JPH0247809A - Threaded permanent magnet - Google Patents

Threaded permanent magnet

Info

Publication number
JPH0247809A
JPH0247809A JP19918888A JP19918888A JPH0247809A JP H0247809 A JPH0247809 A JP H0247809A JP 19918888 A JP19918888 A JP 19918888A JP 19918888 A JP19918888 A JP 19918888A JP H0247809 A JPH0247809 A JP H0247809A
Authority
JP
Japan
Prior art keywords
permanent magnet
jig
threaded
magnet
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19918888A
Other languages
Japanese (ja)
Inventor
Izumi Nakazono
中薗 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19918888A priority Critical patent/JPH0247809A/en
Publication of JPH0247809A publication Critical patent/JPH0247809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a threaded permanent magnet also favorable in dimension accuracy without recourse to cutting or cutting processing, accordingly without requiring heat treatment either, and without lowering corrosion resistance by making a remaining stress layer substantially not exist at the surface of a threaded permanent magnet. CONSTITUTION:This is manufactured by uniting it with a jig such as stainless copper, etc., that the shape of corresponding male thread is cut in case of forming female thread and with a jig that the shape of female thread is cut in case of forming male thread so as to sinter them. Coating treatment by flame coating of ceramic such as zirconia, etc., and others are applied to the surface of the jig to prevent the seizure. Also, a Nd-Fe-B magnet which is a sintered magnet and is mechanically sticky containing much Fe is optimum for forming screw thread as it follows the shape of the jig and does not crack. In a word, the permanent magnet consisting of 2-28% B, 8-30% R and Fe for the residual by atom percentage becomes optimum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は残留応力層の残る切削または研削加工を施すこ
となくネジ山を付けた永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a permanent magnet that is threaded without cutting or grinding that leaves a residual stress layer.

[従来の技術] 永久磁石は重要な電気・電子部品として現代生活に欠か
せないものであり、その形状に対する要求も多様化して
いる。例えば、ネジ山付きの永久磁石に対するニーズが
それである。従来から磁石は磁束発生要素として多用さ
れてきたが、種々の組立品が出現してきたことから磁石
本体にネジ山を有するものがあれば組み立ての自動化、
簡略化、小型化が図れるとして顧客の要求が出てき始め
た。
[Prior Art] Permanent magnets are essential to modern life as important electrical and electronic components, and requirements for their shapes are also diversifying. For example, there is a need for threaded permanent magnets. Conventionally, magnets have been widely used as magnetic flux generating elements, but as various types of assemblies have appeared, it is possible to automate assembly if the magnet body has threads.
Customers began to request that it could be simplified and downsized.

また、ネジ山付き永久磁石はギャップを調整し易く、近
年注目を集めてきた永久磁石型のNMR−CT(核磁気
共鳴断層撮影装置)のように、工場での組立後に微調整
を現場でせざるを得ないものに好適である。
In addition, threaded permanent magnets are easy to adjust the gap, and like permanent magnet NMR-CT (nuclear magnetic resonance tomography), which has been attracting attention in recent years, fine adjustments can be made on-site after assembly at the factory. Suitable for those who have no choice but to use it.

このような場合、従来は磁石にネジ山を切るには極めて
困菫な切削、研削加工によらざるを得なかった。
In such cases, conventionally, extremely difficult cutting and grinding processes had to be used to cut threads on the magnet.

[発明が解決しようとする問題点] しかし、切削または研削による場合は加工変質層による
耐蝕性の劣化、磁気特性の劣化という問題点があった。
[Problems to be Solved by the Invention] However, when cutting or grinding is used, there are problems such as deterioration of corrosion resistance and deterioration of magnetic properties due to a processed damaged layer.

加工変質層を500〜900℃の時効処理で除去しよう
とする発明は従来もなされていた(特開昭61−140
108号公報)。この処理によって減磁曲線の角形性が
改良されたと該公報に記載されている。
There has been an invention in the past that attempts to remove the process-affected layer by aging treatment at 500 to 900°C (Japanese Patent Application Laid-Open No. 140-1989).
Publication No. 108). The publication states that this treatment improves the squareness of the demagnetization curve.

しかし、前記の特開昭61−140108号公報には磁
石の組成が全く記載されておらず、磁気特性の向上効果
について実施例が見られるものの、耐蝕性について何等
記載されていない。従って、発明の構成が不明確である
が、後述のごとく本発明者の研究によると、かかる構成
を取る場合にはRリッチ層が表面に層を形成し、耐蝕性
が極端に低下することが容易に予想され、前記の特開昭
61−264157号公報記載の発明と同様、表面に酸
化防止被覆を形成する必要がある。Rが酸素に選択酸化
され、そこを起点に腐食が磁石本体に深く進行するから
である。
However, JP-A-61-140108 does not describe the composition of the magnet at all, and although there are examples of the effect of improving magnetic properties, there is no mention of corrosion resistance. Therefore, although the structure of the invention is unclear, according to research by the present inventors as described later, when such a structure is adopted, an R-rich layer is formed on the surface, resulting in an extremely low corrosion resistance. This is easily predicted, and as in the invention described in JP-A-61-264157, it is necessary to form an anti-oxidation coating on the surface. This is because R is selectively oxidized to oxygen, and corrosion progresses deep into the magnet body starting from there.

従って1本発明は、切削または研削加工によらず、従っ
て熱処理も必要とせず、耐蝕性を低下せずに寸法精度も
良好なネジ山付き永久磁石を提供することにある。
Accordingly, one object of the present invention is to provide a threaded permanent magnet that does not require cutting or grinding, does not require heat treatment, does not reduce corrosion resistance, and has good dimensional accuracy.

[問題点を解決する手段] このような問題点を解決するために本発明は、表面に残
留応力層の実質的に存在しないことを特徴とするネジ山
付き永久磁石を提供するものである。
[Means for Solving the Problems] In order to solve these problems, the present invention provides a threaded permanent magnet characterized by substantially no residual stress layer on its surface.

その方法としては、雌ネジを形成する場合は対応する雄
ネジの形状を切ったステンレス鋼等で作った治具を、逆
に雄ネジを形成する場合は雌ネジの形状をした治具と一
体にして焼結することによって製造できる。
To form a female thread, use a jig made of stainless steel or other material cut in the shape of a corresponding male thread, and conversely, to form a male thread, use a jig in the shape of a female thread. It can be manufactured by sintering.

治具の表面には焼き付を防止する為に、ジルコニア等の
セラミックを溶射てコーティング処理等を施すことが好
ましい。治具の材質は製造せんとする永久磁石の材質に
応じて線膨張係数を考慮して大きいものを選ぶとよい。
In order to prevent seizure, the surface of the jig is preferably coated with ceramic such as zirconia by thermal spraying. The material of the jig should be chosen to have a large coefficient of linear expansion, depending on the material of the permanent magnet to be manufactured.

本発明における永久磁石は焼結磁石であれば、アルニコ
、Mn−Al−C磁石、SmCo、、Sm。
If the permanent magnet in the present invention is a sintered magnet, it may be Alnico, Mn-Al-C magnet, SmCo, or Sm.

Co□、、Nd−Fe−B磁石のいずれでも選択可能で
あるが、最適なのはFeを多量に含み機械的に粘いNd
−Fe−B磁石が治具の形状に従って割れなくネジ山を
形成できるので最適である。次いで磁気特性の優れてい
るSm−Go系磁石が適当である。
Co□, Nd-Fe-B magnets can be selected, but the optimal one is Nd, which contains a large amount of Fe and is mechanically sticky.
-Fe-B magnets are optimal because they can form screw threads according to the shape of the jig without cracking. Next, Sm--Go based magnets, which have excellent magnetic properties, are suitable.

つまり、原子百分比で2〜28%のBと、8〜30%の
R(但しRはYを含む希土類元素の少なくとも一種)と
、残部Fe(一部をCoを含む添加元素Mで置換できる
)とから実質的になる永久磁石が本発明に最適である。
In other words, B is 2 to 28% in atomic percentage, R is 8 to 30% (where R is at least one rare earth element including Y), and the balance is Fe (a portion can be replaced by an additional element M including Co). A permanent magnet consisting essentially of is most suitable for the present invention.

前記成分の限定理由は従来公知のもの(例えば特開昭5
9=132104号、59−89401号公報参照)と
変わりない。
The reason for limiting the above-mentioned components is the conventionally known reasons (for example, Japanese Patent Application Laid-open No. 5
9=132104, 59-89401).

即ち、2%未満のBは保磁力が1kOe未満となって好
ましくなく、28%を越える場合はBrが約4kG未満
となりハードフェライト磁石と競合できなくなるからで
ある。
That is, if B is less than 2%, the coercive force will be less than 1 kOe, which is undesirable, and if it exceeds 28%, the Br will be less than about 4 kG, making it impossible to compete with hard ferrite magnets.

またRは保磁力を1 k Oe以上とするためには8%
以上は必要であり、また燃えやすく工業的な取扱いの困
難性・コスト上昇の観点から30%以下とする。ここで
、RはYを含む一種又は二種以上のものが使用できるが
、磁気特性から特にNd。
In addition, R must be 8% in order to make the coercive force 1 k Oe or more.
The above is necessary, and from the viewpoint of flammability, difficulty in industrial handling, and cost increase, it is set to 30% or less. Here, R can be one or more kinds including Y, but Nd is particularly preferred because of its magnetic properties.

Prを主体とし、原価低減の目的でCe又はミツシュメ
タルで一部置換してもよく、耐熱性を要求される用途に
はDy、Tb等の重Rの一部置換ができる。Rが原子百
分比で8%未満のときは保磁力が1kOe未満となり好
ましくなく、20%を越えるときは耐蝕性が著しく低下
するので好ましくない。
Mainly composed of Pr, it may be partially replaced with Ce or Mitsushi metal for the purpose of cost reduction, and heavy R such as Dy and Tb may be partially replaced for applications requiring heat resistance. If R is less than 8% in atomic percentage, the coercive force will be less than 1 kOe, which is undesirable, and if it exceeds 20%, the corrosion resistance will drop significantly, which is not preferred.

また、50%以下のCoを含有できる(特開昭59−6
4733号と同様)、Goの添加はTcを向上し耐熱性
を改善する効果がおるものの50%を越えると保磁力i
Hcが1kOe未満になってしまうからである。
Furthermore, it can contain up to 50% Co (Japanese Unexamined Patent Publication No. 59-6
4733), the addition of Go has the effect of increasing Tc and improving heat resistance, but if it exceeds 50%, the coercive force i
This is because Hc becomes less than 1 kOe.

更に、従来公知の添加元素Mを含有することができる。Furthermore, a conventionally known additive element M can be contained.

所定の添加元素としてはA1、Ti、■、Cr、Mn、
Zr、Hf、Nb、Ta、Mo。
The predetermined additive elements include A1, Ti, ■, Cr, Mn,
Zr, Hf, Nb, Ta, Mo.

Ge、Sb、Sn、・Bi、Ni、W等の公知の添加元
素を添加することは本発明の効果に何等悪影響を与えな
い。
Addition of known additive elements such as Ge, Sb, Sn, .Bi, Ni, W, etc. does not have any adverse effect on the effects of the present invention.

前述の「焼結」は必ずしも狭義の粉末冶金法における焼
結に限定されるものではなく、高温で焼結反応と類似の
反応を伴うものであればよく、超急冷によって得た合金
薄片をホットプレスするものも含むし、更にそれを温間
で塑性加工するものも含む。あるいは超急冷ではなく、
鋳造合金のまま温間加工するものもその際にネジ山形状
の治具を挿入すれば足り、粉末冶金法に限定する理由は
ないからである。
The above-mentioned "sintering" is not necessarily limited to sintering in the narrow sense of powder metallurgy, but may be anything that involves a reaction similar to a sintering reaction at high temperatures. This includes those that are pressed, and also those that are subjected to warm plastic processing. Or rather than ultra-quick cooling,
This is because even if the cast alloy is warm-processed, it is sufficient to insert a thread-shaped jig at that time, and there is no reason to limit it to the powder metallurgy method.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

[実施例] (実施例1) 原子%でNd  14%、88%、Nb1..2%、残
部Feなる組成を有する合金をアーク溶解により作製し
た。得られたインゴットをスタンプミル及びディスクミ
ルにて粗粉砕し32メツシユ以下に調整後、ジェットミ
ルで微粉砕した。粉砕媒体は窒素ガスであり、粉砕粒度
は3.5μm(F。
[Example] (Example 1) Nd 14%, 88%, Nb1. .. An alloy having a composition of 2% Fe and the balance Fe was produced by arc melting. The obtained ingot was coarsely pulverized using a stamp mill and a disc mill, adjusted to 32 meshes or less, and then finely pulverized using a jet mill. The grinding medium is nitrogen gas, and the grinding particle size is 3.5 μm (F.

S、S、S)である。ここでF、S、S、SはFisc
herSub−8ieve  5izerの略であり、
空気透過法によるFischer社の粒度測定器により
測定した測定値を示す。
S, S, S). Here F, S, S, S are Fisc
herSub-8ieve 5izer,
The measurements are shown using a Fischer particle size analyzer using the air permeation method.

得られた微粉砕粉を15kOeの磁場中で横磁場成形(
加圧方向と磁場方向が直交)によって。
The obtained finely pulverized powder was subjected to transverse magnetic field molding (
(pressure direction and magnetic field direction are perpendicular).

ISOネジのM12.長さ10mmの雄ネジを外周に切
った5US304’ll’表面にジルコニアを溶射した
治具を挿入し雌ネジを成形した。成形圧力は2トン/c
m”である。得られた成形体をアルゴン雰囲気中で11
00℃で1時間焼結し、焼結後アルゴン気流中で急冷し
た。
ISO screw M12. A jig sprayed with zirconia was inserted into the surface of 5US304'll', which had a male screw having a length of 10 mm cut on the outer periphery, to form a female screw. Molding pressure is 2 tons/c
m”.The obtained molded body was heated to 11 m in an argon atmosphere.
Sintering was carried out at 00°C for 1 hour, and after sintering, it was rapidly cooled in an argon stream.

(比較例)本実施例と治具を挿入して成形する以外は同
様として、焼結後に内周研削盤でIs○のM12ネジを
内周に切った。この場合、研削の歩留りは甚だ悪く健全
な一個のサンプルを得るのに8個ものサンプルを作製せ
ざるを得ず、また加工に長時間を使わざるを得なかった
(Comparative Example) The same procedure as in this example was performed except that a jig was inserted and molded, and after sintering, an M12 thread of Is○ was cut on the inner periphery using an inner periphery grinder. In this case, the yield of grinding was extremely poor and it was necessary to prepare as many as eight samples to obtain one sound sample, and the processing had to take a long time.

第1表に得られたネジ付き磁石の磁気特性を比較する0
本発明によると磁気特性の劣化はないのに比べて、比較
例の場合は劣化が著しい、また、併せて120”C12
気圧の水蒸気中でPCT試験(Pressure   
Cooker   Te5t)を耐食性を評価するため
に行なった結果を示す。
Compare the magnetic properties of the threaded magnets obtained in Table 10
According to the present invention, there is no deterioration in magnetic properties, but in the case of the comparative example, the deterioration is significant.
PCT test (Pressure) in water vapor at atmospheric pressure
The results are shown below for evaluating the corrosion resistance of Cooker Te5t).

この表で「耐久時間」はPCT試験の結果、錆が発生す
るまでの時間を示す。比較例の場合は極めて悪いことが
わかる。ネジ切り加工による表面層の残留応力のためで
あると思われる。
In this table, "durability time" indicates the time until rust occurs as a result of the PCT test. It can be seen that the comparative example is extremely bad. This is thought to be due to residual stress in the surface layer due to thread cutting.

第1表 [発明の効果] 本発明によればネジ山付きの永久磁石が磁気特性の劣化
を伴うことなく、簡易な方法で得られる。
Table 1 [Effects of the Invention] According to the present invention, a threaded permanent magnet can be obtained by a simple method without deterioration of magnetic properties.

このことによって、NMR−CT装置における微調整の
容易な磁石等、永久磁石の新規な用途の開発が期待でき
る。
This can be expected to lead to the development of new uses for permanent magnets, such as magnets that can be easily finely adjusted in NMR-CT devices.

−3:-3:

Claims (3)

【特許請求の範囲】[Claims] (1)表面に残留応力層の実質的に存在しないことを特
徴とするネジ山付き永久磁石。
(1) A threaded permanent magnet characterized by substantially no residual stress layer on its surface.
(2)原子百分比で2〜28%のBと、8〜30%のR
(但しRはYを含む希土類元素の少なくとも一種)と、
残部Fe(一部をCoを含む金属元素で置換できる)と
から実質的になる請求項1に記載のネジ山付き永久磁石
(2) 2-28% B and 8-30% R in atomic percentage
(However, R is at least one kind of rare earth element including Y),
The threaded permanent magnet according to claim 1, wherein the threaded permanent magnet consists essentially of Fe (part of which can be replaced with a metal element containing Co).
(3)希土類元素−コバルト系永久磁石である請求項1
に記載のネジ山付き永久磁石。
(3) Claim 1 which is a rare earth element-cobalt based permanent magnet.
Threaded permanent magnets as described in .
JP19918888A 1988-08-10 1988-08-10 Threaded permanent magnet Pending JPH0247809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19918888A JPH0247809A (en) 1988-08-10 1988-08-10 Threaded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19918888A JPH0247809A (en) 1988-08-10 1988-08-10 Threaded permanent magnet

Publications (1)

Publication Number Publication Date
JPH0247809A true JPH0247809A (en) 1990-02-16

Family

ID=16403604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19918888A Pending JPH0247809A (en) 1988-08-10 1988-08-10 Threaded permanent magnet

Country Status (1)

Country Link
JP (1) JPH0247809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176678A1 (en) * 2009-01-09 2010-07-15 James Ching Sik Lau Electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176678A1 (en) * 2009-01-09 2010-07-15 James Ching Sik Lau Electric motor

Similar Documents

Publication Publication Date Title
CN109935432B (en) R-T-B permanent magnet
EP2372726A1 (en) Rare-earth magnet, method of manufacturing rare-earth magnet and rotator
JP2009302318A (en) RL-RH-T-Mn-B-BASED SINTERED MAGNET
EP0289599A1 (en) Process for producing permanent magnets
USRE31317E (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JPS6217149A (en) Manufacture of sintered permanent magnet material
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP6623998B2 (en) Method for producing RTB based sintered magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH05247601A (en) Alloy for corrosion resistant permanent magnet and method for producing permanent magnet therefrom
JPH0247809A (en) Threaded permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
Ormerod Powder metallurgy of rare earth permanent magnets
JPS61136656A (en) Production of sintered material for permanent magnet
JP2019169698A (en) Production method of r-t-b based sintered magnet
JPH04143221A (en) Production of permanent magnet
JPH03148803A (en) Permanent magnet
JPS63234503A (en) Manufacture of permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH07240307A (en) Nitrogen-bearing rare-earth permanent magnet and its manufacture
JP3138927B2 (en) Rare earth magnet manufacturing method
JP2021155782A (en) Method of producing r-t-b-based sintered magnet
JPH04134806A (en) Manufacture of permanent magnet