JPH0248407A - Production of silicon nitride powder - Google Patents
Production of silicon nitride powderInfo
- Publication number
- JPH0248407A JPH0248407A JP19736888A JP19736888A JPH0248407A JP H0248407 A JPH0248407 A JP H0248407A JP 19736888 A JP19736888 A JP 19736888A JP 19736888 A JP19736888 A JP 19736888A JP H0248407 A JPH0248407 A JP H0248407A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicon nitride
- metallic
- ga2o3
- nitriding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 title claims abstract description 21
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000005121 nitriding Methods 0.000 claims abstract description 19
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 5
- 150000003949 imides Chemical class 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910005224 Ga2O Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- JQPTYAILLJKUCY-UHFFFAOYSA-N palladium(ii) oxide Chemical compound [O-2].[Pd+2] JQPTYAILLJKUCY-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、α型の比率の高い窒化ケイ素粉末を効率的に
生産することのできる金属ケイ素粉末の直接窒化方法に
関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for direct nitriding of metallic silicon powder, which can efficiently produce silicon nitride powder with a high α-type ratio.
の び が 決しようとする課
近年、窒化ケイ素はその優れた耐熱性、高強度、耐食性
等の特性が注目されているが、その爬品化には窒化ケイ
素の持つ上記の優れた特性を損なわないで焼結し、各種
形状に成形する必要がある。In recent years, silicon nitride has attracted attention for its properties such as excellent heat resistance, high strength, and corrosion resistance. It is necessary to sinter the material and mold it into various shapes.
窒化ケイ素の結晶型にはα型とβ型があり、このうちβ
型は焼結性がα型より劣るとされており、窒化ケイ素の
特性を損なわないで焼結するにはできる限りα型の比率
が高いことが望まれている。There are two crystal types of silicon nitride: α type and β type.
It is said that the sinterability of the mold is inferior to that of the α-type, and in order to sinter without impairing the properties of silicon nitride, it is desired that the ratio of the α-type be as high as possible.
従来、窒化ケイ素粉末の製造方法としては金属ケイ素の
直接窒化法、シリカ還元法、イミドの熱分解法が知られ
ている。α型窒化ケイ素を得るにはこのうちシリカ還元
法、イミドの熱分解法が容易である。しかし、シリカ還
元法は、カーボンを還元剤として用いるためにカーボン
が不純物として混入することは避けられず、またイミド
の熱分解法は量産には適しないものである。Conventionally, known methods for producing silicon nitride powder include direct nitriding of metallic silicon, silica reduction, and imide thermal decomposition. Among these methods, silica reduction method and imide thermal decomposition method are easy to obtain α-type silicon nitride. However, since the silica reduction method uses carbon as a reducing agent, carbon is inevitably mixed in as an impurity, and the imide thermal decomposition method is not suitable for mass production.
上記のシリカ還元法、イミドの熱分解法に対して、金属
ケイ素の直接窒化法は量産に適しており、またカーボン
混入がない利点を有する。しかし、この直接窒化法は高
温で38i+2N2→Si、N4という反応を行なうも
のであるが、窒化ケイ素1モル当り176 Kcalと
いう大きな反応熱を伴うため更に高温になり、β型窒化
ケイ素は高温安定型で高温になるほど生成し易いので、
β型窒化ケイ素の割合が多くなるという欠点を有する。In contrast to the silica reduction method and the imide thermal decomposition method described above, the direct nitridation method of metal silicon is suitable for mass production and has the advantage of not containing carbon. However, this direct nitriding method performs the reaction 38i + 2N2 → Si, N4 at high temperatures, but it involves a large reaction heat of 176 Kcal per 1 mole of silicon nitride, resulting in even higher temperatures, and β-type silicon nitride is a high-temperature stable type. The higher the temperature, the easier it is to form.
It has the disadvantage that the proportion of β-type silicon nitride increases.
このため、従来はα型の比率を高める目的で種々の添加
物を触媒として加えるとともに1300〜1350’C
という比較的低温で反応を行なっているが、反応性が悪
いことから未反応金属ケイ素が残留し易く、収率の面で
問題を有していた。この場合、金属ケイ素の仕込量を少
なくすればある程度の高α化は達成し得るが、仕込量を
減らすことは生産性上問題があり、実用的ではない。For this reason, in the past, various additives were added as catalysts in order to increase the ratio of α type, and at 1300 to 1350'C
Although the reaction is carried out at a relatively low temperature, unreacted metal silicon tends to remain due to poor reactivity, which poses a problem in terms of yield. In this case, it is possible to achieve a certain degree of high α by reducing the amount of metal silicon charged, but reducing the amount of charged silicon poses a problem in terms of productivity and is not practical.
本発明は上記事情に鑑みなされたもので、収率良くかつ
生産性良くα型の比率の高い窒化ケイ素粉末を製造する
方法を提供することを目的とする。The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for producing silicon nitride powder having a high α-type ratio with good yield and productivity.
を するための び 用
本発明者は、上記目的を達成するため鋭意検討を行なっ
た結果、金属ケイ素粉末を直接窒化する際に金属ケイ素
粉末にGa2O,を添加すると、従来1300〜135
0℃で行なっていた窒化反応を1350〜1500℃の
高温で行なってもα型の比率の高い窒化ケイ素粉末が得
られること、高温で反応が行なえるため未反応金属ケイ
素が残留せず、しかも仕込層高も厚くできるので生産性
が向上することを知見し、本発明をなすに至ったもので
ある。In order to achieve the above object, the present inventor conducted intensive studies and found that when Ga2O is added to the metal silicon powder when directly nitriding the metal silicon powder, the conventional 1300 to 135
Even if the nitriding reaction, which used to be carried out at 0°C, is carried out at a high temperature of 1,350 to 1,500°C, silicon nitride powder with a high ratio of α type can be obtained, and since the reaction can be carried out at high temperature, no unreacted metallic silicon will remain. It was discovered that the productivity can be improved because the height of the charging layer can be made thicker, and this led to the present invention.
なお従来、金属ケイ素粉末に種々の添加物を加えてα型
の比率を向上させる方法については多くの提案がなされ
ている。例えば、酸化マグネシウム(特開昭51−48
800号公報)、金属鉄及び鉄化合物(特開昭54−1
5499号公報)、酸化パラジウム(特開昭54−58
700号公報)、カルシウム化合物(特開昭54−12
0298号公報)、金属網及び銅化合物、バナジウム及
びバナジウム化合物(特開昭61−256906号公報
)、マンガン及びマンガン化合物(特開昭61−256
907号公報)等の添加物を加える提案がなされている
が、Ga2O3を添加剤に使用すること、これにより上
記したように仕込量を多くし得る上、高温反応が可能で
、α型窒化ケイ素が高収率で得られることは、本発明者
によって初めて知見されたものである。In the past, many proposals have been made regarding methods of adding various additives to metal silicon powder to improve the α-type ratio. For example, magnesium oxide (JP-A-51-48
No. 800), metallic iron and iron compounds (JP-A-54-1)
5499), palladium oxide (JP-A-54-58)
No. 700), calcium compounds (Japanese Patent Application Laid-Open No. 1983-12)
0298 Publication), metal nets and copper compounds, vanadium and vanadium compounds (Japanese Unexamined Patent Publication No. 61-256906), manganese and manganese compounds (Japanese Unexamined Patent Publication No. 61-256
Although there have been proposals to add additives such as (No. 907 Publication), using Ga2O3 as an additive makes it possible to increase the amount charged as described above, and also enables high-temperature reaction, and is suitable for α-type silicon nitride. It was discovered for the first time by the present inventor that this can be obtained in high yield.
従って、本発明は金属ケイ素の直接窒化法において、金
属ケイ素粉末にGa2O3を添加して窒化することを特
徴とする窒化ケイ素粉末の製造方法を提供するものであ
る。Therefore, the present invention provides a method for producing silicon nitride powder, which is a direct nitriding method of silicon metal, characterized in that Ga2O3 is added to silicon metal powder for nitriding.
以下1本発明につき更に詳しく説明する。The present invention will be explained in more detail below.
本発明に係る窒化ケイ素粉末の製造方法は、金属ケイ素
粉末を原料とするものである。金属ケイ素粉末は反応性
から微粉であることが好ましく、具体的には10Im以
下、特に2〜7Imのものが好ましい。また比表面積は
1 m / g以上、特に2〜6ボ/gのものが好まし
い。The method for producing silicon nitride powder according to the present invention uses metallic silicon powder as a raw material. The metal silicon powder is preferably a fine powder from the viewpoint of reactivity, and specifically, 10 Im or less, particularly preferably 2 to 7 Im. Further, the specific surface area is preferably 1 m/g or more, particularly 2 to 6 bo/g.
上記金属ケイ素粉末に添加するGa2O3は、金属ケイ
素粉末と同様に微粉であることが好ましく、具体的には
2d1g以上、特に3〜6 m / gが好ましい。そ
の添加量は金属ケイ素粉末100重量部に対して0.0
3〜5重量部、特に0.1〜0.5重量部が好ましい。The Ga2O3 added to the metal silicon powder is preferably a fine powder like the metal silicon powder, specifically preferably 2d1g or more, particularly 3 to 6 m/g. The amount added is 0.0 parts by weight per 100 parts by weight of metal silicon powder.
3 to 5 parts by weight, particularly 0.1 to 0.5 parts by weight are preferred.
添加量が0.03重量部より少ないと、添加した効果が
十分発揮されない場合があり、また5重量部より多く添
加すると焼結に悪影響を及ぼす場合がある。If the amount added is less than 0.03 parts by weight, the effect of the addition may not be sufficiently exhibited, and if it is added more than 5 parts by weight, it may have an adverse effect on sintering.
Ga2O,の添加方法に特に制限はないが、作業性の点
からGa2O3の微粉を単に金属ケイ素粉末と混合する
方法が好適に採用される。There is no particular restriction on the method of adding Ga2O, but from the viewpoint of workability, a method of simply mixing fine powder of Ga2O3 with metal silicon powder is preferably employed.
本発明方法は上述したGa、03を添加した金属ケイ素
粉末を直接窒化するものであり、直接窒化方法としては
常法を採用することができる。The method of the present invention involves directly nitriding the metal silicon powder added with Ga and 03 mentioned above, and a conventional method can be adopted as the direct nitriding method.
この場合、反応ガスは窒素ガスもしくはアンモニアガス
又はこれらの混合ガスを使用でき、反応を制御するため
にこれらに水素あるいはアルゴン等の不活性ガスを混合
することもできる。In this case, nitrogen gas, ammonia gas, or a mixture thereof can be used as the reaction gas, and in order to control the reaction, hydrogen or an inert gas such as argon can also be mixed therein.
また、反応を行なう窒化炉も従来のものをそのまま使用
可能である。Furthermore, a conventional nitriding furnace for carrying out the reaction can be used as is.
なお、窒化温度は特に制限されないが、1350〜15
00’Cが好ましい。1350℃より低い温度で窒化を
行なうと、反応性が悪くなって未反応の金属ケイ素の残
留が多くなり、また金属ケイ素粉末の仕込層高も厚くで
きず、生産性が低下する不都合が生じる場合がある。こ
れに対し、1500℃より高い温度で窒化を行なうと、
得られる窒化ケイ素粉末中のα型の比率が低下する場合
がある。Note that the nitriding temperature is not particularly limited, but is 1350 to 15
00'C is preferred. If nitriding is carried out at a temperature lower than 1350°C, the reactivity will deteriorate and a large amount of unreacted metallic silicon will remain, and the height of the charged layer of metallic silicon powder cannot be made thicker, resulting in the inconvenience of reduced productivity. There is. On the other hand, when nitriding is carried out at a temperature higher than 1500°C,
The ratio of α type in the obtained silicon nitride powder may decrease.
λ豆Δ肱来
以上説明したように、本発明方法によれば、金属ケイ素
の直接窒化方法において、従来より高温の反応が可能で
、未反応の金属ケイ素の残留量が少なく、α型の比率の
高い窒化ケイ素粉末を得ることができ、また金属ケイ素
の仕込層高も厚くでき、収率及び生産性良く高α型の窒
化ケイ素粉末を得ることができるものである。As explained above, according to the method of the present invention, in the direct nitriding method of metallic silicon, the reaction can be carried out at a higher temperature than before, the amount of unreacted metallic silicon is small, and the ratio of α type is reduced. It is possible to obtain a silicon nitride powder with a high α-type, the height of the charged layer of metal silicon can be increased, and a high α-type silicon nitride powder can be obtained with good yield and productivity.
以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に制限されるものではない
。EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.
BET法による比表面積が2.6m1gの金属ケイ素粉
末に第1表に示す添加剤(粉末)を同表に示す添加量で
加え、十分混合した。Additives (powders) shown in Table 1 were added to metal silicon powder having a specific surface area of 2.6 ml/g by the BET method in the amounts shown in the table, and thoroughly mixed.
この混合物を5i3N4−3iC製のトレイに第1表に
示す層高で仕込み、窒化炉中で窒素雰囲気下において1
400℃、2時間窒化した。This mixture was placed in a tray made of 5i3N4-3iC with the layer height shown in Table 1, and heated in a nitriding furnace under a nitrogen atmosphere for 1 hour.
Nitriding was carried out at 400°C for 2 hours.
得られたSi、N4中の未反応Siとα−3i、N4の
量を分析した。その結果を第1表に併記する。The amounts of unreacted Si, α-3i, and N4 in the obtained Si and N4 were analyzed. The results are also listed in Table 1.
出原人 信越化学工業 株式会社 代理人 弁理士 小 島 隆 司Shin-Etsu Chemical Co., Ltd. Agent: Patent Attorney Takashi Kojima
Claims (1)
にGa_2O_3を添加して窒化することを特徴とする
窒化ケイ素粉末の製造方法。1. A method for producing silicon nitride powder, which comprises adding Ga_2O_3 to metal silicon powder and nitriding it in the direct nitriding method of metal silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19736888A JPH0753566B2 (en) | 1988-08-08 | 1988-08-08 | Method for producing silicon nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19736888A JPH0753566B2 (en) | 1988-08-08 | 1988-08-08 | Method for producing silicon nitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0248407A true JPH0248407A (en) | 1990-02-19 |
JPH0753566B2 JPH0753566B2 (en) | 1995-06-07 |
Family
ID=16373334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19736888A Expired - Lifetime JPH0753566B2 (en) | 1988-08-08 | 1988-08-08 | Method for producing silicon nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0753566B2 (en) |
-
1988
- 1988-08-08 JP JP19736888A patent/JPH0753566B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0753566B2 (en) | 1995-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4428916A (en) | Method of making α-silicon nitride powder | |
US4117095A (en) | Method of making α type silicon nitride powder | |
US4145224A (en) | Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom | |
JPS6112844B2 (en) | ||
US4619905A (en) | Process for the synthesis of silicon nitride | |
JPS5913442B2 (en) | Manufacturing method of high purity type silicon nitride | |
US5075091A (en) | Process for the preparation of silicon nitride | |
US4208215A (en) | Method for enhancing the crystallization rate of high purity amorphous Si3 N2 powder by intimate contact with a titanium containing material | |
JPS6111886B2 (en) | ||
JPH0248407A (en) | Production of silicon nitride powder | |
JP2797678B2 (en) | Method for producing α-type silicon nitride powder | |
US5108967A (en) | Process for producing nonequiaxed silicon aluminum oxynitride | |
JPS61201608A (en) | Manufacture of high purity aluminum nitride powder | |
JPH0649565B2 (en) | Method for producing α-type silicon nitride powder | |
JPS6111885B2 (en) | ||
JPS623007A (en) | Production of aluminum nitride powder | |
JPH0791043B2 (en) | Method for manufacturing silicon nitride | |
JP2635695B2 (en) | Method for producing α-silicon nitride powder | |
JPH0218310A (en) | Preparation of zirconium-containing ceramic powder | |
JPS61256907A (en) | Preparation of alpha type silicon nitride | |
JPS5950006A (en) | Manufacture of alpha-type silicon nitride powder | |
JPS61256906A (en) | Preparation of alpha type silicon nitride | |
JPS606884B2 (en) | Method for producing α-type silicon nitride powder | |
JPH02293307A (en) | Preparation of high beta type silicon nitride powder | |
JP2610156B2 (en) | Method for producing silicon nitride powder |