-type impurity diffusion region, and a p-well is formed using this electrode for each bit or word, erasing can be performed for each word. It is used for various purposes.

以下、本発明の半導体記憶装置の実施例を添付
図面を参照して説明する。
Embodiments of the semiconductor memory device of the present invention will be described below with reference to the accompanying drawings.

先ず第3図を参照して本発明の半導体記憶装置
の製造方法につき説明するが、本発明の装置の製
造方法はC MOS集積回路の製造方法に類似し、
その結果、C MOS回路のもつ長所、すなわち
消費電力が少なく、動作速度が早く低電圧動作が
容易であるという利点をもつものである。
First, a method for manufacturing a semiconductor memory device according to the present invention will be explained with reference to FIG.
As a result, the CMOS circuit has the advantages of low power consumption, high operating speed, and easy low voltage operation.

第3図に示される如く、n形シリコン基板11
上に通常の技術により高温(例えば1100〔℃〕)の
酸化雰囲気中にさらし、二酸化シリコン(SiO2
の絶縁膜12を成長させ、次いでホトレジスト1
3をマスクにしてホウ素(B+)をイオン注入し、
続いてこのホトレジストを除去し、熱処理を施し
てpウエル14を形成する。
As shown in FIG. 3, an n-type silicon substrate 11
Silicon dioxide (SiO 2
An insulating film 12 is grown, and then a photoresist 1 is grown.
Using 3 as a mask, boron (B + ) is ion-implanted.
Subsequently, this photoresist is removed and heat treatment is performed to form the p-well 14.

次に窒化シリコン(Si3N4)膜15を成長さ
せ、その後ホトレジスト21を形成し、Si3N4
をパターニングし同図bに示される如くレジスト
21をマスクとしてチヤネルストツプ用のB+
イオン打込みを行なう。
Next, a silicon nitride (Si 3 N 4 ) film 15 is grown, and then a photoresist 21 is formed, the Si 3 N 4 film is patterned, and as shown in FIG . Perform typing.

続いて、Si3N4膜15を利用して選択酸化を行
ない、フイールド絶縁膜12′を成長させる(第
3図c)。このとき、第1絶縁膜となるSiO2膜1
2は700〜800〔Å〕の膜厚のものとなる。本発明
の装置においては、第3図cに12″で示す部分
を薄くするので、この部分はSiO2膜を削つた後
再び酸化して100〜120〔Å〕の膜厚のものにする。
Subsequently, selective oxidation is performed using the Si 3 N 4 film 15 to grow a field insulating film 12' (FIG. 3c). At this time, SiO 2 film 1 which becomes the first insulating film
2 has a film thickness of 700 to 800 [Å]. In the apparatus of the present invention, the portion indicated by 12'' in FIG. 3c is made thinner, so that after the SiO 2 film is scraped off, this portion is oxidized again to a film thickness of 100 to 120 [Å].

続いて、フローテイングゲートを作るための第
1層目の多結晶シリコン(ポリシリコン)層1
6′を全面に成長させ、イオン注入によつてその
抵抗を小にし、第2の絶縁膜17を形成するため
全面酸化し、引続きコントロールゲート用の第2
層目のポリシリコン層18′を全面に成長させ、
同様のイオン注入をなす。次いで、マスクを用い
てエツチングをなし、第3図dに示される如く、
半導体基板11の上には、下から、薄くした部分
12″ををもつた第1の絶縁膜12、その上に形
成されたフローテイングゲート16、その上に成
長せしめられた第2の絶縁膜17、この絶縁膜上
のコントロールゲート18が形成される。かかる
構造のものが、1枚のマスクを用いるエツチング
で形成されることは、本発明の装置の製造方法の
もつ有利な点である。
Next, the first layer of polycrystalline silicon (polysilicon) 1 for making a floating gate is formed.
6' is grown on the entire surface, its resistance is reduced by ion implantation, and the entire surface is oxidized to form a second insulating film 17.
A second polysilicon layer 18' is grown on the entire surface,
Similar ion implantation is performed. Then, etching is performed using a mask, as shown in Figure 3d.
On the semiconductor substrate 11, from below, a first insulating film 12 having a thinned portion 12'', a floating gate 16 formed on it, and a second insulating film grown on it. 17. A control gate 18 is formed on this insulating film.An advantage of the device manufacturing method of the present invention is that such a structure can be formed by etching using a single mask.

次の工程では、第3図eに示されるように、酸
化によつて絶縁膜19を成長させ、その上にポリ
シリコンを成長させ、形成されたポリシリコン層
をパターニングし、n+領域を形成するためポリ
シリコン層20′及びそのドレイン、ソース領域
は被覆してポリシリコン層20をマスクとして絶
縁膜19(SiO2膜)を通り燐またはヒ素をイオ
ン注入によつて打込む。
In the next step, as shown in FIG. 3e, an insulating film 19 is grown by oxidation, polysilicon is grown on it, and the formed polysilicon layer is patterned to form an n + region. To do this, the polysilicon layer 20' and its drain and source regions are covered, and phosphorus or arsenic is ion-implanted through the insulating film 19 (SiO 2 film) using the polysilicon layer 20 as a mask.

更に、通常の技術によりp+領域の形成はポリ
シリコン層20及びそのドレイン、ソース領域を
レジストで被覆してB+イオン注入を行なう(第
3図f)。
Further, the p + region is formed by coating the polysilicon layer 20 and its drain and source regions with a resist and implanting B + ions using a conventional technique (FIG. 3f).

最後に、消去線端子E、ワード線端子W、ビツ
ト線端子BおよびC MOSの端子を形成する
(第3図g)。同図において、一点鎖線の左に示さ
れるものは本発明にかかる半導体記憶装置、右に
示されるものはC MOSデバイスである。
Finally, erase line terminal E, word line terminal W, bit line terminal B and CMOS terminals are formed (FIG. 3g). In the figure, what is shown to the left of the dashed-dotted line is a semiconductor memory device according to the present invention, and what is shown to the right is a CMOS device.

第3図gに示される本発明の装置の書込動作
は、トンネル効果を利用し、電子を半導体基板1
1からフローテイングゲート16に注入する場合
は、ビツト線端子Bを接地することによりロー
(L)レベル(ゼロ)にし、かつ、ワード線端子
Wの電位をハイ(H)レベルにする。このときし
きい値VTHは高くなる。書込を欲しないときは、
ビツト線端子Bとワード線端子Wの電位をともに
Hレベルにすると、電子注入がなく、そのときし
きい値VTHは低くなる。
The write operation of the device of the present invention shown in FIG.
1 to the floating gate 16, the bit line terminal B is grounded to set it to a low (L) level (zero), and the potential of the word line terminal W is set to a high (H) level. At this time, the threshold value V TH becomes high. If you don't want to write,
When the potentials of both the bit line terminal B and the word line terminal W are set to H level, no electrons are injected, and the threshold value V TH becomes low.

全ビツト又はワードを消去したいとき、すなわ
ちフローテイングゲート16の電子を半導体基板
11に掃出するときは、ワード線端子Wの電位を
Lレベル(ゼロ)にし、消去線端子Eの電位をH
レベルにする。このときしきい値VTHは小であ
る。端子EをHレベルにすると、第1の絶縁膜を
薄くした部分12″の下の半導体基板は正になり、
フローテイングゲート16の電子がトンネル効果
によりこの半導体基板の正の部分に掃出されるこ
とが理解されよう。
When you want to erase all bits or words, that is, when you want to sweep the electrons in the floating gate 16 to the semiconductor substrate 11, the potential of the word line terminal W is set to L level (zero), and the potential of the erase line terminal E is set to H level.
level. At this time, the threshold value V TH is small. When the terminal E is set to H level, the semiconductor substrate under the thinned part 12'' of the first insulating film becomes positive;
It will be appreciated that the electrons in floating gate 16 are swept into the positive portion of this semiconductor substrate by tunneling.

また、本発明の装置の読取は、消去線端子Eの
電位をLレベル、ビツト線端子Bの電位もLレベ
ルにし、ワード線端子Wの電位を5V程度のHレ
ベルにし、ビツト線端子Bからワード線端子Wの
下すなわちコントロールゲート17の下への電子
の注入の有無によつてビツト線端子Bに電位の高
低を発生させ、それをセンスアンプによつて読取
る。
Furthermore, in reading with the device of the present invention, the potential of the erase line terminal E is set to L level, the potential of bit line terminal B is also set to L level, the potential of word line terminal W is set to H level of about 5V, and the potential of bit line terminal B is set to L level. Depending on whether or not electrons are injected under the word line terminal W, that is, under the control gate 17, a potential level is generated at the bit line terminal B, and this is read by a sense amplifier.

先願の装置においては、前述したように、電子
は半導体基板からフローテイングゲートに注入す
る場合には、ピツト線端子Wの電位は正の高電圧
(例えば50V程度)にし、また、フローテイング
ゲートの電子を半導体基板に掃出する場合は、ワ
ード線端子Wの電位は負の高電圧又は雰電圧にす
る。このように、先願装置において、ビツト線端
子Bの電位を、ワード線端子が0Vの状態で正の
高電圧にする、このことは当該装置の記憶保持時
間に好ましからざる影響を与えうる。本願の装置
においては、第1の絶縁膜12に100〔Å〕程度の
きわめて薄い部分を形成してあるが、ピツト線端
子をHレベルにするときでもそれは5V程度のも
のであり、前記したような好ましからざる影響が
発生することはないために、記憶保持時間が10〜
20年と長期間に及ぶことが保障される。
In the device of the prior application, as mentioned above, when electrons are injected from the semiconductor substrate to the floating gate, the potential of the pit line terminal W is set to a positive high voltage (for example, about 50 V), and When sweeping out electrons to the semiconductor substrate, the potential of the word line terminal W is set to a negative high voltage or ambient voltage. Thus, in the device of the prior application, the potential of the bit line terminal B is set to a high positive voltage while the word line terminal is at 0V, which can have an undesirable effect on the memory retention time of the device. In the device of the present application, an extremely thin part of about 100 [Å] is formed in the first insulating film 12, but even when the pit wire terminal is set to H level, the voltage is about 5V, as mentioned above. Since no undesirable effects occur, the memory retention time is 10~
Guaranteed to last for 20 years.

以上に説明した如く、本発明の装置において
は、不純物拡散領域が従来例に比べ減少している
ので装置の集積度を高めることができるだけでな
く、情報保持時間が長くなり、また装置の製造に
はC MOSデバイスの製造技術を用いるため容
易にされるという効果をもつものである。
As explained above, in the device of the present invention, since the impurity diffusion region is reduced compared to the conventional example, it is possible not only to increase the degree of integration of the device, but also to increase the information retention time, and to reduce the manufacturing cost of the device. This has the effect of being simplified by using CMOS device manufacturing technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先願発明の実施例としてのフローテイ
ング形の不揮発性半導体記憶装置の断面図、第2
図のaとbは第1図の装置の読出動作を説明する
ための断面図、第3図のaないしgは本発明の装
置を製造する工程の断面図である。 11……半導体基板、12……第1の絶縁膜、
12′……フイールド絶縁膜、12″……第1の絶
縁膜の薄くした部分、13……ホトレジスト膜、
14……pウエル、15……窒化シリコン膜、1
6……フローテイングゲート、17……第2の絶
縁膜、18……コントロールゲート、19……絶
縁膜、20……ポリシリコン層。
FIG. 1 is a sectional view of a floating type non-volatile semiconductor memory device as an embodiment of the invention of the earlier application;
Figures a and b are cross-sectional views for explaining the readout operation of the device of FIG. 1, and figures a to g of FIG. 3 are cross-sectional views of the steps for manufacturing the device of the present invention. 11... Semiconductor substrate, 12... First insulating film,
12'... Field insulating film, 12''... Thinned portion of first insulating film, 13... Photoresist film,
14...P well, 15...Silicon nitride film, 1
6... Floating gate, 17... Second insulating film, 18... Control gate, 19... Insulating film, 20... Polysilicon layer.

Claims (1)

【特許請求の範囲】[Claims] 1 チヤネル領域および該チヤネル領域に隣接す
る唯一の不純物拡散領域が形成された半導体基
板、該半導体基板のチヤネル領域上に形成された
第1の絶縁膜、該第1の絶縁膜上に形成されたフ
ローテイングゲート、該フローテイングゲート上
に形成された第2の絶縁膜および該第2の絶縁膜
上に形成されたコントロールゲートから成る半導
体記憶装置において、該半導体記憶装置は該半導
体基板と逆導電形のウエル内に形成され、該ウエ
ル内にはウエルと同導電形の高濃度不純物拡散領
域が形成され、この高濃度不純物拡散領域に消去
動作用の電極が設けられることを特徴とする半導
体記憶装置。
1. A semiconductor substrate in which a channel region and the only impurity diffusion region adjacent to the channel region are formed, a first insulating film formed on the channel region of the semiconductor substrate, and a first insulating film formed on the first insulating film. In a semiconductor memory device comprising a floating gate, a second insulating film formed on the floating gate, and a control gate formed on the second insulating film, the semiconductor memory device has a conductivity opposite to that of the semiconductor substrate. 1. A semiconductor memory, characterized in that the well is formed in a shaped well, a high concentration impurity diffusion region of the same conductivity type as the well is formed, and an electrode for erasing operation is provided in the high concentration impurity diffusion region. Device.
JP56065424A 1980-12-25 1981-04-30 Semiconductor memory device Granted JPS57180178A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56065424A JPS57180178A (en) 1981-04-30 1981-04-30 Semiconductor memory device
EP81306143A EP0056195B1 (en) 1980-12-25 1981-12-24 Nonvolatile semiconductor memory device
DE8181306143T DE3174858D1 (en) 1980-12-25 1981-12-24 Nonvolatile semiconductor memory device
US06/746,452 US4672409A (en) 1980-12-25 1985-06-19 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56065424A JPS57180178A (en) 1981-04-30 1981-04-30 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS57180178A JPS57180178A (en) 1982-11-06
JPH0250631B2 true JPH0250631B2 (en) 1990-11-02

Family

ID=13286665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56065424A Granted JPS57180178A (en) 1980-12-25 1981-04-30 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS57180178A (en)

Also Published As

Publication number Publication date
JPS57180178A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
US5029130A (en) Single transistor non-valatile electrically alterable semiconductor memory device
EP0193841B1 (en) Semiconductor device and method of manufacturing the same
JP2555027B2 (en) Semiconductor memory device
JPH08125148A (en) Semiconductor memory
JPH0581072B2 (en)
JPH0418711B2 (en)
USRE37959E1 (en) Semiconductor integrated circuit device and method of manufacturing the same
US4233616A (en) Semiconductor non-volatile memory
JPH10189920A (en) Non-volatile semiconductor memory device and manufacturing method thereof
JPS63271973A (en) Electrically programmable and electrically erasable memory cell and manufacture of the same
JPH06104451A (en) Nonvolatile semiconductor storage device
JPH0587030B2 (en)
JPH0250631B2 (en)
JP2544569B2 (en) Semiconductor memory device
JPS6135712B2 (en)
JP4427431B2 (en) Semiconductor memory device, semiconductor memory device manufacturing method, and semiconductor memory device operating method
JPH02372A (en) Semiconductor device
JP2544570B2 (en) Method for manufacturing semiconductor memory device
JPH02295169A (en) Nonvolatile semiconductor memory
JPS6241431B2 (en)
JPH0450754B2 (en)
JP2633547B2 (en) Semiconductor memory device and method of manufacturing the same
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JPH0346984B2 (en)
JPH0812885B2 (en) Nonvolatile semiconductor memory device