JPH0244027B2 - - Google Patents

Info

Publication number
JPH0244027B2
JPH0244027B2 JP57014516A JP1451682A JPH0244027B2 JP H0244027 B2 JPH0244027 B2 JP H0244027B2 JP 57014516 A JP57014516 A JP 57014516A JP 1451682 A JP1451682 A JP 1451682A JP H0244027 B2 JPH0244027 B2 JP H0244027B2
Authority
JP
Japan
Prior art keywords
echo
defect
edge
probes
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57014516A
Other languages
Japanese (ja)
Other versions
JPS58131560A (en
Inventor
Yasuhiro Aikawa
Masahisa Nakayama
Juichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57014516A priority Critical patent/JPS58131560A/en
Publication of JPS58131560A publication Critical patent/JPS58131560A/en
Publication of JPH0244027B2 publication Critical patent/JPH0244027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • G01N29/0627Cathode-ray tube displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波探傷によつて割れなどの面状欠
陥の深さ位置や寸法を高精度に測定する手段に係
り、特に欠陥端部からの超音波エコーを利用して
欠陥の探さ位置や寸法を測定する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a means for measuring the depth position and dimensions of planar defects such as cracks with high accuracy by ultrasonic flaw detection, and in particular, uses ultrasonic echoes from the edge of the defect. This invention relates to a method for measuring the location and size of defects.

従来欠陥端部からの超音波エコーを利用して欠
陥の深さ位置や寸法を測定する手段としては1探
触子法により欠陥端部からのエコーをとらえ、そ
の位置を幾何学的に計算する端部ピークエコー法
があつた。この方法は第1図に示されるごとく面
状欠陥4の上端部エコー8及び下端部のエコー
8′までのビーム路程を1個の探触子で測定し、
このビーム路程Wと探触子の屈折角θより面状欠
陥の両端の位置および面状欠陥の大きさを幾何学
的に測定する方法であつた。なお第1図のa,b
はブラウン管で観測される波形の概略図、c,d
はa,bに対応する測定要領の説明図である。
Conventionally, as a means of measuring the depth position and dimensions of a defect using ultrasonic echoes from the defect edge, the one-probe method is used to capture the echo from the defect edge and calculate its position geometrically. The edge peak echo method was adopted. As shown in FIG. 1, this method measures the beam path to the upper end echo 8 and lower end echo 8' of the planar defect 4 with one probe,
This was a method of geometrically measuring the positions of both ends of the planar defect and the size of the planar defect from the beam path length W and the refraction angle .theta. of the probe. Note that a and b in Figure 1
are schematic diagrams of waveforms observed on a cathode ray tube, c, d
is an explanatory diagram of the measurement procedure corresponding to a and b.

この方法によれば機械加工したスリツト状欠陥
等に対しては一般にかなり測定精度がよいが、自
然欠陥に対しては測定精度はかなり悪くなること
が知られている。これは端部エコー自体が極めて
微弱であることに加えて割れ端部および割れ面は
かなり複雑な形状を呈していることから、端部エ
コー以外のエコーが端部近傍に発生し、これらの
エコーと端部エコーとの見分けが極めて困難にな
るため端部エコー以外のエコーを端部エコーと見
誤ること、及びビームにはふくらみがあるため中
心ビーム以外の部分よりのエコーも存在し、破面
及び先端の状況によつては中心ビーム以外の部分
が寄与したエコーが発生し、これが中心ビームが
当つた場合より大きくなり、これを先端よりのエ
コーと誤認したりするためである。
It is known that this method generally provides a fairly good measurement accuracy for machined slit-like defects, but it is known that the measurement accuracy for natural defects is considerably poor. This is because the edge echo itself is extremely weak, and the crack edge and crack surface have quite complex shapes, so echoes other than the edge echoes occur near the edge, and these echoes Since it is extremely difficult to distinguish between the edge echo and the edge echo, echoes other than the edge echo may be mistaken for the edge echo.Since the beam has a bulge, echoes from areas other than the center beam also exist, and the fracture surface Also, depending on the situation at the tip, an echo contributed by parts other than the center beam may be generated, which may be larger than when the center beam hits, and may be mistaken for an echo from the tip.

一方、面状欠陥端部からの超音波エコーを利用
する別の手段としては、2探触子法により欠陥端
部からのエコーをとらえてその位置を幾何学的に
計算するデイフラクシヨンエコー法がSilkらによ
つて提案されている。この方法は第2図に示され
るごとく面状欠陥4を間に置いて送信・受信2個
の斜角探触子1,1′が試験片の同一面に対向配
置される2探触子法であるため、受信される余分
なエコーは少く、また受信されたエコーが中心ビ
ーを外れた部分が寄与したエコーであつても欠陥
位置を正確に推定できるという利点があつた。な
お第2図のa,bはブラウン管で観測される第1
図a,bと同様な波形図、c,dはa,bに対応
する測定要領の説明図である。しかし、この場合
も端部よりのエコーは極めて微弱であり、自然欠
陥では入射方向によつては端部エコーが認められ
なかつたり、モード変換等による別ルートのエコ
ーを端部エコーと誤認したりして、自然欠陥の場
合端部エコーを正確に判定するのは困難であつ
た。
On the other hand, another method that uses ultrasonic echoes from the edge of a planar defect is the diffraction echo method, which captures the echo from the edge of the defect using a two-probe method and calculates its position geometrically. has been proposed by Silk et al. This method is a two-probe method in which two transmitting and receiving bevel probes 1 and 1' are placed facing each other on the same surface of the test piece with a planar defect 4 in between, as shown in Figure 2. Therefore, there is an advantage that the number of extra echoes received is small, and that the defect position can be accurately estimated even if the received echo is an echo contributed by a portion deviating from the center beam. Note that a and b in Figure 2 are the first images observed on a cathode ray tube.
Waveform diagrams similar to figures a and b, and figures c and d explanatory diagrams of measurement procedures corresponding to figures a and b. However, in this case as well, the echo from the edge is extremely weak, and depending on the direction of incidence in natural defects, the edge echo may not be recognized, or an echo from a different route due to mode conversion etc. may be mistaken as an edge echo. Therefore, it has been difficult to accurately determine edge echoes in the case of natural defects.

すなわち試験片の表面に対して垂直及び垂直に
近い面状欠陥の端部にある屈折角の範囲で超音波
ビームを入射させた場合、端部を電源として両側
に端部エコーが放出され、これは面状欠陥端部に
おける波の回折現象の結果生じる波動であるが、
このエコーは前述のごとく極めて微弱であるため
端部エコーと距離的に近い部分からのエコーとが
重複して端部エコーの見分けが難かしかつたり、
欠陥端部の傾きの影響などから一方向のみからで
は端部エコーが強く認められないこともある。
In other words, when an ultrasonic beam is incident within a range of refraction angles at the edges of a planar defect that are perpendicular or nearly perpendicular to the surface of the test piece, edge echoes are emitted on both sides using the edges as a power source. is a wave generated as a result of the wave diffraction phenomenon at the edge of a planar defect,
As mentioned above, this echo is extremely weak, so the end echo and the echo from a nearby part may overlap, making it difficult to distinguish between the end echoes.
Due to the influence of the inclination of the defect edge, strong edge echoes may not be recognized from only one direction.

そのため本発明者らは微弱な端部エコーを精度
よく検出するための方法として、従来法では欠陥
の片側のみで受信させていた端部エコーを欠陥の
両側で受信させ、両者を用いて総合的に判定する
ことによつて端部エコーの検出精度を著しく向上
させることができることを見い出した。これは欠
陥を間に置いて対向させた2個の斜角探触子を試
験片の同一面に配置させ、同時に送受信させるこ
とによつて達成される。そして、両探触子に受信
される端部エコーを時間的に合わせることにより
両探触子から欠陥端部までの距離はそれぞれ等し
くなるため、2個の探触子の入射点と欠陥端部の
3点を結ぶ線分は二等辺三角形を形成し、試験材
表面から欠陥端部までの深さは二等辺三角形を2
等分する垂線の長さとして容易にしかも極めて正
確に求められるという知見を得た。
Therefore, the present inventors developed a method for accurately detecting weak edge echoes by receiving the edge echoes on both sides of the defect, which was received only on one side of the defect in the conventional method, and using both sides to comprehensively detect the weak edge echoes. It has been found that the detection accuracy of edge echoes can be significantly improved by making a determination based on the following. This is achieved by placing two bevel probes facing each other with the defect in between, on the same surface of the specimen, and transmitting and receiving signals simultaneously. By aligning the end echoes received by both probes in time, the distances from both probes to the defective end become equal, so the incident points of the two probes and the defective end The line segment connecting the three points forms an isosceles triangle, and the depth from the test material surface to the defect edge is 2 times the isosceles triangle.
We have obtained the knowledge that the length of the perpendicular line that divides into equal parts can be easily and extremely accurately determined.

本発明はかかる知見によつてなされたものであ
り、その要旨とする所は面状欠陥を間に置いて対
向させた2個の同一周波数用の斜角探触子試験片
の同一面に配置し、同時に送信パルスを送り、面
状欠陥の上端部あるいは下端部よりのエコーをそ
れぞれの探触子で受信させ、端部エコーの反射成
分と反対側の探触子による端部エコーの回折成分
との干渉波を用いて両探触子のビーム路程を同一
に調整し、このビーム路程の値と2個の探触子の
入射点間距離とから試験片表面より面状欠陥先端
部までの深さを高精度に測定することを特徴とし
た超音波探傷方法にある。
The present invention was made based on this knowledge, and its gist is that two bevel probe test pieces for the same frequency are placed on the same surface, facing each other with a planar defect in between. At the same time, a transmission pulse is sent, and the echo from the top or bottom of the planar defect is received by each probe, and the reflected component of the edge echo and the diffraction component of the edge echo by the opposite probe are detected. Adjust the beam path of both probes to be the same using the interference wave with This is an ultrasonic flaw detection method that is characterized by the ability to measure depth with high precision.

以下本発明の内容を図面を用いて詳述する。第
3図は欠陥端部よりのエコーの発生を模式的に示
したものであり、aは欠陥上端部、bは欠陥下端
部に対する場合である。斜角探触子1より超音波
パルス2を欠陥4の端部を狙つて入射させると欠
陥の両側に欠陥の先端を音源とした端部エコー3
を生じる。
The contents of the present invention will be explained in detail below using the drawings. FIG. 3 schematically shows the generation of echoes from the defect edge, where a is for the upper edge of the defect and b is for the lower edge of the defect. When the ultrasonic pulse 2 is aimed at the edge of the defect 4 from the angle probe 1, edge echoes 3 are generated on both sides of the defect with the tip of the defect as the sound source.
occurs.

第4図は本発明の場合の欠陥に対する斜角探触
子の配置と端部エコーの関係を説明するための図
である。同図では欠陥上端部の場合を示したが下
端の場合も同様である。欠陥4を間に置き試験片
の同一面に対向配置させた2個の探触子1,1′
より同時に超音波パルスを送信させる。このとき
一方の探触子1からの超音波は欠陥4の端部でエ
コーを発生するが、この端部エコーは四方に発射
されるので、一部は上記探触子1に「反射成分の
エコー3として戻り、他の一部はもう一つの探触
子1′に回折成分のエコー3′として入る。同様に
もう一方の探触子1′からの超音波のエコーも
3″および3のエコーとしてそれぞれの探触子
に入る。
FIG. 4 is a diagram for explaining the relationship between the arrangement of the bevel probe and the end echo with respect to the defect in the case of the present invention. Although the figure shows the case of the defective upper end, the same applies to the lower end. Two probes 1 and 1' placed opposite each other on the same surface of the test piece with a defect 4 between them.
Ultrasonic pulses are transmitted more simultaneously. At this time, the ultrasonic wave from one of the probes 1 generates an echo at the end of the defect 4, but since this end echo is emitted in all directions, a part of it is sent to the probe 1 as a "reflection component". The other part returns as echo 3, and the other part enters the other probe 1' as a diffracted component echo 3'.Similarly, the ultrasonic echo from the other probe 1' also returns as echo 3'' and 3'. It enters each probe as an echo.

ここにおいて双方の探触子が発生する超音波の
周波数は同一であるから、それぞれの探触子に入
る反射成分のエコー3,3″と回折成分のエコー
3,3′とそれぞれ干渉する。したがつて双方
の探触子のビーム路程が等しいとき干渉で強め波
高値が高くなる。これによりSN比が向上できる
ので、微弱なため従来は検出困難であつた端部エ
コーを確実に捕捉できる。
Here, since the frequencies of the ultrasonic waves generated by both probes are the same, the reflected component echoes 3, 3'' and the diffracted component echoes 3, 3' entering each probe interfere with each other. When the beam path lengths of both probes are equal, interference increases and the peak value increases.This improves the signal-to-noise ratio, making it possible to reliably capture edge echoes that are weak and difficult to detect in the past.

第5図は本発明による欠陥に対する斜角探触子
の配置と欠陥位置の求め方を説明する図で、aは
概略平面図、bは側面(断面)図である。先ず探
触子1により欠陥と直交する線上より探傷し、端
部エコーをブラウン管上に描かせる。ブラウン管
上で端部エコーの判定ができない場合には端部ピ
ークと思われるエコーを描かせる。次に探触子1
の中心線上で欠陥を間に置いて対向す位置に探触
子1′を置き、この場合のエコーもブラウン管上
に描かせる。この状態で探触子1′に前後に動か
し、両者の端部エコーがブラウン管時間軸上で同
じ位置に揃うように調整する。探触子1′の前後
送査のみではうまく両探触子よりのエコーを合わ
せることが出来ない場合は、更に探触子1も前後
に微調整して一致点を捜す。このような操作を行
うことにより片側からのみでは端部エコーが明瞭
でない場合でも反対側からの端部エコーが重複加
算される複合効果により端部エコーが明瞭にな
る。両探触子よりのエコーを時間軸上で一致させ
た場合、2個の探触子の入射点イ,ロと欠陥の先
端ハを結ぶ線は2つの角度が(90−θ)゜なる二
等辺三角形を形成する。ここにおいて2個の探触
子間の距離をy、片方の探触子から欠陥端部まで
のビーム路程をWとすれば、欠陥端部までの深さ
dは として求めることができる。また欠陥は2個の探
触子の前方y/2の位置に存在する。以上は上端を 狙つた場合であるが欠陥下端の場合でも全く同様
に求めることができることは言うまでもない。
FIG. 5 is a diagram illustrating the arrangement of an oblique probe for a defect and how to determine the defect position according to the present invention, in which a is a schematic plan view and b is a side (cross-sectional) view. First, a flaw is detected using the probe 1 from a line perpendicular to the defect, and an end echo is drawn on the cathode ray tube. If the end echo cannot be determined on the cathode ray tube, an echo that is thought to be the end peak is drawn. Next, probe 1
The probes 1' are placed at opposing positions on the center line with the defect in between, and the echoes in this case are also drawn on the cathode ray tube. In this state, the probe 1' is moved back and forth so that both end echoes are aligned at the same position on the cathode ray tube time axis. If it is not possible to match the echoes from both probes by simply sending the probe 1' back and forth, the probe 1 is also finely adjusted back and forth to search for a matching point. By performing such an operation, even if the end echo is not clear from only one side, the end echo becomes clear due to the combined effect of overlapping and adding the end echo from the opposite side. When the echoes from both probes are matched on the time axis, the line connecting the incident points A and B of the two probes and the tip C of the defect is a line whose angle is (90−θ)°. Form an equilateral triangle. Here, if the distance between the two probes is y, and the beam path from one probe to the defect edge is W, then the depth d to the defect edge is It can be found as Further, the defect exists at a position y/2 in front of the two probes. The above is for the case where the upper end is targeted, but it goes without saying that the determination can be made in exactly the same way for the defective lower end.

このように本発明方法を用いることによりブラ
ウン管上に現われるエコー群の中から端部エコー
を拡大して求めることができると共に、ブラウン
管時間軸上でそれぞれの端部エコーの立上りの位
置を合わせるという単純な操作によつて2個の探
触子と欠陥端部を結ぶ線分は正確に二等辺三角形
を形成し、欠陥の深さ位置は二等辺三角形を二等
分する垂線の長さとして正確にしかも簡単に求め
られる。
In this way, by using the method of the present invention, it is possible to magnify and find edge echoes from the group of echoes that appear on the cathode ray tube. Through this operation, the line segment connecting the two probes and the defect edge forms an isosceles triangle exactly, and the depth position of the defect is accurately determined as the length of the perpendicular line that bisects the isosceles triangle. And it's easy to find.

次に本発明による超音波探傷方法を具現化する
ための装置の一態様例を説明する。第6図は本発
明装置の一態様例を示す説明図である。同期部6
のタイミングコントロールによる送受信部5,
5′より同時に送信された超音波パルスは欠陥4
の端部で反射され、探触子1,1′で電気信号に
変換され、送受信部5,5′で増幅検波されて時
間軸部9,9′を経て2現象ブラウン管7に送ら
れる。第6図では片振れ波形で示し、探触子1側
の出力Aに対して探触子1′側の出力Bの波形は
逆転させて示した。探触子1,1′の位置を微調
整させ、端部エコー波形8″,8が時間軸上で
一致するまで微調整を続ける。この時のビーム路
程Wと2個の探触子1,1″の入射点間の距離y
を読み、(1)式を用いて欠陥端部までの深さdが測
定される。なお、本発明の装置において、同期部
6,送受信部5,5′,斜角探触子1,1′,時間
軸部9,9′は通常の超音波探傷器に使用される
一般的なものでよく、また2現象ブラウン管4と
しては横軸に目盛を入れビーム路程を読取れるよ
うにしたものが便利である。
Next, an embodiment of an apparatus for implementing the ultrasonic flaw detection method according to the present invention will be described. FIG. 6 is an explanatory diagram showing an example of one embodiment of the device of the present invention. Synchronization part 6
A transmitter/receiver unit 5 with timing control of
The ultrasonic pulses simultaneously transmitted from 5' are defect 4.
It is reflected at the end of the signal, converted into an electric signal by the probes 1, 1', amplified and detected by the transmitter/receiver sections 5, 5', and sent to the two-phenomenon cathode ray tube 7 via the time axis sections 9, 9'. In FIG. 6, a lateral waveform is shown, and the waveform of the output B on the probe 1' side is shown reversed with respect to the output A on the probe 1 side. Finely adjust the positions of the probes 1 and 1', and continue making fine adjustments until the end echo waveforms 8'' and 8 match on the time axis.At this time, the beam path length W and the two probes 1, Distance y between points of incidence of 1″
is read, and the depth d to the defect edge is measured using equation (1). In the device of the present invention, the synchronizing section 6, the transmitting/receiving sections 5, 5', the angle probes 1, 1', and the time axis sections 9, 9' are of the general type used in ordinary ultrasonic flaw detectors. It is convenient for the two-phenomenon cathode ray tube 4 to have a scale on the horizontal axis so that the beam path can be read.

次に本発明の効果を実施例を用いて更に具体的
に説明する。第7図はK開先溶接部の垂直な開先
面の近傍に表面に対してほゞ垂直な方向に発生し
た内部割れの表面から両端部までの深さを本発明
による方法と端部ピークエコー法により測定した
比較説明図である。探触子はいずれも周波数5M
Hz,屈折角45゜を用いた。なお、試験片は母材部
板厚38mmの鋼材(SM50B)であり、接触媒質は
グリセリン100%を用いた。第7図では実線は欠
陥部を切断して実測した値を、点線は本発明によ
る方法を用いた推定値を、一点鎖線は端部ピーク
エコー法による推定値を示す。端部ピークエコー
法によれば推定誤差は±5mmであつたのに対し、
本発明を用いることによつて推定誤差を±0.5mm
に向上させることができる。
Next, the effects of the present invention will be explained in more detail using Examples. Figure 7 shows the depth from the surface to both ends of an internal crack that occurred near the perpendicular groove surface of a K-groove weld in a direction substantially perpendicular to the surface using the method according to the present invention and the end peak. It is a comparative explanatory diagram measured by an echo method. All probes have a frequency of 5M
Hz and a refraction angle of 45° were used. The test piece was a steel material (SM50B) with a base material thickness of 38 mm, and 100% glycerin was used as the couplant. In FIG. 7, the solid line shows the value actually measured by cutting the defective part, the dotted line shows the estimated value using the method according to the present invention, and the dashed line shows the estimated value using the edge peak echo method. According to the edge peak echo method, the estimation error was ±5 mm, whereas
By using the present invention, the estimation error can be reduced to ±0.5mm.
can be improved.

このように超音波探傷において面状欠陥の位
置、寸法を推定する場合、本発明を適用すること
により推定精度を従来法に比べて著しく向上させ
ることができる。
In this way, when estimating the position and size of a planar defect in ultrasonic flaw detection, by applying the present invention, the estimation accuracy can be significantly improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は端部ピークエコー法を説明するための
図、第2図はデイフラクシヨンエコー法を説明す
るための図、第3図は端部エコーの発生を示す模
式図、第4図は本発明による欠陥に対する探触子
の配置と端部エコーの関係を説明するための図、
第5図は本発明による欠陥に対する探触子の配置
と欠陥位置の求め方を説明する図、第6図は本発
明装置の一態様例を示す説明図、第7図は本発明
による効果を従来法(端部ピークエコー法)と比
較して示した図表である。 1,1′:斜角探触子、2:送信パルス、3,
3′,3″,3:端部エコー、4:面状欠陥、
5,5′:送受信部、6:同期部、7:2現象ブ
ラウン管、8,8′,8″,8:端部エコー波
形、9,9′:時間軸部、W:ビーム路程、θ:
屈折角、y:2個の探触子の入射点間距離、d:
欠陥端部までの深さ。
Figure 1 is a diagram for explaining the edge peak echo method, Figure 2 is a diagram for explaining the diffraction echo method, Figure 3 is a schematic diagram showing the generation of edge echoes, and Figure 4 is a diagram for explaining the edge echo method. A diagram for explaining the relationship between the arrangement of the probe and the end echo for the defect according to the present invention,
FIG. 5 is a diagram illustrating the arrangement of a probe for a defect and how to determine the defect position according to the present invention, FIG. 6 is an explanatory diagram showing an example of an embodiment of the apparatus according to the present invention, and FIG. This is a chart showing a comparison with a conventional method (edge peak echo method). 1, 1': Angle probe, 2: Transmission pulse, 3,
3', 3'', 3: Edge echo, 4: Planar defect,
5, 5': Transmission/reception section, 6: Synchronization section, 7: 2 phenomenon cathode ray tube, 8, 8', 8'', 8: End echo waveform, 9, 9': Time axis section, W: Beam path, θ:
Refraction angle, y: Distance between the incident points of two probes, d:
Depth to defect edge.

Claims (1)

【特許請求の範囲】[Claims] 1 面状欠陥を間に置いて対向させた2個の同一
周波数用の斜角探触子を試験片の同一面に配置
し、同時に送信パルスを送り、面状欠陥の上端部
あるいは下端部よりのエコーをそれぞれの探触子
で受信させ、端部エコーの反射成分と反対側の探
触子による端部エコーの同折成分との干渉波を用
いて両探触子のビーム路程を同一に調整し、この
ビーム路程の値と2個の探触子の入射点間距離と
から試験片表面より面状欠陥先端部までの深さを
高精度に測定することを特徴とした超音波探傷方
法。
1. Place two bevel probes for the same frequency on the same surface of the test piece, facing each other with a planar defect in between, and send transmit pulses at the same time to probe from the top or bottom of the planar defect. The beam path of both probes is made the same by using the interference wave between the reflected component of the end echo and the same refraction component of the end echo from the opposite probe. This ultrasonic flaw detection method is characterized by adjusting the beam path value and measuring the depth from the surface of the specimen to the tip of the planar defect with high precision based on the value of the beam path and the distance between the incident points of the two probes. .
JP57014516A 1982-02-01 1982-02-01 Method and apparatus for ultrasonic flaw detection Granted JPS58131560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014516A JPS58131560A (en) 1982-02-01 1982-02-01 Method and apparatus for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014516A JPS58131560A (en) 1982-02-01 1982-02-01 Method and apparatus for ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPS58131560A JPS58131560A (en) 1983-08-05
JPH0244027B2 true JPH0244027B2 (en) 1990-10-02

Family

ID=11863247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014516A Granted JPS58131560A (en) 1982-02-01 1982-02-01 Method and apparatus for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS58131560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399956A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Decorative laminated sheet for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3588128T2 (en) * 1984-08-30 1997-04-30 Matsushita Electric Ind Co Ltd Ultrasonic transducers for medical diagnostics
JPS63169555A (en) * 1987-01-06 1988-07-13 Nippon Steel Corp Ultrasonic flaw detecting method for cast and forged body and thick wall steel with complicate internal defect
JP4538629B2 (en) * 2004-04-27 2010-09-08 国立大学法人東北大学 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack
JP4701396B2 (en) * 2006-02-01 2011-06-15 国立大学法人鳥取大学 Crack depth exploration method for concrete structure by ultrasonic method and crack depth exploration device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686351A (en) * 1979-12-14 1981-07-14 Toshiba Corp Ultrasonic flaw detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686351A (en) * 1979-12-14 1981-07-14 Toshiba Corp Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399956A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Decorative laminated sheet for vehicle

Also Published As

Publication number Publication date
JPS58131560A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
CN105699492B (en) A kind of ultrasonic imaging method for weld seam detection
JPH0352908B2 (en)
US4299128A (en) Ultrasonic satellite-pulse technique for characterizing defects of arbitrary shape
CN111174894B (en) Laser ultrasonic transverse wave sound velocity measurement method
EP0212899A2 (en) Ultrasonic testing of materials
CN103543208A (en) Method for reducing near surface blind region in TOFD (Time of Flight Diffraction) detection based on spectral analysis principle
JP2013234886A (en) Ultrasonic flaw detection method and device by tofd method
RU2433397C1 (en) Method for complete ultrasonic inspection of rail bases
JPH0244027B2 (en)
JP2011047763A (en) Ultrasonic diagnostic device
JPS6321135B2 (en)
JP5061891B2 (en) Crack depth measurement method
CN104807882B (en) The supersonic detection method and system of a kind of composite and metal heat pipe brazing quality
CN218567265U (en) Device for detecting transverse cracks of welding line
JPH0215023B2 (en)
JPH09145696A (en) Method and apparatus for measuring depth of flaw
JPH0412456Y2 (en)
JPH1151909A (en) Ultrasonic wave flaw detecting method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP2001153850A (en) Image display method and device for ultrasonic flaw detection
KR20210086323A (en) Device for inspecting defects using nondestructive method
JPS59109860A (en) Ultrasonic flaw detector
JPH08261992A (en) Ultrasonic flaw detector
KR20210072625A (en) Non-Destructive Testing Device
JPH0324623B2 (en)