JPH0246611A - Manufacture of membranous superconductor - Google Patents

Manufacture of membranous superconductor

Info

Publication number
JPH0246611A
JPH0246611A JP63196564A JP19656488A JPH0246611A JP H0246611 A JPH0246611 A JP H0246611A JP 63196564 A JP63196564 A JP 63196564A JP 19656488 A JP19656488 A JP 19656488A JP H0246611 A JPH0246611 A JP H0246611A
Authority
JP
Japan
Prior art keywords
membrane
composite compound
based composite
film
complex compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63196564A
Other languages
Japanese (ja)
Inventor
Kumiko Hirochi
廣地 久美子
Hiroshi Ichikawa
洋 市川
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63196564A priority Critical patent/JPH0246611A/en
Publication of JPH0246611A publication Critical patent/JPH0246611A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive property in a good reproductivity by attaching a Bi type complex compound membrane including Bi, an alkaline earth element, Cu and O on a basic body, and after that, attaching a Tl type complex compound membrane including at least Tl, an alkaline-earth element, Cu and O as the main component. CONSTITUTION:On a substrate 11, a Bi type complex membrane 21 including at least Bi, an alkaline earth element, Cu and O as the main component is attached from a target 12. This Bi type compound can present a relatively high Tc phase of crystalline formation, and can be manufactured easily. After that, a Tl type complex compound membrane 22 including at least Tl, an alkaline earth element, Cu and O as the main component is attached from a target 13. By composing the membrane 22 over the complex compound membrane 21 in such a way, and since the grid constant of the membrane 22 is close to that of the membrane 21, high Tc crystals of the same crystal form are formed easily. And by applying a heat treatment after the Tl type complex compound membrane 22 is attached, the oxidization of the Tl type membrane is promoted, and the crystalline property is improved. Consequently, a good superconductive property can be obtained in a good reproductivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高臨界温度が期待されるTlを含む酸化物超
電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor containing Tl, which is expected to have a high critical temperature.

特に作製が難しい薄膜超電導体の製造に関するものであ
る。
It particularly relates to the production of thin film superconductors, which are difficult to produce.

従来の技術 高温超電導体としての、A15型2元系化合物として窒
化ニオブ(NbN)やゲルマニウムニオブ(N b 3
G e )などが知られていたが、これらの材料の超電
導転移温度はたかだか24にであった。−方、ペロプス
カイト系3元化合物は、さらに高い転移温度が期待され
、B a−L a−Cu −0系の高温超電導体が提案
された( T 、 G 、 Bendorz andK
、A、Muller 、ツァイト シュリフト フェア
 フィジーク(Zetshrift  Furphys
ik B)−CondensedMat−ter  6
4,189−193 (1985))。
Conventional technology Niobium nitride (NbN) and germanium niobium (Nb3) are used as A15 type binary compounds as high-temperature superconductors.
G e ), etc. were known, but the superconducting transition temperature of these materials was at most 24°C. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and a Ba-La-Cu-0-based high-temperature superconductor has been proposed (T, G, Bendorz and K.
, A. Muller, Zetshrift Furphys
ik B)-CondensedMat-ter 6
4, 189-193 (1985)).

さらに、B1−3r−Ca−Cu−0系の材料が100
に以上の転移温度Tl−Ba−Ca−Cu−0系の材料
が120に以上の転移温度を示すことも発見された( 
Z 、 Z 、 Sheng and八、M、Herm
ann、  ネイチャー(Iiature) Vol、
332 138−139 (19B’8))。
Furthermore, the B1-3r-Ca-Cu-0 material is 100%
It was also discovered that materials of the Tl-Ba-Ca-Cu-0 series exhibit a transition temperature of 120 or higher (
Z., Z., Sheng and H., M., Herm.
ann, Nature Vol.
332 138-139 (19B'8)).

発明が解決しようとする課題 しかしながら、Tl−Ba−Ca−Cu−0系の材料は
、TIの蒸気圧が異常に高いため、熱処理工程が非常に
難しいものであった。従ってこの種の材料で再現性良く
超電導特性を出すのが課題となっていた。また、Tl−
Ba−Ca−Cu−0系の材料の薄膜化は非常に困難と
され、たとえ、薄膜状Tl−Ba−Ca−Cu−0が形
成されても、その結晶はセラミック等において120に
の転移温度を示す結晶形(高Tc用)とはならず、10
0に程度の転移温度を示す結晶形(低Tc相)しか得る
ことができなかった。
Problems to be Solved by the Invention However, since the Tl-Ba-Ca-Cu-0 based material has an abnormally high vapor pressure of TI, the heat treatment process is extremely difficult. Therefore, it has been a challenge to achieve superconducting properties with this type of material with good reproducibility. Also, Tl-
It is said that it is extremely difficult to make thin films of Ba-Ca-Cu-0 based materials, and even if a thin film of Tl-Ba-Ca-Cu-0 is formed, the crystals will have a transition temperature of 120°C in ceramics, etc. It does not become a crystal form (for high Tc) showing 10
Only a crystalline form (low Tc phase) exhibiting a transition temperature of about 0 could be obtained.

課題を解決するだめの手段 本発明の手段は、基体上に主成分が少なくとももBi、
7zyカリ類(ffa族)、Cu、Oを含むBi  系
複合化合物被膜を付着させた後、主成分が少なくトモr
g 、 アtv力!J 土類(ffa族)、Cu、0を
含むTl系複合化合物被膜を付着させるものである。
Means for Solving the Problems The means of the present invention provides a method in which the main components are at least Bi,
After attaching a Bi-based composite compound film containing potash (ffa group), Cu, and O,
g, ATV power! J A Tl-based composite compound film containing earth (ffa group), Cu, and 0 is deposited.

作  用 本発明者等は、Bi系複合化合物被膜とTl系複合化合
物被膜の高Tc用はほぼ格子定数の近い同一の結晶形を
有し、Tl系をBi茶系上積層することにより、Tl系
の結晶性が向上するという発見に基づいて、本発明を行
った。特に、薄膜において超電導特性を出すのは非常に
難しいとされていたTl系の高Tc用に対して、この方
法は大変有効であることを確認した。まず基体上に主成
分が少なくとも、Bi 、アルカリ土類(ffa族)。
Effect The present inventors have discovered that the Bi-based composite compound film and the Tl-based composite compound film for high Tc have the same crystal form with almost similar lattice constants, and that by layering the Tl-based film on the Bi-based material, The present invention was based on the discovery that the crystallinity of the system is improved. In particular, we confirmed that this method is very effective for high Tc applications in Tl systems, where it has been considered extremely difficult to achieve superconducting properties in thin films. First, the main components on the substrate are at least Bi and alkaline earth (FFA group).

Cu、Oを含むBi系複合化合物被膜と付着させる。It is attached to a Bi-based composite compound film containing Cu and O.

このBi系化合物は、比較的高Te相の結晶形が得られ
やすく容易に作製される。その後、主成分が少なくとも
TI 、アルカリ土類(■a族)、Cu。
This Bi-based compound can easily be produced in a crystal form with a relatively high Te phase. After that, the main components are at least TI, alkaline earth (group ■a), and Cu.

0を含む、Tl系複合化合物被膜を付着させる。A Tl-based composite compound coating containing 0 is deposited.

Te系においては、高Tc用の結晶形の薄膜はTe等の
蒸気圧が高い等により薄膜作製条件に限界があるため、
作製することが非常に困難であった。
For Te-based crystalline thin films for high Tc, there are limits to thin film production conditions due to the high vapor pressure of Te, etc.
It was very difficult to make.

Bi系化合物の上層に作製することによシ、格子定数も
近いため、同じ結晶形を有し高Tcの結晶が容易に形成
される。また、転移温度も結晶性の向上とともに上昇す
ることが確認された。
By forming the layer on top of the Bi-based compound, the lattice constants are similar, so that a crystal with the same crystal form and high Tc can be easily formed. Furthermore, it was confirmed that the transition temperature also increases with the improvement of crystallinity.

また、Bi系複合化合、物被映を付着させた後、Bi系
薄膜のみを熱処理し、より単結晶に近い薄膜を形成する
。その上層にTl系薄膜を作成すると、TIの結晶性が
より向上した膜となシ、電流密度の増大が図られること
を確認した。
Further, after attaching the Bi-based composite compound and material coating, only the Bi-based thin film is heat-treated to form a thin film that is closer to a single crystal. It was confirmed that when a Tl-based thin film was formed on the upper layer, the crystallinity of TI was further improved, and the current density was increased.

また、Tl系複合化合物被膜を付着させた後、熱処理を
行うことにより、Tl系薄膜の酸化が促進され、結晶性
が向上する。Tl系複合化合物被膜を付着させた後、熱
処理を行う際、周辺の全部あるいは一部を少なくともタ
リウムを含む酸化物材料で囲むことによシ、膜内のTl
の組成ずれを防ぎ、所望の膜組成、結晶形を得ることが
容易になる。
Further, by performing heat treatment after depositing the Tl-based composite compound film, oxidation of the Tl-based thin film is promoted and crystallinity is improved. When performing heat treatment after depositing the Tl-based composite compound film, it is possible to remove Tl within the film by surrounding the whole or part of the periphery with an oxide material containing at least thallium.
It becomes easy to prevent composition deviation and obtain a desired film composition and crystal shape.

また、被膜は着方法としては、物理的成長法。In addition, the coating is applied using a physical growth method.

化学的成長法、各柱考えられ、どのような方法でも形成
可能である。スパッタリング法を用いると、より組成ず
れが防げ、非平衡状態で形成を行うため、高Tc相等不
安定結晶形が安定に得られやすい。
Each pillar can be considered as a chemical growth method, and can be formed by any method. When the sputtering method is used, composition deviation can be further prevented, and since formation is performed in a non-equilibrium state, unstable crystal forms such as high Tc phases can be easily obtained stably.

実施例 以下本発明の内容をさらに深く理解されるために、具体
的な実施例を示す。
EXAMPLES In order to further understand the content of the present invention, specific examples will be shown below.

たとえば、スパッタリング法によシ薄膜を付着させた場
合について説明する。第1図にこの実施例に用いた装置
の概略図を示す。第2図に作製された膜の断面図を示す
。基体11として例えばMgo を用いる。なお、基体
11はS r T 103 、サファイア、Si等単結
晶基板、あるいはアモルファスSi弄の付着した基板、
ガラス等でも可能であった。第1図において、12はB
1−Ca−5r−Cu系ターゲット、13はTl−Ba
−Ca−Cu系ターゲット、14は基体ホルダー、15
はガス導入口、16はガス排出口、17は回転軸である
。ターゲット12としてBi2O3,CaCo3.・S
rCo31CuOを混合焼成したものを用い膜組成がB
1−3 r −Ca−Cuの比2−2−3−4となる様
にしてBi系複合化合物被膜21を作製した。基体温度
を6Qo℃〜aoo”Cにし形成し、続いて連続的に、
Te203.BaO,CaO,CuOを混合焼成シたも
のをターゲット13としスパッタしTl系複合化合物被
膜22を作製した。その時の基体温度は200℃で行っ
た。スパッタガスとしては、Ar。
For example, a case will be described in which a thin film is deposited by sputtering. FIG. 1 shows a schematic diagram of the apparatus used in this example. FIG. 2 shows a cross-sectional view of the produced membrane. For example, Mgo is used as the substrate 11. The substrate 11 is a single crystal substrate such as S r T 103 , sapphire, or Si, or a substrate to which amorphous Si is attached.
It was also possible to use glass etc. In Figure 1, 12 is B
1-Ca-5r-Cu based target, 13 is Tl-Ba
-Ca-Cu target, 14 is a substrate holder, 15
16 is a gas inlet, 16 is a gas outlet, and 17 is a rotating shaft. As the target 12, Bi2O3, CaCo3.・S
The film composition is B using a mixture of rCo31CuO and fired.
A Bi-based composite compound film 21 was prepared so that the ratio of 1-3 r -Ca-Cu was 2-2-3-4. The substrate temperature is set to 6Qo℃~aoo''C, and then continuously,
Te203. A Tl-based composite compound coating 22 was prepared by sputtering using a fired mixture of BaO, CaO, and CuO as a target 13. The substrate temperature at that time was 200°C. Ar is used as the sputtering gas.

02の混合ガスを用い、酸化を促しながら、行った。こ
の様にして作製したBL 系複合化合物被膜は、高Tc
相と言われるC軸の格子定数が約37人の膜が形成され
ていた。
The oxidation was carried out using a mixed gas of No. 02 while promoting oxidation. The BL-based composite compound film prepared in this way has a high Tc
A film with a C-axis lattice constant of approximately 37 people was formed.

続いて蒸着したTl系複合化合物も、C軸の格子定数が
約36〜38人の高Tc相を持つ膜が得られた。Bi系
複合化合物被膜のない場合には、この高Tc相は得られ
ず、ゼロ抵抗温度も80に程度であった。Bi系複合化
合物被膜の上に積層することにより約115に程度のゼ
ロ抵抗温度を持つ膜が安定に形成された。形成条件の範
囲、たとえば、基体温度、スパッタリングパワー、ガス
圧等の条件の範囲も広く再現性良く形成される様になっ
た。Bi系、TI系両複合化合物被膜はここに例を上げ
た組成ばかりでなく、同様の結晶形を有する組成、たと
えば、Caをpbあるいはアルカリ土類等で置換した組
成でも、同様の結果を得ることができた。また、Bi 
系の膜厚は盲人までで十分であるが数ミクロンの厚いも
のでもよく、結晶性が良い方がよく、基体の種類等に応
じて作製すればよい。またTl系の膜厚はゼロ抵抗温度
の最高になる膜厚が望ましいが、必ずしも最高の性能を
要求しがい用途に関してはその限りでない。
The subsequently deposited Tl-based composite compound also produced a film having a high Tc phase with a C-axis lattice constant of about 36 to 38 people. In the absence of the Bi-based composite compound coating, this high Tc phase could not be obtained and the zero resistance temperature was approximately 80°C. By laminating it on the Bi-based composite compound film, a film having a zero resistance temperature of about 115°C was stably formed. The range of forming conditions, for example, substrate temperature, sputtering power, gas pressure, etc., has become wider and the formation can now be performed with good reproducibility. Bi-based and TI-based composite compound coatings not only have the compositions listed here, but also compositions with similar crystal forms, for example, compositions in which Ca is replaced with PB or alkaline earth, etc., and similar results can be obtained. I was able to do that. Also, Bi
The film thickness of the system is sufficient for blind people, but it may be as thick as several microns, and it is better to have good crystallinity, and it may be prepared depending on the type of substrate, etc. Further, the thickness of the Tl-based film is preferably the one that provides the maximum zero resistance temperature, but this is not necessarily the case for applications that require the highest performance.

Bi系複合化合物被膜を付着させた後、スパック装置内
部、あるいは−度取り出しアニール炉等で熱処理を行い
結晶性の向上を図ると、Tl系複合化合物被膜を形成す
る際、より安定に再現性よりTl系の超電導特性の良好
なものとなることがわかった。しかし、必ずしも、この
熱処理は必要でなく、スパッタ蒸着プロセスのみで十分
に結晶性の良いものが得られる。たとえばアニール炉で
850 ”C5時間酸素中で熱処理を行った後、再度、
スパッタ装置に戻しTl系を付着させた場合、ゼロ抵抗
温度には変化が認められなかったが電流密度が約倍程度
のものが得られた。
After depositing the Bi-based composite compound film, heat treatment is performed inside a spuck machine or in a -temperature extraction annealing furnace to improve crystallinity, resulting in more stable reproducibility when forming a Tl-based composite compound film. It was found that the Tl-based superconducting properties were good. However, this heat treatment is not necessarily necessary, and a material with sufficiently good crystallinity can be obtained only by the sputter deposition process. For example, after heat treatment in oxygen for 5 hours at 850"C in an annealing furnace,
When the sample was returned to the sputtering device and the Tl system was deposited, no change was observed in the zero resistance temperature, but the current density was approximately doubled.

また、Tl系複合化合物を付着させた後、スパッタ装置
内、まだはアニール炉内で、たとえば50o℃shr熱
処理を行うと、より結晶性の向上が図られ、超電導特性
も良好となった。時間等に膜厚によって影響をうけるこ
の熱処理を行う際、Tlの蒸気圧が高いため、組成比の
ずれをまねくおそれがあるため、この債層膜を全部ある
いは一部をタリウムを含む酸化物材料、たとえばTl−
Ba−Ca−Cu−0焼結体あるいはTe2o3の粉末
等で囲み行うことによって安定性が増し、組成ずれがな
くなった。また、タリウムを含む酸化物材料で囲まなく
とも、低温熱処理たとえば20o℃2ohrあるいはT
lを初めの付着の際、組成比を多めに入れる等により、
Tlの不足分を促い十分に結晶性の向上が図られた。
Further, after depositing the Tl-based composite compound, heat treatment at 50° C.hr, for example, in a sputtering device, but still in an annealing furnace, further improved crystallinity and improved superconducting properties. When performing this heat treatment, which is affected by time and film thickness, the high vapor pressure of Tl may lead to a shift in the composition ratio. , for example Tl-
By surrounding it with a Ba-Ca-Cu-0 sintered body or Te2o3 powder, stability was increased and composition deviation was eliminated. In addition, even if it is not surrounded by an oxide material containing thallium, low temperature heat treatment such as 20 o C 2 ohr or T
By adding a higher composition ratio when attaching l for the first time,
The lack of Tl was promoted and the crystallinity was sufficiently improved.

このようにして2度あるいは1度アニール処理を行った
サンプルにおいて、ゼロ抵抗温度115に、電流密度7
7Kにおいて2×105A/dを得ることができた。
In the samples annealed twice or once in this way, the zero resistance temperature is 115, and the current density is 7.
It was possible to obtain 2×10 5 A/d at 7K.

ここでは、スパッタリング法を例にして述べたが、スパ
ッタ法は非平衡過程で、高Tc相等の不安定な物質を、
低温で作製することが容易であるが、CVD法等でも、
可能であることがわかった。
Here, the sputtering method was described as an example, but the sputtering method is a non-equilibrium process, and unstable substances such as high Tc phases are
It is easy to produce at low temperature, but even with CVD method etc.
It turns out it's possible.

発明の効果 本発明の超電導体の製造方法によると、高臨界温度の期
待の高いTl、Cu、Ila族元素を含む酸化物超電導
体作製に際し、良好な超電導特性を再現性良く簡素に得
ることができる。特にこれまで困fflとされていたこ
の柱の薄膜製造にも適したものであり、本発明の工業的
価値は高い。
Effects of the Invention According to the method for producing a superconductor of the present invention, it is possible to easily obtain good superconducting properties with good reproducibility when producing an oxide superconductor containing Tl, Cu, and Ila group elements, which are expected to have high critical temperatures. can. The present invention is particularly suitable for the production of thin films of pillars, which has been considered difficult until now, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いた装置の概略図、第2
図は本発明の一実施例として形成された薄膜超電導体の
基体を含む断面図である。 11・・・・・・基体、12・・・・・・B1−Ca−
3r−Cu系ターゲット、13−・−Tl−Ba−Ca
−Cu系ターゲット、21・・・・・・Bi系複合化合
物被膜、22・・・・・・Td系複合化合物被膜。 第 図 第 図
Figure 1 is a schematic diagram of the apparatus used in one embodiment of the present invention, Figure 2
The figure is a sectional view including a base of a thin film superconductor formed as an example of the present invention. 11...Base, 12...B1-Ca-
3r-Cu-based target, 13-.-Tl-Ba-Ca
-Cu-based target, 21...Bi-based composite compound coating, 22......Td-based composite compound coating. Figure Figure

Claims (5)

【特許請求の範囲】[Claims] (1)基体上に主成分が少なくともBi、アルカリ土類
(IIa族)、Cu、Oを含むBi系複合化合物被膜を付
着させた後、主成分が少なくともTl、アルカリ土類(
IIa族)、Cu、Oを含むTl系複合化合物被膜を付着
させることを特徴とする薄膜超電導体の製造方法。
(1) After depositing a Bi-based composite compound film containing at least Bi, alkaline earth metals (group IIa), Cu, and O as main components on the substrate, the film contains at least Tl, alkaline earth metals (group IIa), and
1. A method for producing a thin film superconductor, which comprises depositing a Tl-based composite compound film containing Group IIa), Cu, and O.
(2)Bi系複合化合物被膜を付着させた後、熱処理を
行うことを特徴とする特許請求の範囲第1項記載の薄膜
超電導体の製造方法。
(2) The method for producing a thin film superconductor according to claim 1, wherein heat treatment is performed after depositing the Bi-based composite compound film.
(3)Tl系複合化合物被膜を付着させた後、熱処理を
行うことを特徴とする特許請求の範囲第1項記載の薄膜
超電導体の製造方法。
(3) The method for producing a thin film superconductor according to claim 1, wherein a heat treatment is performed after depositing the Tl-based composite compound film.
(4)Tl系複合化合物被膜を付着させた後、熱処理を
行う際、周辺の全部あるいは一部を少なくともタリウム
を含む酸化物材料で囲むことを特徴とする特許請求の範
囲第3項記載の薄膜超電導体の製造方法。
(4) The thin film according to claim 3, characterized in that when heat treatment is performed after the Tl-based composite compound film is attached, the entire or part of the periphery is surrounded by an oxide material containing at least thallium. Method for manufacturing superconductors.
(5)被膜付着方法としてスパッタリング法を用いるこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。
(5) A method for manufacturing a thin film superconductor according to claim 1, characterized in that a sputtering method is used as the film deposition method.
JP63196564A 1988-08-05 1988-08-05 Manufacture of membranous superconductor Pending JPH0246611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196564A JPH0246611A (en) 1988-08-05 1988-08-05 Manufacture of membranous superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196564A JPH0246611A (en) 1988-08-05 1988-08-05 Manufacture of membranous superconductor

Publications (1)

Publication Number Publication Date
JPH0246611A true JPH0246611A (en) 1990-02-16

Family

ID=16359831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196564A Pending JPH0246611A (en) 1988-08-05 1988-08-05 Manufacture of membranous superconductor

Country Status (1)

Country Link
JP (1) JPH0246611A (en)

Similar Documents

Publication Publication Date Title
JPH03150218A (en) Production of superconductive thin film
KR930008648B1 (en) Perovskite super conductor readiness process
JPS63239742A (en) Manufacture for film superconductor
JPH0246611A (en) Manufacture of membranous superconductor
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH01208327A (en) Production of thin film of superconductor
JPH02252618A (en) Production of bi-based superconducting thin film
JPH02311396A (en) Thin-film superconductor and its production
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH01105416A (en) Manufacture of thin film superconductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPH01208328A (en) Sputtering target and production of superconductor thin film
JPH02167827A (en) Thin-film superconductor
JPH01219023A (en) Production of thin superconductor film
JPS63257127A (en) Manufacture of thin film superconductor
JPH0388724A (en) Production of bismuth-containing oxide superconducting thin film
JPS63276824A (en) Manufacturing of high-temperature superconducting film
JPH01203220A (en) Superconductor
JPH02258629A (en) Preparation of bi-pb-sr-ca-cu-o superconductor thin film
JPH0517147A (en) Production of thin compound oxide film containing lead
JPH06305728A (en) Superconductor and its production
JPS63307614A (en) High-temperature oxide superconductor thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JPH03103326A (en) Production of bismuth-based oxide superconducting thin film
JPH0393620A (en) Production of oxide superconductor thin film