JPH0249273B2 - - Google Patents

Info

Publication number
JPH0249273B2
JPH0249273B2 JP61037969A JP3796986A JPH0249273B2 JP H0249273 B2 JPH0249273 B2 JP H0249273B2 JP 61037969 A JP61037969 A JP 61037969A JP 3796986 A JP3796986 A JP 3796986A JP H0249273 B2 JPH0249273 B2 JP H0249273B2
Authority
JP
Japan
Prior art keywords
fermentation
aerobic
zone
gas
fermenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61037969A
Other languages
Japanese (ja)
Other versions
JPS62197382A (en
Inventor
Morio Masuzaki
Yutaka Yamada
Seiji Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61037969A priority Critical patent/JPS62197382A/en
Publication of JPS62197382A publication Critical patent/JPS62197382A/en
Publication of JPH0249273B2 publication Critical patent/JPH0249273B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、し尿汚泥等の有機性汚泥を好気性
発酵させてコンポスト化する好気性発酵方法に関
するものである。 〔従来技術及びその問題点〕 し尿処理場等から発生する余剰汚泥は、脱水さ
れて脱水ケーキの状態で農地還元されたり、乾
燥、焼却処分されたりしているが、汚泥処分費は
処理場の運転経費の中でもかなりの割合を占め
る。 このため、脱水ケーキを好気性発酵させてコン
ポスト化して、乾燥、粒状状態の有機肥料として
回収する方法は、有機肥料の不足している今日、
資源の有効利用として重要であると考えられてい
る。 ところで、し尿汚泥脱水ケーキ等の原料を好気
性発酵させた場合、原料中の有機物は微生物の働
きにより、炭素分はCO2にまで、窒素分は主に
NH3(アンモニア)に分解され、分解熱によつて
発酵槽内の温度が上昇する。CO2とNH3は有機物
の分解に伴なつて同様に発生するが、好気性発酵
の代表的なパターンをグラフで示した第2図のと
おり、CO2とNH3の発生ピークにはずれが生じ、
CO2の発生ピークは発酵の初期に現われ、NH3
発生ピークはその後に現われる。これは、NH3
ガスは水に対する溶解度が高いので、発酵当初は
NH3が原料中の水分に溶け込んでいくが、発酵
が進み溶解量が多くなるとPHが高くなり、発酵槽
内の温度が上昇してアンモニアを中和すべきCO2
の発生量が減少すると、アンモニアストリツピン
グ(NH4 +→NH3+H+)が起こり、空気中に
NH3ガスが放散するからである。 このように、好気性発酵を行なうと、発酵槽か
ら放出される排ガス中に高濃度のNH3ガスを含
むため、脱臭処理が十分でないと付近住民への二
次公害を引き起す等の問題があり、このため、好
気性発酵方法はいまだ汚泥処理の主流技術になつ
ていないというのが現状である。 従来の連続式発酵槽においては、発酵に必要な
空気は発酵槽内の滞留時間の異なる原料全体に対
し、単一の経路で均等に供給されるので、供給さ
れた空気が発酵日数の異なるすべての原料と接触
して部分的に多量に発生したNH3を持ち去つて、
排ガス中のNH3濃度が高くなると共に、肥料の
有効成分の一つである窒素分が失われて肥料とし
ての製品価値も下がつてしまうという問題があつ
た。 そこで、この発明はNH3ガスの放散を抑制す
ることができる好気性発酵方法を提供することを
目的とする。 〔問題点を解決するための手段〕 この発明は、上記の問題点を解決するために、
好気性発酵槽における原料の滞留時間によつて好
気性発酵槽を、CO2の発生ピークが現われる初期
発酵ゾーン、NH3の発生ピークが現われる中期
発酵ゾーン、CO2及びNH3の発生が少なくなる後
期発酵ゾーンにそれぞれ区分し、上記初期発酵ゾ
ーンから排出される排ガスを中期発酵ゾーンに吹
込むようにしたものである。 〔作用〕 この方法によれば、NH3の発生ピークが現わ
れる中期発酵ゾーンにおいてPHが高くなろうとす
るが、この中期発酵ゾーンには初期発酵ゾーンか
ら発生するCO2ガス、即ち、酸性ガスが吹込まれ
るので、中期発酵ゾーンが中和され、中期発酵ゾ
ーンのPH上昇が抑制される。これにより、中期発
酵ゾーンで生成されるアンモニアは、NH4 +の形
で好気性発酵槽内にとどまり、好気性発酵槽から
のNH3ガスの放散が抑制される。 〔実施例〕 以下、この発明の実施例を説明する。 第1図は連続式の好気性発酵槽1の一例を示す
概略図であり、原料2を一端から投入し、他端か
ら好気性発酵させたコンポスト3を引き出すよう
になつている。 上記原料2としては、下水汚泥、し尿汚泥があ
るが、第1表に示すように、し尿汚泥に比べて窒
素分(C/N比参照)が多いので、し尿汚泥をこ
の発明の原料として使用することが好ましい。
[Industrial Application Field] The present invention relates to an aerobic fermentation method for aerobically fermenting organic sludge such as human waste sludge to compost it. [Prior art and its problems] Excess sludge generated from human waste treatment plants, etc. is dehydrated and returned to farmland in the form of a dehydrated cake, or is dried and incinerated, but the sludge disposal cost is borne by the treatment plant. It accounts for a significant portion of operating expenses. For this reason, the method of aerobically fermenting the dehydrated cake, composting it, and recovering it as dry, granular organic fertilizer is a method that is difficult to overcome in today's world, where organic fertilizers are in short supply.
It is considered important for effective use of resources. By the way, when raw materials such as dehydrated human waste sludge cake are subjected to aerobic fermentation, the organic matter in the raw materials is reduced to CO2 due to the action of microorganisms, and the nitrogen content is mainly reduced.
It is decomposed into NH 3 (ammonia), and the temperature inside the fermenter rises due to the heat of decomposition. CO 2 and NH 3 are generated in the same way as organic matter decomposes, but as shown in Figure 2, which graphically shows a typical pattern of aerobic fermentation, there is a shift in the generation peaks of CO 2 and NH 3 . ,
The CO 2 generation peak appears early in the fermentation, and the NH 3 generation peak appears later. This is NH3
Gas has a high solubility in water, so at the beginning of fermentation
NH 3 dissolves into the water in the raw materials, but as fermentation progresses and the amount dissolved increases, the pH increases, and the temperature inside the fermenter rises, causing CO 2 to neutralize ammonia.
When the generation amount of NH 3 decreases, ammonia stripping (NH 4 + →NH 3 +H + ) occurs, and it is added to the air.
This is because NH 3 gas is dissipated. In this way, when aerobic fermentation is performed, the exhaust gas released from the fermenter contains a high concentration of NH 3 gas, which can cause problems such as secondary pollution to nearby residents if deodorization is not sufficient. Therefore, the current situation is that aerobic fermentation methods have not yet become the mainstream technology for sludge treatment. In conventional continuous fermenters, the air required for fermentation is evenly supplied through a single route to all the raw materials that have different residence times in the fermenter, so the supplied air can The NH 3 generated in large quantities on contact with the raw material is carried away,
There was a problem in that as the NH 3 concentration in the exhaust gas increased, nitrogen content, one of the active ingredients of fertilizer, was lost and the product value as a fertilizer decreased. Therefore, an object of the present invention is to provide an aerobic fermentation method that can suppress the diffusion of NH 3 gas. [Means for solving the problems] In order to solve the above problems, the present invention has the following features:
Depending on the residence time of the raw materials in the aerobic fermenter, the aerobic fermenter can be divided into an early fermentation zone where the peak of CO 2 generation appears, a middle fermentation zone where the peak of NH 3 generation appears, and a lower generation of CO 2 and NH 3 . The fermentation zone is divided into late fermentation zones, and exhaust gas discharged from the early fermentation zone is blown into the middle fermentation zone. [Effect] According to this method, the pH tends to increase in the middle fermentation zone where the peak of NH 3 generation appears, but this middle fermentation zone is blown with CO 2 gas, that is, acidic gas, generated from the early fermentation zone. This neutralizes the intermediate fermentation zone and suppresses the increase in pH in the intermediate fermentation zone. Thereby, the ammonia produced in the intermediate fermentation zone remains in the aerobic fermenter in the form of NH 4 + , and the emission of NH 3 gas from the aerobic fermenter is suppressed. [Examples] Examples of the present invention will be described below. FIG. 1 is a schematic diagram showing an example of a continuous aerobic fermentation tank 1, in which raw material 2 is inputted from one end, and aerobically fermented compost 3 is taken out from the other end. The above raw material 2 includes sewage sludge and human waste sludge, but as shown in Table 1, human waste sludge is used as the raw material of this invention because it has a higher nitrogen content (see C/N ratio) than human waste sludge. It is preferable to do so.

〔効果〕〔effect〕

この発明の効果を列挙すれば以下のとおりであ
る。 (イ) 発酵槽からのNH3ガスの放散を防止するこ
とができる。 (ロ) 発酵槽内を中和するために、塩酸、硫酸等の
鉱酸を使用した場合、槽内がすぐに酸性になり
やすく、微生物の活性低下や死滅につながり、
また槽内の内容物の含水率を上昇させて製品価
値の低下を招く等の危険があるが、この発明に
おいては発酵槽内の中和にCO2ガスを使用する
ため安全性が高い。 (ハ) 発酵槽からのNH3ガスの放散が少なく、こ
れにより窒素分が製品コンポスト中に残留する
ので、肥料価値の高いコンポストが得られ、製
品価値が上がる。 (ニ) CO2ガスの供給源としては、CO2ボンベ、曝
気槽の排ガスや煙道ガス等もあるが、この発明
においては、好気性発酵槽自体から発生する
CO2ガスを使用するので、CO2ガスの外部依存
を避けることができる。
The effects of this invention are listed below. (b) It is possible to prevent NH 3 gas from dissipating from the fermenter. (b) If mineral acids such as hydrochloric acid or sulfuric acid are used to neutralize the inside of the fermenter, the inside of the tank will easily become acidic, leading to decreased activity and death of microorganisms.
In addition, there is a risk of increasing the moisture content of the contents in the fermenter, leading to a decrease in product value, but in this invention, CO 2 gas is used to neutralize the inside of the fermenter, so it is highly safe. (c) There is less NH 3 gas released from the fermenter, and as a result, nitrogen content remains in the product compost, resulting in compost with high fertilizer value and increasing product value. (d) CO 2 gas sources include CO 2 cylinders, exhaust gas from aeration tanks, flue gas, etc., but in this invention, CO 2 gas is generated from the aerobic fermentation tank itself.
Since CO 2 gas is used, external dependence on CO 2 gas can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の好気性発酵方法を示す概略
図、第2図は好気性発酵の代表的な発酵パターン
を示すグラフ、第3図は従来法とこの発明との比
較実験を行なう装置の概略図、第4図及び第5図
はそれぞれ従来法及びこの発明の発酵パターンを
示すグラフである。 1……好気性発酵槽、4……初期発酵ゾーン、
5……中期発酵ゾーン、6……後期発酵ゾーン、
7……排ガス。
Fig. 1 is a schematic diagram showing the aerobic fermentation method of the present invention, Fig. 2 is a graph showing a typical fermentation pattern of aerobic fermentation, and Fig. 3 is a diagram of an apparatus for conducting a comparative experiment between the conventional method and the present invention. The schematic diagrams, FIGS. 4 and 5 are graphs showing the fermentation patterns of the conventional method and the present invention, respectively. 1...Aerobic fermenter, 4...Initial fermentation zone,
5...middle fermentation zone, 6...late fermentation zone,
7...Exhaust gas.

Claims (1)

【特許請求の範囲】 1 し尿汚泥等からなる原料を好気性発酵槽にお
いて好気性発酵させてコンポスト化する好気性発
酵方法において、上記好気性発酵槽における原料
の滞留時間によつて好気性発酵槽を、CO2の発生
ピークが現われる初期発酵ゾーン、NH3の発生
ピークが現われる中期発酵ゾーン、CO2及びNH3
の発生が少なくなる後期発酵ゾーンにそれぞれ区
分し、上記初期発酵ゾーンから排出される排ガス
を中期発酵ゾーンに吹込むことを特徴とする好気
性発酵方法。 2 上記初期発酵ゾーンから排出される排ガスを
除湿した後、中期発酵ゾーンに吹込むことを特徴
とする特許請求の範囲第1項に記載の好気性発酵
方法。
[Scope of Claims] 1. In an aerobic fermentation method in which a raw material such as human waste sludge is subjected to aerobic fermentation in an aerobic fermentation tank and then composted, the aerobic fermentation tank is , the early fermentation zone where the CO 2 generation peak appears, the middle fermentation zone where the NH 3 generation peak appears, and the CO 2 and NH 3
An aerobic fermentation method characterized in that the fermentation process is divided into late fermentation zones in which the generation of fermentation is reduced, and exhaust gas discharged from the early fermentation zone is blown into the middle fermentation zone. 2. The aerobic fermentation method according to claim 1, wherein the exhaust gas discharged from the initial fermentation zone is dehumidified and then blown into the intermediate fermentation zone.
JP61037969A 1986-02-20 1986-02-20 Aerobic fermentation Granted JPS62197382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037969A JPS62197382A (en) 1986-02-20 1986-02-20 Aerobic fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037969A JPS62197382A (en) 1986-02-20 1986-02-20 Aerobic fermentation

Publications (2)

Publication Number Publication Date
JPS62197382A JPS62197382A (en) 1987-09-01
JPH0249273B2 true JPH0249273B2 (en) 1990-10-29

Family

ID=12512393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037969A Granted JPS62197382A (en) 1986-02-20 1986-02-20 Aerobic fermentation

Country Status (1)

Country Link
JP (1) JPS62197382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189527A (en) * 2007-02-06 2008-08-21 Toshibumi Umegaya Method of deodorization of compost and apparatus for deodorization of compost

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116521B (en) * 2002-05-21 2005-12-15 Preseco Oy Procedure for processing organic material
FI116835B (en) * 2003-11-11 2006-03-15 Preseco Oy Method for treating organic material
JP5128074B2 (en) * 2006-01-26 2013-01-23 株式会社Ihi検査計測 Operation method of organic waste treatment method system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676297A (en) * 1979-11-29 1981-06-23 Ngk Insulators Ltd Fermentation apparatus for sewage sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676297A (en) * 1979-11-29 1981-06-23 Ngk Insulators Ltd Fermentation apparatus for sewage sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189527A (en) * 2007-02-06 2008-08-21 Toshibumi Umegaya Method of deodorization of compost and apparatus for deodorization of compost

Also Published As

Publication number Publication date
JPS62197382A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
JPH09150031A (en) Method and apparatus for treating exhaust gas using ammonia in contaminated water
DK1034152T3 (en) Sewage sludge recycling with a cross-tube reactor
WO2009059615A1 (en) Method for producing a nitrogenous fertilizer from nitrogen-containing material of biogenous and industrial origin
US20170008790A1 (en) Methods for reducing greenhouse emissions from animal manure
WO1995012560A1 (en) Process for treating waste materials with concentrated acid and the product produced thereby
JPH0249273B2 (en)
CA2138091A1 (en) Anaerobic treatment of waste at ambient temperatures
KR20010088935A (en) Method for removing malodor by using activated humic substance
JPS6153120B2 (en)
KR950008437A (en) Organic Fertilizer Manufacturing Method and Organic Fertilizer
KR100313457B1 (en) A manufacturing Method of barnyard manure using sawdust
JP2001122684A (en) Method for resource recovery treatment of shell to agricultural soil calcium makeup material
EP1041057A2 (en) Procedure for sterilisation of pig manure and elimination of nitrogenated compounds by stripping ammonium nitrogen
EP0658153B1 (en) Method of neutralizing and recovering of gases released from wet composting of domestic animal manure and/or sewage mud
JPS62197384A (en) Aerobic fermentation for organic sludge
GB2179057A (en) Biogas production
JPH0249274B2 (en)
JPH08745B2 (en) Fermentation treatment method of incineration ash
JPS63185882A (en) Manufacture of fertilizer from nitrogen-containing organic waste
JPS54152351A (en) Method of inhibiting nitrification in aerobic activated sludge treatment
JPS62244498A (en) Method for composting organic sludge
JPS5351657A (en) Method for disposing organic waste water
JPS57209696A (en) Apparatus for fermentation for organic waste matter
JPS57209695A (en) Apparatus for fermentation of organic waste matter
JPH107482A (en) Production of fertilizer from organic sludge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees