JPH06104451A - Nonvolatile semiconductor storage device - Google Patents

Nonvolatile semiconductor storage device

Info

Publication number
JPH06104451A
JPH06104451A JP4252810A JP25281092A JPH06104451A JP H06104451 A JPH06104451 A JP H06104451A JP 4252810 A JP4252810 A JP 4252810A JP 25281092 A JP25281092 A JP 25281092A JP H06104451 A JPH06104451 A JP H06104451A
Authority
JP
Japan
Prior art keywords
groove
memory device
semiconductor memory
oxide film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252810A
Other languages
Japanese (ja)
Inventor
Hisashi Fukuda
永 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4252810A priority Critical patent/JPH06104451A/en
Publication of JPH06104451A publication Critical patent/JPH06104451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To provide a title device which can execute write and erase of information without using step-up circuits and improves a tunnel oxide film. CONSTITUTION:This device has a gate electrode structure buried in a P-type silicon substrate 11. A tunnel oxide film 16 is formed on the inner wall of a groove 15 formed in the surface of the P-type silicon substrate 11. Source and drain regions 18, 17 are separated by the groove 15 and electrically connected by a channel layer formed in the surface of the silicon substrate contacting the side wall of this groove 15. A floating gate electrode 19 is formed on the surface of the tunnel oxide film 16. A control gate electrode 20 is formed on the floating gate electrode 19 via an insulation layer. Write and erase actions are executed by current flowing between the source or drain region in a vicinity of the open edge of the groove 15 and the floating gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不揮発性半導体記憶装
置、特に電気的に情報の書き込み及び消去ができる不揮
発性半導体記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-volatile semiconductor memory device, and more particularly to a non-volatile semiconductor memory device capable of electrically writing and erasing information.

【0002】[0002]

【従来の技術】不揮発性半導体装置は絶縁体に囲まれた
浮遊ゲート中に電子を注入することにより情報が書込ま
れ、外部より電気エネルギを与えられなくても蓄積情報
を長期間保持できる装置である。最近、この種の半導体
記憶装置として、書込まれた情報を電気的に一括消去で
きる機能を有する不揮発性半導体記憶(又はフラッシュ
型不揮発性メモリ)装置が種々の電子回路システムに使
用されるようになってきた。
2. Description of the Related Art A nonvolatile semiconductor device is a device in which information is written by injecting electrons into a floating gate surrounded by an insulator, and stored information can be retained for a long period of time without being supplied with electric energy from the outside. Is. Recently, as this type of semiconductor memory device, a nonvolatile semiconductor memory (or flash type nonvolatile memory) device having a function of electrically erasing written information collectively has been used in various electronic circuit systems. It's coming.

【0003】従来の不揮発性半導体記憶装置は、例え
ば、図4に示すように、P型シリコン基板31の表面に
形成されたN+ 導電型のソース及びドレイン領域34,
33、およびソース・ドレイン領域間のチャンネル領域
上にトンネル酸化膜36を介して形成された浮遊ゲート
電極38を有する。領域33下のP型導電層32は書き
込み効率の向上のために形成され、さらにソース領域3
4下のN- 型導電層35は消去動作に発生するバンド間
トンネル電流を抑制するために形成される。
A conventional non-volatile semiconductor memory device, for example, as shown in FIG. 4, has N + conductivity type source and drain regions 34 formed on the surface of a P type silicon substrate 31,
33, and a floating gate electrode 38 formed on the channel region between the source / drain regions with a tunnel oxide film 36 interposed. The P-type conductive layer 32 below the region 33 is formed to improve the writing efficiency, and further the source region 3 is formed.
The N -type conductive layer 35 under 4 is formed to suppress the band-to-band tunnel current generated in the erase operation.

【0004】一般に、情報読出し動作において、不揮発
性半導体記憶装置は、浮遊ゲート電極38に電子が多数
注入されている場合は、P型シリコン基板31表面のチ
ャンネル領域は反転しないので、N+ ソース領域33と
+ ドレイン34領域間に電流が流れずオフ状態にな
る。一方、浮遊ゲート電極38内に電子が注入されてい
ない場合、チャンネル領域は容易に反転するのでソース
・ドレイン間に電流が流れオン状態になる。
Generally, in the information read operation, in the nonvolatile semiconductor memory device, when a large number of electrons are injected into the floating gate electrode 38, the channel region on the surface of the P-type silicon substrate 31 is not inverted, so that the N + source region is not inverted. No current flows between the region 33 and the N + drain region 34, and the state is turned off. On the other hand, when electrons are not injected into the floating gate electrode 38, the channel region is easily inverted, so that a current flows between the source and the drain to turn on.

【0005】浮遊ゲート電極への電子注入(書き込み)
動作において、ドレイン領域33と基板31間に正の逆
バイアス電圧(約5V)が印加され、制御ゲート電極3
9には浮遊ゲート電圧が約10Vになるような高電圧が
印加される。これにより、ソース領域34から流出した
電子はトンネル酸化膜36を介して浮遊ゲート電極38
に注入され、情報が書き込まれる。
Electron injection (writing) to the floating gate electrode
In operation, a positive reverse bias voltage (about 5 V) is applied between the drain region 33 and the substrate 31, and the control gate electrode 3
A high voltage is applied to 9 so that the floating gate voltage becomes about 10V. As a result, the electrons flowing out of the source region 34 pass through the tunnel oxide film 36 and the floating gate electrode 38.
Information is written.

【0006】一方、電子抜き取り(消去)動作におい
て、ソース領域34に正の電圧を印加すると、トンネル
電流がソース及びドレイン領域へ流れて浮遊ゲート電極
中の電子はソース領域34へ抜き取られ、情報が消去さ
れる。
On the other hand, in the electron extracting (erasing) operation, when a positive voltage is applied to the source region 34, a tunnel current flows to the source and drain regions, electrons in the floating gate electrode are extracted to the source region 34, and information is written. Erased.

【0007】[0007]

【発明が解決しようとする課題】上記のフラッシュ型不
揮発性半導体装置において、トンネル酸化膜は非常に薄
い膜厚を有し、たとえば1Mビット以上のフラッシュ型
不揮発性記憶装置では10nm以下のシリコン酸化膜
(SiO2 )が用いられている。この酸化膜の特性は不
揮発性記憶装置の書き換え回数、情報記憶保持時間を決
定するための重要な因子となる。情報の書き込み及び消
去動作が実行されると、トンネル酸化膜はストレスを受
け、情報の書き換え回数に比例してこのストレスが増加
する。トンネル酸化膜の膜厚と情報保持期間とは相互関
係があり、トンネル酸化膜のストレスが大きくなると情
報の保持特性の劣化および有効書換え回数の低下が生じ
る。一般に厚い(例えば20nm)膜厚のトンネル酸化
膜を使用すると、酸化膜間に印加される電界が小さくな
り、有効書換回数を増加させることができると共に、デ
ータ保持期間を延長することができる。しかしながら、
トンネル電流を利用して消去動作を行なうので、ソース
領域と浮遊ゲート21領域間に高電圧を印加せざるを得
ない。したがって、大面積を占有する昇圧回路を不揮発
性記憶装置内に組み込む必要があった。情報消去電圧を
低下させるためにはトンネル酸化膜を薄くする必要があ
るが、薄くするとトンネル酸化膜の絶縁破壊が発生しや
すくなること、およびリーク電流が増加する問題があっ
た。
In the above flash type nonvolatile semiconductor device, the tunnel oxide film has a very thin film thickness. For example, in a flash type nonvolatile memory device of 1 Mbit or more, the silicon oxide film of 10 nm or less is used. (SiO 2 ) is used. The characteristics of the oxide film are important factors for determining the number of times of rewriting of the nonvolatile memory device and the information storage retention time. When information writing and erasing operations are performed, the tunnel oxide film receives stress, and this stress increases in proportion to the number of times information is rewritten. The film thickness of the tunnel oxide film and the information retention period have a mutual relationship, and when the stress of the tunnel oxide film increases, the information retention property deteriorates and the number of effective rewrites decreases. Generally, when a tunnel oxide film having a large thickness (for example, 20 nm) is used, the electric field applied between the oxide films is reduced, the number of effective rewrites can be increased, and the data retention period can be extended. However,
Since the erase operation is performed by using the tunnel current, a high voltage must be applied between the source region and the floating gate 21 region. Therefore, it is necessary to incorporate a booster circuit occupying a large area into the nonvolatile memory device. Although it is necessary to thin the tunnel oxide film in order to reduce the information erasing voltage, there are problems that the tunnel oxide film easily causes dielectric breakdown and the leakage current increases when the tunnel oxide film is thinned.

【0008】本発明の目的は情報消去用の昇圧回路を必
要としない不揮発性半導体記憶装置を提供することにあ
る。
An object of the present invention is to provide a non-volatile semiconductor memory device that does not require a booster circuit for erasing information.

【0009】また本発明の他の目的はトンネル酸化膜の
信頼性を向上できる半導体不揮発性半導体記憶装置を提
供することにある。
Another object of the present invention is to provide a semiconductor nonvolatile semiconductor memory device capable of improving the reliability of the tunnel oxide film.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の不揮発性半導体記憶装置は、表面に溝を
有する第1導電型の半導体基板と、溝を介しかつこの溝
の側壁に接するように半導体基板表面に形成された一対
の第2導電型の第1及び第2領域と、溝の表面に形成さ
れた第1の絶縁膜と、溝内の第1絶縁膜表面に形成され
た第1の導電体層と、第1の導電体層の表面に形成され
た第2の絶縁体層と、第2の絶縁体層表面に形成された
第2の導電体層とを有する事を特徴としている。
In order to achieve the above object, a nonvolatile semiconductor memory device of the present invention is a semiconductor substrate of the first conductivity type having a groove on its surface, and a sidewall of the groove via the groove. Formed on the surface of the semiconductor substrate so as to be in contact with the first and second regions of the second conductivity type, the first insulating film formed on the surface of the groove, and formed on the surface of the first insulating film in the groove. A first conductive layer formed on the surface of the first conductive layer, a second insulating layer formed on the surface of the first conductive layer, and a second conductive layer formed on the surface of the second insulating layer. It is characterized by things.

【0011】前記第1導電型半導体基板がP型シリコン
基板であり、前記第2導電型の第1及び第2領域がN型
不純物拡散領域である。
The first conductivity type semiconductor substrate is a P type silicon substrate, and the first and second regions of the second conductivity type are N type impurity diffusion regions.

【0012】上記不揮発性半導体記憶装置において、デ
ータ書込み時の電子注入およびデータ消去時の電子放出
が前記溝の開口端部周辺の前記第1絶縁層を介して行な
われる。
In the above nonvolatile semiconductor memory device, electrons are injected at the time of writing data and emitted at the time of erasing data through the first insulating layer around the opening end of the groove.

【0013】上記不揮発性半導体記憶装置において、第
1絶縁体層および第2絶縁体層がシリコン酸化膜層であ
り、第1及び第2導電体層がポリシリコン層である。上
記不揮発性半導体記憶装置において、第1絶縁体層が1
0〜20nmの膜厚を有する。
In the above nonvolatile semiconductor memory device, the first insulator layer and the second insulator layer are silicon oxide film layers, and the first and second conductor layers are polysilicon layers. In the above nonvolatile semiconductor memory device, the first insulator layer is 1
It has a film thickness of 0 to 20 nm.

【0014】本発明のフラッシュ型不揮発性半導体記憶
装置は、表面に溝を有する第1導電型のシリコン基板
と、溝を介しかつこの溝の側壁に接するように前記シリ
コン基板表面に形成された第2導電型のドレイン及びソ
ース領域と、溝の側壁表面に形成された第1の絶縁膜
と、溝内の前記第1絶縁膜表面に形成された第1の導電
体層と、第1の導電体層の表面に形成された第2の絶縁
体層と、第2の絶縁体層表面に形成された第2の導電体
層とを有する事を特徴とする。
The flash type nonvolatile semiconductor memory device of the present invention comprises a first conductivity type silicon substrate having a groove on the surface, and a first conductive type silicon substrate formed on the surface of the silicon substrate through the groove and in contact with the sidewall of the groove. A two-conductivity type drain and source region, a first insulating film formed on the sidewall surface of the groove, a first conductor layer formed on the surface of the first insulating film in the groove, and a first conductive film. It is characterized in that it has a second insulator layer formed on the surface of the body layer and a second conductor layer formed on the surface of the second insulator layer.

【0015】上記のフラッシュ型不揮発性半導体記憶装
置において、データ書込み動作時の電子注入及び消去動
作時の電子放出が前記溝の開口端部周辺の前記第1絶縁
層を介して行なわれる。
In the above flash type nonvolatile semiconductor memory device, electrons are injected during a data write operation and emitted during an erase operation through the first insulating layer around the opening end of the groove.

【0016】[0016]

【作用】本発明による不揮発性半導体記憶装置は、半導
体基板の表面に溝が形成され、この溝の内に形成された
トンネル酸化膜、浮遊ゲート電極、制御ゲート電極、さ
らにこの溝の外壁に隣接したソース及びドレイン領域を
有するので、この溝の開口端部近傍でソース領域及びド
レイン領域と浮遊ゲート電極間の電界を局部的に高くし
て電子を浮遊ゲートすることができる。そのため、低電
圧での書き込み及び消去動作が可能となる。
In the nonvolatile semiconductor memory device according to the present invention, a groove is formed on the surface of the semiconductor substrate, and the tunnel oxide film, the floating gate electrode, the control gate electrode formed in the groove, and the outer wall of the groove are adjacent to each other. Since the source and drain regions are formed, electrons can be floating gated by locally increasing the electric field between the source and drain regions and the floating gate electrode near the opening end of the groove. Therefore, writing and erasing operations can be performed at a low voltage.

【0017】[0017]

【実施例】本発明に従ったフラッシュ型不揮発性半導体
記憶装置の好ましい実施例を図面を参照して詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a flash type nonvolatile semiconductor memory device according to the present invention will be described in detail with reference to the drawings.

【0018】図1はこの発明によるフラッシュ型記憶装
置の断面図である。
FIG. 1 is a sectional view of a flash type memory device according to the present invention.

【0019】図1において、不揮発性半導体記憶装置1
0はP型シリコン半導体基板11、この基板の表面にメ
モリセル領域を画成する厚いシリコン酸化物からなるフ
ィールド酸化膜12を有する。メモリセル領域内のシリ
コン基板11の表面に、例えば、凹形状の溝部15が形
成される。溝部15の側壁とフィールド酸化膜12間の
基板11の表面にN型のドレイン領域17及びソース領
域18が形成される。ドレイン領域17及びフィールド
酸化膜12の表面に延在する導電層13a、およびソー
ス領域18及びフィールド酸化膜12の表面に延在する
導電層13bが形成される。溝部の開口部を経由して、
溝部の内壁から導電層13aおよび13bの表面に薄い
ゲート酸化膜層16が形成される。溝部内の酸化物層1
6は例えば10〜15nmの膜厚のシリコン酸化物層か
ら形成され、トンネル酸化膜と称される。ゲート酸化膜
16上に浮遊ゲート電極19が形成される。次に、浮遊
ゲート電極上に熱成長酸化膜を形成し、続いて、ゲート
電極を形成する。上記構造体の前表面には中間絶縁膜2
2が形成される。電極23aおよび23bが中間絶縁膜
22を介してそれぞれ導電層13aおよび13bと電気
的に接続するために形成される。この発明による不揮発
性半導体記憶装置において、トンネル電流は主としてN
型拡散領域から凹型溝の開口端部近傍のトンネル酸化膜
16を介して浮遊ゲート19に注入される。
In FIG. 1, a nonvolatile semiconductor memory device 1
Reference numeral 0 has a P-type silicon semiconductor substrate 11, and a field oxide film 12 made of thick silicon oxide that defines a memory cell region on the surface of this substrate. For example, a concave groove 15 is formed on the surface of the silicon substrate 11 in the memory cell region. An N type drain region 17 and a source region 18 are formed on the surface of the substrate 11 between the side wall of the groove 15 and the field oxide film 12. Conductive layer 13a extending on the surfaces of drain region 17 and field oxide film 12 and conductive layer 13b extending on the surfaces of source region 18 and field oxide film 12 are formed. Via the opening of the groove,
A thin gate oxide film layer 16 is formed on the surfaces of conductive layers 13a and 13b from the inner wall of the groove. Oxide layer 1 in the groove
6 is formed of a silicon oxide layer having a film thickness of 10 to 15 nm, for example, and is called a tunnel oxide film. The floating gate electrode 19 is formed on the gate oxide film 16. Next, a thermally grown oxide film is formed on the floating gate electrode, and then the gate electrode is formed. An intermediate insulating film 2 is formed on the front surface of the structure.
2 is formed. Electrodes 23a and 23b are formed for electrically connecting to conductive layers 13a and 13b, respectively, through intermediate insulating film 22. In the nonvolatile semiconductor memory device according to the present invention, the tunnel current is mainly N
It is injected from the mold diffusion region into the floating gate 19 through the tunnel oxide film 16 near the opening end of the concave groove.

【0020】本発明によるフラッシュ型不揮発性半導体
記憶装置の情報書き込み及び消去動作を第2(a)及び
(b)図を参照して説明する。
Information writing and erasing operations of the flash type nonvolatile semiconductor memory device according to the present invention will be described with reference to FIGS. 2 (a) and 2 (b).

【0021】書き込み動作を実行するために、図2
(a)に示すように、制御ゲート電極21に接地電位を
印加し、パルス電源PGによりソース18およびドレイ
ン17に正のパルス電位(+5V)を印加する。これに
より、溝領域の開口端部での電界密度が上昇するのでト
ンネル電流の発生が容易になる。したがって電源電位を
上昇させることなく浮遊ゲート19への電子注入が可能
となる。
To perform the write operation, FIG.
As shown in (a), a ground potential is applied to the control gate electrode 21, and a positive pulse potential (+ 5V) is applied to the source 18 and the drain 17 by the pulse power supply PG. As a result, the electric field density at the opening end of the groove region increases, so that tunnel current is easily generated. Therefore, electrons can be injected into the floating gate 19 without raising the power supply potential.

【0022】消去動作を実行するために、図2(b)に
示すように、ソース18、ドレイン17、及び基板11
に接地電位を印加し、パルス電源PGにより制御ゲート
21に負のパルス電位(−5V)を印加する。これによ
り浮遊ゲイト19に蓄積されていた電子がファウラ・ノ
ールドハイム(Fowler−Nordheim)電流
となりソース18側に抜き取られる。
In order to perform the erase operation, as shown in FIG. 2B, the source 18, the drain 17, and the substrate 11 are formed.
To the control gate 21, and a negative pulse potential (-5 V) is applied to the control gate 21 by the pulse power supply PG. As a result, the electrons accumulated in the floating gate 19 become a Fowler-Nordheim current and are extracted to the source 18 side.

【0023】本発明による不揮発性半導体記憶装置にお
いて、トンネル酸化膜16は10〜15nmの厚みを有
し、且つ注入電圧が低いので高電界ストレスに起因する
誘起電流を発生させることがない。
In the nonvolatile semiconductor memory device according to the present invention, the tunnel oxide film 16 has a thickness of 10 to 15 nm and the injection voltage is low, so that an induced current due to a high electric field stress is not generated.

【0024】次に図1に示されるフラッシュ型不揮発性
半導体記憶装置の製造方法について図3(a)から図3
(e)の工程図を参照して説明する。
Next, a method of manufacturing the flash type nonvolatile semiconductor memory device shown in FIG. 1 will be described with reference to FIGS.
This will be described with reference to the process chart of (e).

【0025】図3(a)において、まず、半導体基板、
例えば、非抵抗5〜7Ω・cm、面方位(100)を有
するP型シリコン基板11を準備する。アクティブ領域
又はメモリセル領域を形成するためにシリコン基板11
表面に、公知の局部酸化技術を用いて、フィールド酸化
膜12を形成する。次にメモリセル領域の表面を含む全
表面に厚み0.1〜0.3μmのポリシリコン層13を
形成する。この処理はシラン(SiH4 )を熱分解させ
る化学気相成長(CVD)法により行なわれる。この
後、リン(P)または砒素(As)等のN型不純物をポ
リシリコン層13中にイオン注入する。このときのイオ
ン注入条件は加速エネルギーが20〜50keV程度で
あり、ドーズ量が1×1015〜1×1017ions/c
2 である。
In FIG. 3A, first, a semiconductor substrate,
For example, a P-type silicon substrate 11 having a non-resistance of 5 to 7 Ω · cm and a plane orientation (100) is prepared. Silicon substrate 11 for forming active regions or memory cell regions
A field oxide film 12 is formed on the surface by using a known local oxidation technique. Then, a polysilicon layer 13 having a thickness of 0.1 to 0.3 μm is formed on the entire surface including the surface of the memory cell region. This treatment is performed by a chemical vapor deposition (CVD) method in which silane (SiH 4 ) is thermally decomposed. After that, N-type impurities such as phosphorus (P) or arsenic (As) are ion-implanted into the polysilicon layer 13. At this time, the ion implantation conditions are an acceleration energy of about 20 to 50 keV and a dose of 1 × 10 15 to 1 × 10 17 ions / c.
m 2 .

【0026】その後、図3(b)に示すように、ポリシ
リコン層13の全表面に0.5〜1μmのホトレジスト
層を形成した後、ホトレジスト層を選択的にパターニン
グして、マスク層14を形成する。このマスク層14は
溝15の開口端部近傍のシリコン基板表面を露出するよ
うに形成される。マスク層14をエッチングマスクとし
て使用し、SiO2 ガス等を用いたリアクティブイオン
エッチング(RIE)法により、ポリシリコン層13を
選択的に除去した後、引続いて、異方性エッチングによ
りシリコン基板11を除去して、深さ0.2〜0.5μ
mの溝15を形成する。
After that, as shown in FIG. 3B, a photoresist layer having a thickness of 0.5 to 1 μm is formed on the entire surface of the polysilicon layer 13, and then the photoresist layer is selectively patterned to form the mask layer 14. Form. The mask layer 14 is formed so as to expose the surface of the silicon substrate in the vicinity of the open end of the groove 15. Using the mask layer 14 as an etching mask, the polysilicon layer 13 is selectively removed by a reactive ion etching (RIE) method using SiO 2 gas or the like, and subsequently, a silicon substrate is anisotropically etched. 11 is removed and the depth is 0.2-0.5μ
The groove 15 of m is formed.

【0027】次に、図3(c)に示すように、マスク層
14を除去した後、例えば900℃の窒素ガス雰囲気中
で熱処理を行なう。この熱処理工程はポリシリコン膜1
3の端部に緩やかな傾斜を形成する。またこの工程によ
り、ポリシリコン膜13中にドープされているN型不純
物をその直下のシリコン基板11中に拡散してN+ ソー
ス領域18及びドレイン領域17を形成する。900℃
での熱処理時間は通常30〜60分である。この熱拡散
処理はシリコン基板の不純物濃度、ソース及びドレイン
領域18,17の深さ、ポリシリコン膜13中のN型不
純物濃度等により決定される。次に、上記構造体をドラ
イ酸素ガス雰囲気中で熱処理することにより、膜厚10
〜15nmの熱成長シリコン酸化膜(トンネル酸化膜)
16が溝15の内壁表面に形成される。この工程におい
て、ポリシリコン膜16上のシリコン酸化膜16はN型
不純物がドープされているため、トンネル酸化膜16の
厚みの1.5〜2倍程度に形成される。
Next, as shown in FIG. 3C, after removing the mask layer 14, a heat treatment is performed in a nitrogen gas atmosphere at 900 ° C., for example. This heat treatment process is performed on the polysilicon film 1
A gentle slope is formed at the end of 3. Further, by this step, the N-type impurity doped in the polysilicon film 13 is diffused into the silicon substrate 11 immediately thereunder to form the N + source region 18 and the drain region 17. 900 ° C
The heat treatment time is usually 30 to 60 minutes. This thermal diffusion process is determined by the impurity concentration of the silicon substrate, the depths of the source and drain regions 18, 17 and the N-type impurity concentration in the polysilicon film 13. Next, the structure is heat-treated in a dry oxygen gas atmosphere to obtain a film thickness of 10
~ 15nm thermally grown silicon oxide film (tunnel oxide film)
16 is formed on the inner wall surface of the groove 15. In this step, since the silicon oxide film 16 on the polysilicon film 16 is doped with N-type impurities, it is formed to have a thickness of about 1.5 to 2 times the thickness of the tunnel oxide film 16.

【0028】次に、図3(d)に示すように、CVD法
により溝15内のトンネル酸化膜16を含むシリコン基
板全表面に約200nmのポリシリコンを堆積し、その
後拡散法によりポリシリコン層19のリン濃度が1020
cm-3のオーダになるようにリン拡散を行なう。これに
より、ポリシリコン層19は導電層に変換される。
Next, as shown in FIG. 3D, about 200 nm of polysilicon is deposited on the entire surface of the silicon substrate including the tunnel oxide film 16 in the trench 15 by a CVD method, and then a polysilicon layer is formed by a diffusion method. The phosphorus concentration of 19 is 10 20
Phosphorus diffusion is performed to the order of cm -3 . As a result, the polysilicon layer 19 is converted into a conductive layer.

【0029】次に図3(e)に示すように、通常のCV
D法及び熱酸化処理工程により、ポリシリコン層19の
表面にONO(Oxide−Nitride−Oxid
e)膜20を形成する。続いてONO20層の表面に導
電性を有するポリシリコン層21を形成する。ポリシリ
コン層19,21、およびONO層20はホトリソ工程
及びエッチング工程により、選択的に除去され、浮遊ゲ
ート電極19及び制御ゲート電極21が形成される。
Next, as shown in FIG. 3 (e), a normal CV is used.
ONO (Oxide-Nitride-Oxid) is formed on the surface of the polysilicon layer 19 by the D method and the thermal oxidation process.
e) Form the film 20. Subsequently, a conductive polysilicon layer 21 is formed on the surface of the ONO 20 layer. The polysilicon layers 19 and 21 and the ONO layer 20 are selectively removed by a photolithography process and an etching process to form the floating gate electrode 19 and the control gate electrode 21.

【0030】次に上記構造体の全表面に中間絶縁膜層を
形成する。続いて、中間絶縁膜及びシリコン酸化膜16
を選択的に除去してコンタクトホールを形成し、ポリシ
リコン導電層13の表面を露出する。最終的に、基板全
面に約1μmの厚みを有するアルミニューム等の金属材
料を蒸着した後、パターニングし、導電層13とオーミ
ックコンタクトされた電極23が形成される。
Next, an intermediate insulating film layer is formed on the entire surface of the structure. Then, the intermediate insulating film and the silicon oxide film 16
Are selectively removed to form a contact hole, and the surface of the polysilicon conductive layer 13 is exposed. Finally, a metal material such as aluminum having a thickness of about 1 μm is vapor-deposited on the entire surface of the substrate and then patterned to form an electrode 23 in ohmic contact with the conductive layer 13.

【0031】以上により図1に示される本発明による凹
状の溝部内に形成されたゲート構造体を有する不揮発性
半導体記憶装置が形成される。
As described above, the nonvolatile semiconductor memory device having the gate structure formed in the concave groove portion according to the present invention shown in FIG. 1 is formed.

【0032】[0032]

【発明の効果】以上説明したように、本発明による不揮
発性半導体記憶装置は埋没型のゲート電極構造を持って
いるので、溝の開口部端部近傍の浮遊ゲート電極とソー
スまたはドレイン間のトンネル酸化膜に局部的に高電界
を発生させることができる。したがって、データの書き
込み及び消去のための電子注入及び電子放出動作を低電
圧で実行できるので、昇圧回路を削除することができ
る。このため不揮発性半導体記憶装置の一電源動作化が
可能となる。
As described above, since the nonvolatile semiconductor memory device according to the present invention has a buried type gate electrode structure, a tunnel between the floating gate electrode near the end of the opening of the groove and the source or drain is formed. A high electric field can be locally generated in the oxide film. Therefore, the electron injection and electron emission operations for writing and erasing data can be executed at a low voltage, and the booster circuit can be eliminated. Therefore, it becomes possible to operate the nonvolatile semiconductor memory device with one power supply.

【0033】さらに、本発明による不揮発性半導体記憶
装置は従来技術と同様な膜厚のトンネル酸化膜を使用し
て、低電圧での書き込み及び消去動作ができる。したが
って、トンネル酸化膜のストレス劣化が抑制され、不揮
発性半導体記憶装置のデータ書き込み及び消去繰り返し
回数およびデータ保持特性を向上させることができる。
Further, the nonvolatile semiconductor memory device according to the present invention can perform the writing and erasing operations at a low voltage by using the tunnel oxide film having the same thickness as in the prior art. Therefore, stress deterioration of the tunnel oxide film is suppressed, and the number of times data is written and erased repeatedly and the data retention characteristic of the nonvolatile semiconductor memory device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による不揮発性半導体記憶装置の断面
図。
FIG. 1 is a cross-sectional view of a nonvolatile semiconductor memory device according to the present invention.

【図2】図2aは本発明による不揮発性半導体記憶装置
の情報書込み動作を説明する図、図2(b)は本発明に
よる不揮発性半導体記憶装置の情報消去動作を説明する
図。
FIG. 2A is a diagram for explaining an information writing operation of the nonvolatile semiconductor memory device according to the present invention, and FIG. 2B is a diagram for explaining an information erasing operation of the nonvolatile semiconductor memory device according to the present invention.

【図3】本発明によるフラッシュ型不揮発性半導体記憶
装置の製造工程を示す図。
FIG. 3 is a diagram showing a manufacturing process of a flash nonvolatile semiconductor memory device according to the present invention.

【図4】従来の不揮発性半導体記憶装置の断面図。FIG. 4 is a sectional view of a conventional nonvolatile semiconductor memory device.

【符号の説明】[Explanation of symbols]

10 不揮発性半導体記憶装置 11 P型シリコン基板 12 フィールド酸化膜 13a,13b 導電体層 15 溝 16 トンネル酸化膜 17 ドレイン領域 18 ソース領域 19 浮遊ゲート 21 制御ゲート電極 22 中間絶縁膜 23a,23b 電極 10 Nonvolatile Semiconductor Memory Device 11 P-Type Silicon Substrate 12 Field Oxide Film 13a, 13b Conductor Layer 15 Groove 16 Tunnel Oxide Film 17 Drain Region 18 Source Region 19 Floating Gate 21 Control Gate Electrode 22 Intermediate Insulating Film 23a, 23b Electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面に溝を有する第1導電型の半導体基
板と;前記溝を介して前記溝の側壁に接するように前記
半導体基板表面に形成された一対の第2導電型の第1及
び第2領域と;前記溝の表面に形成された第1の絶縁膜
と;前記溝内の前記第1絶縁膜表面に形成された第1の
導電体層と;前記第1の導電体層の表面に形成された第
2の絶縁体層と;前記第2の絶縁体層表面に形成された
第2の導電体層とを有する事を特徴とする不揮発性半導
体記憶装置。
1. A semiconductor substrate of a first conductivity type having a groove on its surface; a pair of first and second conductivity types formed on the surface of the semiconductor substrate so as to contact the sidewall of the groove through the groove. A second region; a first insulating film formed on the surface of the groove; a first conductive layer formed on the surface of the first insulating film in the groove; and a first conductive layer A non-volatile semiconductor memory device comprising: a second insulator layer formed on the surface; and a second conductor layer formed on the surface of the second insulator layer.
【請求項2】 請求項1記載の不揮発性半導体記憶装置
において、前記第1導電型半導体基板がP型シリコン基
板であり、前記第2導電型の第1及び第2領域がN型不
純物拡散領域である事を特徴とする不揮発性半導体記憶
装置。
2. The nonvolatile semiconductor memory device according to claim 1, wherein the first conductive type semiconductor substrate is a P type silicon substrate, and the second conductive type first and second regions are N type impurity diffusion regions. A non-volatile semiconductor memory device characterized by:
【請求項3】 請求項2記載の不揮発性半導体記憶装置
において、データ書込み時の電子注入およびデータ消去
時の電子放出が前記溝の開口端部周辺の前記第1絶縁層
を介して行なわれる事を特徴とする不揮発性半導体記憶
装置。
3. The non-volatile semiconductor memory device according to claim 2, wherein electrons are injected during data writing and electrons are erased during data erasing via the first insulating layer around the opening end of the groove. And a nonvolatile semiconductor memory device.
【請求項4】 請求項1記載の不揮発性半導体記憶装置
において、前記第1絶縁体層および第2絶縁体層がシリ
コン酸化膜層であり、前記第1及び第2導電体層がポリ
シリコン層である事を特徴とする不揮発性半導体記憶装
置。
4. The non-volatile semiconductor memory device according to claim 1, wherein the first insulator layer and the second insulator layer are silicon oxide film layers, and the first and second conductor layers are polysilicon layers. A non-volatile semiconductor memory device characterized by:
【請求項5】 請求項2記載の不揮発性半導体記憶装置
において、前記第1絶縁体層が10〜20nmの膜厚を
有する事を特徴とする不揮発性半導体記憶装置。
5. The nonvolatile semiconductor memory device according to claim 2, wherein the first insulator layer has a film thickness of 10 to 20 nm.
【請求項6】 表面に溝を有する第1導電型のシリコン
基板と;前記溝を介して前記溝の側壁に接するように前
記シリコン基板表面に形成された第2導電型のドレイン
及びソース領域と;前記溝の側壁表面に形成された第1
の絶縁膜と;前記溝内の前記第1絶縁膜表面に形成され
た第1の導電体層と;前記第1の導電体層の表面に形成
された第2の絶縁体層と;前記第2の絶縁体層表面に形
成された第2の導電体層とを有する事を特徴とするフラ
ッシュ型不揮発性半導体記憶装置。
6. A first-conductivity-type silicon substrate having a groove on its surface; and a second-conductivity-type drain and source regions formed on the surface of the silicon substrate so as to contact the sidewall of the groove through the groove. ; First formed on the sidewall surface of the groove
An insulating film; a first conductor layer formed on the surface of the first insulator film in the groove; a second insulator layer formed on the surface of the first conductor layer; A second non-volatile semiconductor memory device having a second conductor layer formed on the surface of the second insulator layer.
【請求項7】 請求項6記載のフラッシュ型不揮発性半
導体記憶装置において、データ書込み動作時の電子注入
及び消去動作時の電子放出が前記溝の開口端部周辺の前
記第1絶縁層を介して行なわれる事を特徴とするフラッ
シュ型不揮発性半導体記憶装置。
7. The flash non-volatile semiconductor memory device according to claim 6, wherein electrons are injected during a data write operation and emitted during an erase operation through the first insulating layer around the opening end of the groove. A flash type nonvolatile semiconductor memory device characterized by being performed.
JP4252810A 1992-09-22 1992-09-22 Nonvolatile semiconductor storage device Pending JPH06104451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252810A JPH06104451A (en) 1992-09-22 1992-09-22 Nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252810A JPH06104451A (en) 1992-09-22 1992-09-22 Nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH06104451A true JPH06104451A (en) 1994-04-15

Family

ID=17242532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252810A Pending JPH06104451A (en) 1992-09-22 1992-09-22 Nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH06104451A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107155A (en) * 1994-07-30 1996-04-23 Lg Semicon Co Ltd Memory device of nonvolatile semiconductor and its preparation
DE19612948A1 (en) * 1995-05-12 1996-11-14 Lg Semicon Co Ltd Semiconductor component, e.g. flash EEPROM cell
US6057574A (en) * 1996-09-30 2000-05-02 Nec Corporation Contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
US6184086B1 (en) * 1995-11-20 2001-02-06 Micron Technology Inc. Method for forming a floating gate semiconductor device having a portion within a recess
KR100287068B1 (en) * 1997-12-24 2001-04-16 정선종 High density and low voltage EEPROM cell having a selfalign type concave channel structure and method of manufaturing the same
US6362504B1 (en) 1995-11-22 2002-03-26 Philips Electronics North America Corporation Contoured nonvolatile memory cell
KR100334477B1 (en) * 1998-06-12 2002-04-26 가네꼬 히사시 Method of forming a semiconductor device
US6441430B1 (en) * 1999-08-02 2002-08-27 Sharp Kabushiki Kaisha Semiconductor device with floating gates

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107155A (en) * 1994-07-30 1996-04-23 Lg Semicon Co Ltd Memory device of nonvolatile semiconductor and its preparation
DE19612948A1 (en) * 1995-05-12 1996-11-14 Lg Semicon Co Ltd Semiconductor component, e.g. flash EEPROM cell
DE19612948B4 (en) * 1995-05-12 2005-06-23 LG Semicon Co., Ltd., Cheongju A method of manufacturing a semiconductor device with recessed channel structure
US6184086B1 (en) * 1995-11-20 2001-02-06 Micron Technology Inc. Method for forming a floating gate semiconductor device having a portion within a recess
US6362504B1 (en) 1995-11-22 2002-03-26 Philips Electronics North America Corporation Contoured nonvolatile memory cell
US6057574A (en) * 1996-09-30 2000-05-02 Nec Corporation Contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
US6274432B1 (en) * 1996-09-30 2001-08-14 Nec Corporation Method of making contactless nonvolatile semiconductor memory device having buried bit lines surrounded by grooved insulators
KR100287068B1 (en) * 1997-12-24 2001-04-16 정선종 High density and low voltage EEPROM cell having a selfalign type concave channel structure and method of manufaturing the same
KR100334477B1 (en) * 1998-06-12 2002-04-26 가네꼬 히사시 Method of forming a semiconductor device
US6441430B1 (en) * 1999-08-02 2002-08-27 Sharp Kabushiki Kaisha Semiconductor device with floating gates
US6589844B2 (en) 1999-08-02 2003-07-08 Sharp Kabushiki Kaisha Process for manufacturing semiconductor memory device having floating and control gates in which multiple insulating films are formed over floating gates

Similar Documents

Publication Publication Date Title
KR100221062B1 (en) A flash memory and manufacturing method of the same
US5614747A (en) Method for manufacturing a flash EEPROM cell
JP3240999B2 (en) Semiconductor memory device and method of manufacturing the same
US20050214996A1 (en) Method of manufacturing a nonvolatile semiconductor memory device
JP2882392B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US5915178A (en) Method for improving the endurance of split gate flash EEPROM devices via the addition of a shallow source side implanted region
US5972753A (en) Method of self-align cell edge implant to reduce leakage current and improve program speed in split-gate flash
JP2896890B2 (en) Flash memory device and method of manufacturing the same
JP2819975B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH09321254A (en) Nonvolatile semiconductor storage and method of fabricating the same
JPH06104451A (en) Nonvolatile semiconductor storage device
JPH07226449A (en) Semiconductor memory device capable of electrically writing and erasing and its manufacture and memory recognition
US6657251B1 (en) Semiconductor memory device having memory transistors with gate electrodes of a double-layer stacked structure and method of fabricating the same
JPH02308571A (en) Semiconductor memory device
JP2882389B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH05315622A (en) Nonvolatile memory device and manufacture thereof
CA1247740A (en) Floating gate device using a composite dielectric
JPH02295169A (en) Nonvolatile semiconductor memory
JP3071578B2 (en) Nonvolatile semiconductor memory device
KR900004731B1 (en) Read only memory semiconductor device and manufacture thereof
JP3139165B2 (en) Method for manufacturing nonvolatile memory cell
JP3185746B2 (en) Nonvolatile semiconductor memory device
KR100214470B1 (en) Fabrication method of a eeprom cell
KR0136533B1 (en) Manufacturing method of semiconductor memory device
JP3141492B2 (en) Method for manufacturing nonvolatile memory element