JPS61256906A - Preparation of alpha type silicon nitride - Google Patents

Preparation of alpha type silicon nitride

Info

Publication number
JPS61256906A
JPS61256906A JP9779185A JP9779185A JPS61256906A JP S61256906 A JPS61256906 A JP S61256906A JP 9779185 A JP9779185 A JP 9779185A JP 9779185 A JP9779185 A JP 9779185A JP S61256906 A JPS61256906 A JP S61256906A
Authority
JP
Japan
Prior art keywords
silicon nitride
type silicon
nitriding
powder
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9779185A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yasutomi
安富 義幸
Kosuke Nakamura
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9779185A priority Critical patent/JPS61256906A/en
Publication of JPS61256906A publication Critical patent/JPS61256906A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Abstract

PURPOSE:To obtain alpha-type silicon nitride having high purity by nitriding a mixture consisting of powdery metallic Si and a specified proportion of a V compd. at a specified temp. CONSTITUTION:Powdery metallic Si is mixed with 0.01-10wt% V and/or V compd. The mixture is nitrided at below the m.p. of the metallic Si. Thus, alpha-type silicon nitride having >=90wt% content is obtd. at relatively low temp. with improved productivity.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属けい素を窒化し、α型窒化けい素を得る製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing α-type silicon nitride by nitriding metallic silicon.

〔発明の背景〕[Background of the invention]

窒化けい素焼鞘体は従来のセラミック材料に比べ熱1I
ll性、高温特性、化学安定性などに優れ、高温ガスタ
ービン部材などとしての使用が試みられている。
The silicon nitride sintered sheath has a heat resistance of 1I compared to conventional ceramic materials.
It has excellent thermal properties, high-temperature properties, and chemical stability, and its use as high-temperature gas turbine components is being attempted.

一般に窒化けい素焼鞘体の原料粉末としては、α型の結
晶粉末が焼結性が優れている。原料窒化けい素のα率が
高いほど焼結しやすく、かつ得られる焼結体の強度が大
きいといわれている。この理由は、焼結のさいの加熱に
よりα型窒化けい素がβ型窒化けい素に転移する時の結
晶成長に起因するといわれている。
In general, α-type crystal powder has excellent sinterability as a raw material powder for silicon nitride sintered sheath bodies. It is said that the higher the α rate of the raw material silicon nitride, the easier it is to sinter, and the greater the strength of the obtained sintered body. The reason for this is said to be due to crystal growth when α-type silicon nitride transforms into β-type silicon nitride due to heating during sintering.

従来のα型窒化けい素の製法としては、(1)金属けい
素粉末を直接窒化する方法(2)酸化けい素粉末と炭素
との混合物を窒素ガス中で加熱し窒化還元する方法 (3)塩素化けい素とアンモニアガスからシリコンイミ
ドを合成、これを熱分解する方法 が知られている。
Conventional methods for producing α-type silicon nitride include (1) direct nitriding of metal silicon powder, (2) method of nitridation reduction by heating a mixture of silicon oxide powder and carbon in nitrogen gas, and (3) A known method is to synthesize silicon imide from chlorinated silicon and ammonia gas and then thermally decompose it.

このうち、(2)の方法は酸素、炭素が残りやす<、(
3)の方法はシリコンイミドが空気中の酸素を取り込み
やすく取り扱いが回置である。従って、(1)の方法が
最も容易であり、工業的に製造されている粉末もこの製
法のものが多い0例えば、特開昭50−128698号
ではに、Na、Liの化合物、特開昭51−48800
号では酸化マグネシウム、特開昭54−15499号で
は金属鉄及び鉄化合物、特開昭54−120298号で
はカルシウム化合物、特開昭59−92906号では銅
化合物などが提案されている。しかし、金属けい素粉束
を直接窒化する方法では、いかにα型の結晶の粉末含有
量を増やすかが問題であり、金属けい素粉束を高温で窒
化するとβ型結晶のものができやすく粒子も粗大になる
から、いかに低温で窒化けい素を製造するかが重要な話
題となっている。
Among these methods, method (2) tends to leave oxygen and carbon <, (
In method 3), silicon imide easily absorbs oxygen from the air and is handled by rotation. Therefore, method (1) is the easiest, and many industrially produced powders are manufactured using this method. 51-48800
JP-A-54-15499 proposes metallic iron and iron compounds, JP-A-54-120298 proposes calcium compounds, and JP-A-59-92906 proposes copper compounds. However, in the method of directly nitriding metal silicon powder bundles, the problem is how to increase the powder content of α-type crystals, and when metal silicon powder bundles are nitrided at high temperatures, β-type crystals tend to form particles. Since silicon nitride also becomes coarse, the issue of how to produce silicon nitride at low temperatures has become an important topic.

〔発明の目的〕[Purpose of the invention]

本発明は、従来のα型窒化けい素の製造方法を改良する
ものであり、金属けい素粉束に、バナジウム、バナジウ
ム化合物を含有させて窒化し、高純度のα型窒化けい素
を製造する方法を提供することにある、 〔発明の概要〕 本発明者等は、前記の公開された特許出願に記載の技術
の追試を行い、さらに種々の物質を添加剤として検討を
行ってきた結果、バナジウム、バナジウム化合物を加え
ると、従来品にない高純度α型窒化けい素が得られるこ
とを見出した。
The present invention improves the conventional method for producing α-type silicon nitride, and involves nitriding a metallic silicon powder bundle with vanadium and a vanadium compound to produce high-purity α-type silicon nitride. [Summary of the Invention] The inventors of the present invention conducted further trials of the technology described in the above-mentioned published patent application, and further investigated various substances as additives. It was discovered that by adding vanadium or a vanadium compound, highly pure α-type silicon nitride, which is not available in conventional products, can be obtained.

本発明は、従来のα型窒化けい素の製造方法を改良する
ものであり、金属けい素粉束にバナジウム及びバナジウ
ム化合物の少なくとも一種を0.01〜10重量部添加
した混合物を金属けい素の融点以下の温度で窒化するこ
とを特徴とする。
The present invention improves the conventional method for producing α-type silicon nitride, and involves adding a mixture of 0.01 to 10 parts by weight of at least one of vanadium and vanadium compounds to a bundle of silicon metal powder. It is characterized by nitriding at a temperature below the melting point.

金属けい素粉束の窒化反応は、次式に基づいて行われる
The nitriding reaction of the metal silicon powder bundle is performed based on the following equation.

3 S x + 2 N z→Si、N4この反応は発
熱反応であり、多量の発熱を伴う。
3 S x + 2 N z → Si, N4 This reaction is exothermic and involves a large amount of heat generation.

反応時の温度制御を損うとα型窒化けい素はβ型窒化け
い素に転移し、高純度のα型窒化けい素を得ることがで
きない。
If temperature control during the reaction is impaired, α-type silicon nitride transforms into β-type silicon nitride, making it impossible to obtain highly pure α-type silicon nitride.

そこで、金属けい素粉束にバナジウム及びバナジウム化
合物タトえばVOCQ3.V2O5,VCQ、などの少
なくとも一種を0.01〜10重量部添加するとα型窒
化けい素からβ型窒化けい素への転移を抑制することが
できる。
Therefore, if vanadium and vanadium compounds are added to a metal silicon powder bundle, VOCQ3. When 0.01 to 10 parts by weight of at least one of V2O5, VCQ, etc. is added, the transition from α-type silicon nitride to β-type silicon nitride can be suppressed.

バナジウム及びバナジウム化合物の少なくとも一種の添
加量が0.01 重量部未満では窒化反応が緩慢となり
、10重量部を越えると製品の純度が悪くなり好ましく
ない。第1図にバナジウム及びバナジウム化合物の少な
くとも一種の添加量と反応率の関係を示す。加熱条件は
1350℃と5時間である。これより添加量0.01重
量部以下で急激に窒化反応が起こっていることが分る。
If the amount of vanadium or at least one vanadium compound added is less than 0.01 part by weight, the nitriding reaction will be slow, and if it exceeds 10 parts by weight, the purity of the product will deteriorate, which is not preferable. FIG. 1 shows the relationship between the amount of vanadium and at least one vanadium compound added and the reaction rate. The heating conditions were 1350°C and 5 hours. This shows that the nitriding reaction occurs rapidly when the amount added is 0.01 part by weight or less.

金属けい素と窒化反応触媒からなる混合粉末はそのまま
用いてもよく、ポリビニルブチラールなどの有機結合剤
を添加後、適当な形状に成形して用いてもよい。
The mixed powder consisting of metal silicon and a nitriding reaction catalyst may be used as it is, or after adding an organic binder such as polyvinyl butyral, it may be molded into an appropriate shape and used.

窒化炉内は、金属けい素の融点(1410℃)以下で1
100℃以上の温度に保つ。
The temperature inside the nitriding furnace is below the melting point of metal silicon (1410°C).
Keep the temperature above 100℃.

窒化炉内は、窒素、アンモニアなど窒化性ガス雰囲気、
または窒化性ガスとアルゴンや水素などの非酸化性ガス
との混合性雰囲気とする。
Inside the nitriding furnace, there is an atmosphere of nitriding gases such as nitrogen and ammonia.
Alternatively, the atmosphere is a mixture of nitriding gas and non-oxidizing gas such as argon or hydrogen.

金属けい素にバナジウム及びバナジウム化合物の少なく
とも一種のほかにFe、Mn、Co。
Fe, Mn, and Co in addition to at least one of vanadium and vanadium compounds in metal silicon.

N iy A Q t Cr g M o e M g
 g T iy Z r pTa、Nb、Ca、Cu、
Zn、Wt Snt Si。
N iy A Q t Cr g M o e M g
g T iy Z r pTa, Nb, Ca, Cu,
Zn, Wt Snt Si.

Y、Ba、Cs、La、B、Pb# P、Na、に9S
b、Ho、Ln、In、Bi、Gdなどから選んだ一種
または二種以上の元素またはその化合物を含有してもα
型窒化けい素製品を効率よく製造できる。
Y, Ba, Cs, La, B, Pb# P, Na, 9S
α Even if it contains one or more elements selected from b, Ho, Ln, In, Bi, Gd, etc. or a compound thereof.
Type silicon nitride products can be manufactured efficiently.

金属けい素粉束を原料とする窒化けい素焼結体や窒化け
い素結合炭化けい素焼結体などの窒化反応触媒として用
いることもできる。
It can also be used as a nitriding reaction catalyst for silicon nitride sintered bodies and silicon nitride-bonded silicon carbide sintered bodies made from metal silicon powder bundles.

〔発明の実施例〕[Embodiments of the invention]

純度99.9%、平均粒径1μmの金属けい素粉束に、
第1表に示す添加物をそれぞれの割合で添加1、メタノ
ール溶液中で混合後、乾燥した。
A metal silicon powder bundle with a purity of 99.9% and an average particle size of 1 μm,
Additives shown in Table 1 were added in respective proportions (1), mixed in a methanol solution, and then dried.

この混合粉末を黒鉛板上にのせて窒化炉で窒化反応(1
350℃:5時間)を行った。得られた窒化けい素ニツ
イテ粉末X線回折(40KV、 100mA)法で生成
物の同定を行い、q結晶の含有率、残留金属けい素の量
を求めた。また純度99.5%の金属けい素粉束でも同
様の結果になった。β型窒化けい素の生成率は本発明の
場合3wt%以下であ型窒化けい素の製造方法を用いる
と、含有率90重量部以上のα型窒化けい素が、金属け
い素の融点以下の温度で得られ、熱経済的に有利で安価
であり、工業的生産性を向上するものである。
This mixed powder was placed on a graphite plate and subjected to a nitriding reaction (1
350°C for 5 hours). The product was identified using the obtained silicon nitride powder X-ray diffraction method (40 KV, 100 mA), and the content of q-crystals and the amount of residual metal silicon were determined. Similar results were also obtained with a metal silicon powder bundle having a purity of 99.5%. In the case of the present invention, the production rate of β-type silicon nitride is 3 wt% or less, and if the production method of type silicon nitride is used, α-type silicon nitride with a content of 90 parts by weight or more is produced at a temperature below the melting point of metallic silicon. It is thermoeconomically advantageous, inexpensive, and improves industrial productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の添加物の添加量と反応率の関係を示
した線図、第2図は、第1表のNolで得られたα型窒
化けい素の粉末X線回折図あり、横軸は回折角(2θ)
、縦軸はX線回折強度を示す。
Figure 1 is a diagram showing the relationship between the amount of additives added and the reaction rate of the present invention, and Figure 2 is a powder X-ray diffraction diagram of α-type silicon nitride obtained with Nol in Table 1. , the horizontal axis is the diffraction angle (2θ)
, the vertical axis indicates the X-ray diffraction intensity.

Claims (1)

【特許請求の範囲】[Claims] 1、金属けい素粉末にバナジウム及びバナジウム化合物
の少なくとも一種を0.01〜10重量部添加した混合
物を金属けい素の融点以下の温度で窒化することを特徴
とするα型窒化けい素の製造方法。
1. A method for producing α-type silicon nitride, which comprises nitriding a mixture of metallic silicon powder to which 0.01 to 10 parts by weight of at least one of vanadium and vanadium compounds is added at a temperature below the melting point of metallic silicon. .
JP9779185A 1985-05-10 1985-05-10 Preparation of alpha type silicon nitride Pending JPS61256906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9779185A JPS61256906A (en) 1985-05-10 1985-05-10 Preparation of alpha type silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9779185A JPS61256906A (en) 1985-05-10 1985-05-10 Preparation of alpha type silicon nitride

Publications (1)

Publication Number Publication Date
JPS61256906A true JPS61256906A (en) 1986-11-14

Family

ID=14201632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9779185A Pending JPS61256906A (en) 1985-05-10 1985-05-10 Preparation of alpha type silicon nitride

Country Status (1)

Country Link
JP (1) JPS61256906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331160A2 (en) * 1988-03-04 1989-09-06 Hitachi, Ltd. Functional ceramic shaped article and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331160A2 (en) * 1988-03-04 1989-09-06 Hitachi, Ltd. Functional ceramic shaped article and process for producing the same

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
US4117095A (en) Method of making α type silicon nitride powder
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4619905A (en) Process for the synthesis of silicon nitride
GB2132182A (en) Process for preparation of silicon nitride powder of good sintering property
US4346068A (en) Process for preparing high-purity α-type silicon nitride
JPS61191506A (en) Production of high alpha-type silicon nitride powder
Zeng et al. Combustion synthesis of Sialon Powders (Si6‐zAlzOzN8‐z, z= 0.3, 0.6)
JPS6111886B2 (en)
JPH0216270B2 (en)
JPS61256906A (en) Preparation of alpha type silicon nitride
JPS61256907A (en) Preparation of alpha type silicon nitride
US5108967A (en) Process for producing nonequiaxed silicon aluminum oxynitride
JPS6212663A (en) Method of sintering b4c base fine body
JPH01103960A (en) Production of boron nitride sintered compact
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JP2681843B2 (en) Manufacturing method of β-type silicon nitride whiskers
JPWO2006103931A1 (en) Contains aluminum nitride
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH06172036A (en) Production of silicon nitride powder
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS5891028A (en) Manufacture of silicon carbide powder
JPH02102108A (en) Production of raw material for silicon nitride-silicon carbide composite ceramic containing silicon carbide whisker
JPH0310567B2 (en)