JP2013234886A - Ultrasonic flaw detection method and device by tofd method - Google Patents

Ultrasonic flaw detection method and device by tofd method Download PDF

Info

Publication number
JP2013234886A
JP2013234886A JP2012106640A JP2012106640A JP2013234886A JP 2013234886 A JP2013234886 A JP 2013234886A JP 2012106640 A JP2012106640 A JP 2012106640A JP 2012106640 A JP2012106640 A JP 2012106640A JP 2013234886 A JP2013234886 A JP 2013234886A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
diffracted
wave
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012106640A
Other languages
Japanese (ja)
Other versions
JP5829175B2 (en
Inventor
Asami Sano
麻美 佐野
Hayato Naganuma
隼人 長沼
Takahiro Arakawa
敬弘 荒川
Saburo Shibata
三郎 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2012106640A priority Critical patent/JP5829175B2/en
Publication of JP2013234886A publication Critical patent/JP2013234886A/en
Application granted granted Critical
Publication of JP5829175B2 publication Critical patent/JP5829175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method and device by a TOFD method, capable of remarkably increasing an SN ratio of diffracted waves from foreign matter (for example cracks) by remarkably reducing noise generated inside a test body or on a surface layer thereof.SOLUTION: (1) By a sector scanning of a phased array probe 15b, the direction of an incident ultrasonic wave beam (incident wave S1) is changed, intersecting axes point depth D from the surface of a test body 3 at intersecting axes point X where central axes of ultrasonic wave beams of a transmission-side probe 12 and a reception-side probe 14 are intersected with each other is sequentially changed, and a plurality of diffracted waves S2 corresponding to a plurality of intersecting axes point depths D are received by the reception-side probe 14. (2) A combined waveform S3 of the diffracted waves S2 are created by overlapping a plurality of diffracted waves with one another.

Description

本発明は、TOFD法による超音波探傷方法と装置に関する。   The present invention relates to an ultrasonic flaw detection method and apparatus using the TOFD method.

試験体内部を超音波ビームにより検査する手段として、TOFD法による超音波探傷が従来から知られている(例えば、特許文献1、2)。   As a means for inspecting the inside of a test body with an ultrasonic beam, ultrasonic flaw detection by the TOFD method has been conventionally known (for example, Patent Documents 1 and 2).

特開2004−117137号公報JP 2004-117137 A 特開2011−149888号公報JP 2011-149888 A

図1は、TOFD法による超音波探傷の模式図である。
TOFD法は、2つの斜角探触子1、2を一定間隔で対向して配置して超音波ビームを送受信する。試験体3の内部にき裂4がない場合には、表面を伝搬するラテラル波Aと裏面で反射する底面エコーCのみが得られる。一方、き裂4が存在すると、き裂端部5での回折波Bが受信される。この回折波Bの伝搬時間より幾何学的にき裂端部5の深さを求めることができる。
FIG. 1 is a schematic diagram of ultrasonic flaw detection by the TOFD method.
In the TOFD method, two oblique angle probes 1 and 2 are arranged facing each other at regular intervals to transmit and receive an ultrasonic beam. When there is no crack 4 inside the test body 3, only the lateral wave A propagating on the surface and the bottom echo C reflected on the back surface are obtained. On the other hand, when the crack 4 exists, the diffracted wave B at the crack end 5 is received. From the propagation time of the diffracted wave B, the depth of the crack end 5 can be obtained geometrically.

しかし、き裂端部5が表層部近傍にある場合には、ラテラル波Aとき裂端部5の回折波Bが互いに干渉し、き裂端部5を明確に識別することが困難であった。
以下、この問題点を説明する。
However, when the crack end 5 is in the vicinity of the surface layer portion, the lateral wave A and the diffracted wave B of the crack end 5 interfere with each other, and it is difficult to clearly identify the crack end 5. .
Hereinafter, this problem will be described.

図2は、従来のTOFD法による超音波探傷の具体例を示す図である。この図において、鋼材用の公称屈折角45度の縦波用のくさび状部材6(以下、くさび)の上にフェーズドアレイ探触子7を搭載して、2つのくさび6を対向して配置している。フェーズドアレイ探触子7を搭載したのは、セクタスキャンにより任意に超音波ビームの屈折角を変化させるためである。フェーズドアレイ探触子7の各素子の中心位置は、試験体3に接触するくさび表面から高さ20.8mm、2つのくさび6の中心位置から11.2mmのくさび6の斜面上に配置された例を示している。
この例において、試験体3の表面直下1mm及び2mmの位置に交軸点8を結ぶ2つの探傷例について考える。この時の縦波屈折角は幾何学的に54度と62度となる。この時の探傷波形には、表面を伝搬するラテラル波Aと、き裂からの回折波Bが得られる。
FIG. 2 is a diagram showing a specific example of ultrasonic flaw detection by a conventional TOFD method. In this figure, a phased array probe 7 is mounted on a longitudinal wave wedge member 6 (hereinafter referred to as a wedge) for a steel material having a nominal refraction angle of 45 degrees, and the two wedges 6 are arranged to face each other. ing. The reason why the phased array probe 7 is mounted is to arbitrarily change the refraction angle of the ultrasonic beam by sector scanning. The center position of each element of the phased array probe 7 is arranged on the slope of the wedge 6 having a height of 20.8 mm from the wedge surface contacting the specimen 3 and 11.2 mm from the center position of the two wedges 6. An example is shown.
In this example, two flaw detection examples in which the intersection point 8 is connected to positions 1 mm and 2 mm immediately below the surface of the test body 3 will be considered. The longitudinal wave refraction angle at this time is geometrically 54 degrees and 62 degrees. In the flaw detection waveform at this time, a lateral wave A propagating on the surface and a diffracted wave B from the crack are obtained.

図3は、交軸点深さが1mmの場合、図4は交軸点深さが2mmの場合の波形を示す模式図である。これらの図において、(A)は、ラテラル波と回折波を示し、(B)は合成波を示している。
図3、図4の(A)に示すように、表面を伝搬するラテラル波(点線)と交軸点にあるき裂先端の回折波(実線)は、それぞれ10MHzで波数2波の波形である。しかし、従来のTOFD法で得られる探傷波形は、図3、図4の(B)に示すように、これらの2つの波形を合成した単一の波形となる。
FIG. 3 is a schematic diagram showing a waveform when the intersection point depth is 1 mm, and FIG. 4 is a waveform diagram when the intersection point depth is 2 mm. In these drawings, (A) shows a lateral wave and a diffracted wave, and (B) shows a synthesized wave.
As shown in FIG. 3 and FIG. 4A, the lateral wave propagating on the surface (dotted line) and the diffracted wave at the crack tip at the intersection (solid line) each have a waveform of 2 waves at 10 MHz. However, the flaw detection waveform obtained by the conventional TOFD method is a single waveform obtained by synthesizing these two waveforms, as shown in FIGS.

上述したように、交軸点深さが1mmの場合も2mmの場合もラテラル波と回折波の分離は非常に困難であり、き裂の深さ情報を得ることが困難であった。   As described above, it is very difficult to separate the lateral wave and the diffracted wave when the intersecting point depth is 1 mm or 2 mm, and it is difficult to obtain crack depth information.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、試験体内部又はその表層で発生するノイズを大幅に低減し、異物(例えばき裂)からの回折波のSN比を大幅に増大することができるTOFD法による超音波探傷方法と装置を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to reduce the noise generated in the test specimen or in its surface layer, and to significantly increase the SN ratio of the diffracted wave from a foreign substance (for example, a crack). It is to provide a flaw detection method and apparatus.

本発明によれば、送信探触子と受信探触子の間隔を一定に保持した状態で、送信探触子により試験体内部に超音波ビームを入射させ、受信探触子により前記超音波ビームの回折波を受信するTOFD法による超音波探傷方法であって、
前記送信探触子と受信探触子は、くさびと、その上に搭載されたフェーズドアレイ探触子とからなり、
フェーズドアレイ探触子のセクタスキャンにより、入射する超音波ビームの方向を変化させて、送信探触子と受信探触子の超音波ビームの中心軸が交差する交軸点の試験体表面からの交軸点深さを順次変化させ、かつ前記受信探触子により複数の交軸点深さに対応する複数の回折波を受信し、
前記複数の回折波を重ね合わせて回折波の合成波形を作成する、ことを特徴とするTOFD法による超音波探傷方法が提供される。
According to the present invention, in a state where the distance between the transmission probe and the reception probe is kept constant, an ultrasonic beam is incident on the inside of the test body by the transmission probe, and the ultrasonic beam is input by the reception probe. An ultrasonic flaw detection method using a TOFD method for receiving a diffracted wave of
The transmission probe and the reception probe consist of a wedge and a phased array probe mounted thereon,
The direction of the incident ultrasonic beam is changed by the sector scan of the phased array probe, and the cross-axis point where the central axis of the ultrasonic beam of the transmitting probe and the receiving probe intersects from the specimen surface A plurality of diffracted waves corresponding to a plurality of cross-axis point depths are received by the reception probe by sequentially changing the cross-axis point depths,
There is provided an ultrasonic flaw detection method using a TOFD method, wherein a composite waveform of diffracted waves is created by superimposing the plurality of diffracted waves.

また、本発明によれば、送信探触子と受信探触子の間隔を一定に保持した状態で、送信探触子により試験体内部に超音波ビームを入射させ、受信探触子により前記超音波ビームの回折波を受信するTOFD法による超音波探傷装置であって、
前記送信探触子と受信探触子は、くさびと、その上に搭載されたフェーズドアレイ探触子とからなり、
さらに前記送信探触子と受信探触子を制御する制御装置を備え、該制御装置により、
フェーズドアレイ探触子のセクタスキャンにより、入射する超音波ビームの方向を変化させて、送信探触子と受信探触子の超音波ビームの中心軸が交差する交軸点の試験体表面からの交軸点深さを順次変化させ、かつ前記受信探触子により複数の交軸点深さに対応する複数の回折波を受信し、
前記複数の回折波を重ね合わせて回折波の合成波形を作成する、ことを特徴とするTOFD法による超音波探傷装置が提供される。
In addition, according to the present invention, in a state where the distance between the transmission probe and the reception probe is kept constant, an ultrasonic beam is incident on the inside of the test body by the transmission probe, and the ultrasonic probe is input by the reception probe. An ultrasonic flaw detector using a TOFD method for receiving a diffracted wave of a sound beam,
The transmission probe and the reception probe consist of a wedge and a phased array probe mounted thereon,
Furthermore, a control device for controlling the transmission probe and the reception probe is provided.
The direction of the incident ultrasonic beam is changed by the sector scan of the phased array probe, and the cross-axis point where the central axis of the ultrasonic beam of the transmitting probe and the receiving probe intersects from the specimen surface A plurality of diffracted waves corresponding to a plurality of cross-axis point depths are received by the reception probe by sequentially changing the cross-axis point depths,
There is provided an ultrasonic flaw detector using a TOFD method, wherein a composite waveform of diffracted waves is created by superimposing the plurality of diffracted waves.

上記本発明の方法と装置によれば、(1)フェーズドアレイ探触子のセクタスキャンにより、入射する超音波ビームの方向を変化させて、送信探触子と受信探触子の超音波ビームの中心軸が交差する交軸点の試験体表面からの交軸点深さを順次変化させ、かつ前記受信探触子により複数の交軸点深さに対応する複数の回折波を受信し、(2)複数の回折波を重ね合わせて回折波の合成波形を作成するので、試験体内部又はその表層で発生する位相が変化するノイズを大幅に低減し、試験体内部に存在する異物(例えばき裂)からの回折波のSN比を大幅に増大することができる。
According to the method and apparatus of the present invention, (1) the direction of the incident ultrasonic beam is changed by sector scanning of the phased array probe, and the ultrasonic beams of the transmission probe and the reception probe are changed. The crossing point depth from the specimen surface of the crossing point where the central axis intersects is sequentially changed, and a plurality of diffracted waves corresponding to a plurality of crossing point depths are received by the receiving probe. 2) Since a composite waveform of diffracted waves is created by superimposing a plurality of diffracted waves, the noise that changes in the phase generated in the test specimen or in the surface layer thereof is greatly reduced, and foreign substances (for example, cracks) existing in the test specimen are reduced. The SN ratio of the diffracted wave from the (crack) can be greatly increased.

TOFD法による超音波探傷の模式図である。It is a schematic diagram of the ultrasonic flaw detection by TOFD method. 従来のTOFD法による超音波探傷の具体例を示す図である。It is a figure which shows the specific example of the ultrasonic flaw detection by the conventional TOFD method. 交軸点深さが1mmの場合の波形を示す模式図である。It is a schematic diagram which shows a waveform in case an intersection point depth is 1 mm. 交軸点深さが2mmの場合の波形を示す模式図である。It is a schematic diagram which shows a waveform in case an intersection point depth is 2 mm. 本発明による超音波探傷装置の全体構成図である。1 is an overall configuration diagram of an ultrasonic flaw detector according to the present invention. 本発明による超音波探傷方法の全体フロー図である。1 is an overall flowchart of an ultrasonic flaw detection method according to the present invention. 交軸点深さが4mmの場合の超音波ビームの伝搬経路を示す図である。It is a figure which shows the propagation path of an ultrasonic beam in case an intersection point depth is 4 mm. 交軸点深さが6mmの場合の超音波ビームの伝搬経路を示す図である。It is a figure which shows the propagation path of an ultrasonic beam in case an intersection point depth is 6 mm. 交軸点深さを変化させた20の回折波の合成波形を示す図である。It is a figure which shows the synthetic | combination waveform of 20 diffracted waves which changed the intersection point depth. 交軸点深さDが2mmの場合の、設定した各交軸点深さにおけるTOFD探傷で得られた探傷波形と、これらの各探傷波形を合成して求めた合成波形を示す図である。It is a figure which shows the synthetic | combination waveform calculated | required by synthesize | combining each flaw detection waveform and the flaw detection waveform obtained by the TOFD flaw detection in each crossing axis depth which was set when the intersection point depth D is 2 mm. 交軸点深さが1.0、1.5、2.0mmの場合の合成波形の合成Bスコープ(左図)と合成Aスコープ(右図)を示す図である。It is a figure which shows the synthetic | combination B scope (left figure) and synthetic | combination A scope (right figure) of a synthetic | combination waveform in case an intersection point depth is 1.0, 1.5, and 2.0 mm. 合成波形からノッチ先端での回折波を抽出し、伝搬時間より幾何学的に深さを求めた図である。It is the figure which extracted the diffraction wave in the notch tip from a synthetic waveform, and calculated | required the depth geometrically from propagation time. 従来のTOFD法を試験体内部に適用した模式図である。It is the schematic diagram which applied the conventional TOFD method inside the test body. 本発明を試験体内部に適用した模式図である。It is the schematic diagram which applied this invention inside the test body.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図5は、本発明による超音波探傷装置の全体構成図である。
本発明の超音波探傷装置10は、送信探触子12と受信探触子14の間隔を一定に保持した状態で、送信探触子12により試験体3の内部に超音波ビーム(入射波S1)を入射させ、受信探触子14により超音波ビームの回折波S2を受信するTOFD法による超音波探傷装置である。
FIG. 5 is an overall configuration diagram of an ultrasonic flaw detector according to the present invention.
The ultrasonic flaw detector 10 of the present invention is configured so that an ultrasonic beam (incident wave S1) is placed inside the test body 3 by the transmission probe 12 in a state where the distance between the transmission probe 12 and the reception probe 14 is kept constant. ) And an ultrasonic flaw detector by the TOFD method that receives the diffracted wave S2 of the ultrasonic beam by the receiving probe 14.

この図において、本発明の超音波探傷装置10は、送信探触子12、受信探触子14、制御装置16、表示装置18、及び画像処理装置20を備える。   In this figure, an ultrasonic flaw detector 10 of the present invention includes a transmission probe 12, a reception probe 14, a control device 16, a display device 18, and an image processing device 20.

送信探触子12と受信探触子14は、縦波用くさび状部材15a(以下、縦波用くさび)と、その上に搭載されたフェーズドアレイ探触子15bとからなり、フェーズドアレイ探触子15bのセクタスキャンにより、超音波ビームが集束する集束探傷ができるようになっている。   The transmission probe 12 and the reception probe 14 are composed of a longitudinal wave wedge member 15a (hereinafter referred to as longitudinal wave wedge) and a phased array probe 15b mounted thereon. By the sector scan of the child 15b, focused flaw detection for focusing the ultrasonic beam can be performed.

制御装置16は、送信探触子12と受信探触子14を制御し、フェーズドアレイ探触子15bのセクタスキャンにより、送信探触子12から入射した超音波ビーム(入射波S1)を試験体3の内部の交軸点Xに集束させ、かつ交軸点Xの試験体3の表面からの交軸点深さDを順次変化させる。
さらに、制御装置16は、受信探触子14により交軸点深さDに対応する複数の回折波S2を受信し、複数の回折波S2を重ね合わせて回折波S2の合成波形S3を作成する。
The control device 16 controls the transmission probe 12 and the reception probe 14, and the ultrasonic beam (incident wave S1) incident from the transmission probe 12 is detected by the sector scan of the phased array probe 15b. 3, and the intersection point depth D of the intersection point X from the surface of the test body 3 is sequentially changed.
Further, the control device 16 receives a plurality of diffracted waves S2 corresponding to the intersection point depth D by the reception probe 14, and creates a composite waveform S3 of the diffracted waves S2 by superimposing the plurality of diffracted waves S2. .

表示装置18は、ディスプレイ装置であり、回折波S2の合成波形S3を表示する。
画像処理装置20は、合成波形S3から異物(例えばき裂)の回折波S4を抽出し、伝搬時間より幾何学的に異物の深さを求めるようになっている。
The display device 18 is a display device and displays a combined waveform S3 of the diffracted wave S2.
The image processing apparatus 20 extracts a diffracted wave S4 of a foreign substance (for example, a crack) from the combined waveform S3 and geometrically determines the depth of the foreign substance from the propagation time.

図6は、本発明による超音波探傷方法の全体フロー図である。
本発明の超音波探傷方法は、送信探触子12と受信探触子14の間隔を一定に保持した状態で、送信探触子12により試験体3の内部に超音波ビーム(入射波S1)を入射させ、受信探触子14により超音波ビームの回折波S2を受信するTOFD法による超音波探傷方法である。
FIG. 6 is an overall flowchart of the ultrasonic flaw detection method according to the present invention.
In the ultrasonic flaw detection method of the present invention, an ultrasonic beam (incident wave S1) is applied to the inside of the test body 3 by the transmission probe 12 while the distance between the transmission probe 12 and the reception probe 14 is kept constant. The ultrasonic flaw detection method according to the TOFD method in which the diffraction probe S2 is received by the reception probe 14 and the diffraction wave S2 of the ultrasonic beam is received.

図6において、本発明の超音波探傷方法は、ST1〜ST6の各ステップからなる。   In FIG. 6, the ultrasonic flaw detection method of the present invention includes steps ST1 to ST6.

ST1では、フェーズドアレイ探触子15bのセクタスキャンと交軸点Xの変化により、送信探触子12から入射した超音波ビーム(入射波S1)を試験体3の内部の交軸点Xに集束させ、かつ交軸点Xの試験体3の表面からの交軸点深さDを変化させる。
言い換えれば、同じ屈折角同士の超音波ビームの送受信において、屈折角を変化させて、交軸点深さDを順次変化させる。
In ST1, the ultrasonic beam (incident wave S1) incident from the transmission probe 12 is focused on the intersection point X inside the test body 3 by the sector scan of the phased array probe 15b and the change of the intersection point X. And the intersection point depth D of the intersection point X from the surface of the test body 3 is changed.
In other words, in transmission / reception of ultrasonic beams having the same refraction angle, the refraction angle is changed, and the intersection point depth D is sequentially changed.

交軸点深さDの変化は、所望の計測範囲において、0.1mm以上、1.0mm以内のピッチで実施することが好ましい。また、交軸点深さDの数は、5以上、100以下が好ましく、20以上、50以下がさらに好ましい。交軸点深さDが100を超えると、検査時間が長時間となる。
なお、後述する実施例では、約0.25mmピッチで交軸点深さDを41通り実施している。
The change in the intersection point depth D is preferably performed at a pitch of 0.1 mm or more and 1.0 mm or less in a desired measurement range. Moreover, the number of the intersection point depths D is preferably 5 or more and 100 or less, and more preferably 20 or more and 50 or less. If the intersection point depth D exceeds 100, the inspection time becomes long.
In the examples described later, 41 different intersection depths D are implemented at a pitch of about 0.25 mm.

ST2では、受信探触子14により交軸点深さDに対応する回折波S2を受信する。
ST1、ST2は、交軸点深さDを順次変化させて繰り返し実施し、複数の交軸点深さDに対応する複数の回折波S2を受信する。
In ST2, the reception probe 14 receives the diffracted wave S2 corresponding to the intersection point depth D.
ST1 and ST2 are repeatedly performed by sequentially changing the intersection point depth D, and a plurality of diffracted waves S2 corresponding to the plurality of intersection point depths D are received.

ST3では、制御装置16により、複数の回折波S2を重ね合わせて回折波S2の合成波形S3を作成する。
ST4では、表示装置18により、複数の回折波S2とその合成波形S3を表示する。
ST5では、画像処理装置20により、合成波形S3から異物の回折波S4を抽出する。
ST6では、画像処理装置20により、回折波S4の伝搬時間から幾何学的に異物の深さを求める。
In ST3, the control device 16 superimposes a plurality of diffracted waves S2 to create a combined waveform S3 of the diffracted waves S2.
In ST4, the display device 18 displays a plurality of diffracted waves S2 and their combined waveform S3.
In ST5, the image processing apparatus 20 extracts the diffracted wave S4 of the foreign matter from the combined waveform S3.
In ST6, the depth of the foreign matter is obtained geometrically from the propagation time of the diffracted wave S4 by the image processing device 20.

以下、本発明の原理を具体的に説明する。
図7は、交軸点深さが4mmの場合の超音波ビームの伝搬経路を示す図である。
この図において、深さ2mmに異物(例えばき裂)が存在するものとする。
送信側の圧電素子の中心位置をO点とすると、O点から送信された超音波ビームの中心軸は、aを通り、深さ4mmの交軸点b点に向かう。ここで、a点において、屈折のスネルの法則が成立した条件で超音波ビームの進路が定まる。すなわち、次式(1)が成立している。
sin(θ)/sin(θ)=v/v・・・(1)
ここで、θ:くさびにおける入射角、θ:試験体における屈折角、v:くさびの音速、v:試験体中の音速である。
Hereinafter, the principle of the present invention will be described in detail.
FIG. 7 is a diagram showing a propagation path of an ultrasonic beam when the intersection point depth is 4 mm.
In this figure, it is assumed that a foreign substance (for example, a crack) exists at a depth of 2 mm.
Assuming that the center position of the transmitting side piezoelectric element is the point O, the central axis of the ultrasonic beam transmitted from the point O passes through a and goes to the point of intersection b having a depth of 4 mm. Here, at the point a, the path of the ultrasonic beam is determined under the condition that Snell's law of refraction holds. That is, the following expression (1) is established.
sin (θ i ) / sin (θ r ) = v W / v T (1)
Here, θ i is the incident angle at the wedge, θ r is the refraction angle at the specimen, v W is the speed of sound of the wedge, and v T is the speed of sound in the specimen.

一方、a点においてラテラル波が生じ、試験体表面を伝搬した超音波ビームはa′点の超音波ビームの中心軸位置を通って受信探触子に受信される。しかし、試験体表面で屈折した波は、b点に向かうが、b点に音源位置(例えば異物)が存在しないので回折波は生じないで、エコー(回折波)が受信されることはない。
上記は、超音波ビームの中心軸で検討した結果であり、ラテラル波の伝搬時間は最大エコー高さの得られる超音波ビームの中心軸の経路になる。一方、超音波ビームは、最も音圧の高い中心軸を中心にして、広がりを持って伝搬する。この超音波ビームの広がりを考慮して、深さ2mmに存在する音源からの回折波の経路を検討する。すなわち、スネルの法則の成立するcを通る伝搬経路となり、O−c−d−c′−O′の伝搬経路となる。
On the other hand, a lateral wave is generated at the point a, and the ultrasonic beam propagating on the surface of the specimen is received by the receiving probe through the position of the central axis of the ultrasonic beam at the point a ′. However, the wave refracted on the surface of the specimen is directed to the point b, but since no sound source position (for example, a foreign object) exists at the point b, no diffracted wave is generated and no echo (diffracted wave) is received.
The above is the result of the study on the central axis of the ultrasonic beam, and the propagation time of the lateral wave is the path of the central axis of the ultrasonic beam where the maximum echo height can be obtained. On the other hand, the ultrasonic beam propagates with a spread around the central axis having the highest sound pressure. Considering the spread of this ultrasonic beam, the path of the diffracted wave from the sound source existing at a depth of 2 mm is examined. That is, it becomes a propagation path through c where Snell's law is established, and becomes a propagation path of Oc-d-c'-O '.

図8は、交軸点深さが6mmの場合の超音波ビームの伝搬経路を示す図である。
この図においても、深さ2mmに異物(例えばき裂)が存在ものとする。
図8に示すように、ラテラル波が伝搬するa−a′間の距離は長くなり、ラテラル波の伝搬時間が大きくなるのに対し、同じ深さのき裂の音源位置での回折波の伝搬時間は同じであることがわかる。
すなわち、交軸点を深さ方向に変化させた探傷を行うことで、ラテラル波の伝搬時間が変化し、一方、き裂からの回折波の伝搬時間が変化しない探傷波形(回折波S2)を多数得ることができる。得られた探傷波形(回折波S2)を重ね合わせると、伝搬時間が変化するラテラル波は互いに弱め合い、伝搬時間の変わらないき裂からの回折波S4は強め合う結果となり、SN比を著しく改善した探傷波形が得られる。従って、表面近傍のき裂であっても深さの情報を正確に得ることが可能になる。
FIG. 8 is a diagram illustrating a propagation path of an ultrasonic beam when the intersection point depth is 6 mm.
Also in this figure, it is assumed that a foreign substance (for example, a crack) exists at a depth of 2 mm.
As shown in FIG. 8, the distance between a and a ′ where the lateral wave propagates becomes longer and the propagation time of the lateral wave becomes longer, whereas the propagation of the diffracted wave at the sound source position of the crack of the same depth. You can see that the time is the same.
That is, by performing flaw detection with the crossing point changed in the depth direction, the propagation time of the lateral wave changes, while the flaw detection waveform (diffracted wave S2) in which the propagation time of the diffracted wave from the crack does not change. You can get many. When the obtained flaw detection waveforms (diffracted waves S2) are superimposed, lateral waves whose propagation times change are weakened each other, and diffracted waves S4 from cracks whose propagation times do not change are strengthened, and the SN ratio is remarkably improved. The flaw detection waveform is obtained. Therefore, it is possible to accurately obtain depth information even for a crack near the surface.

図9は、交軸点深さを変化させた20の回折波の合成波形を示す図である。
この図は、図5の装置において、交軸点深さを0.5mmから10mmまで0.5mm間隔で変化させた20の回折波を全て足し合わせた合成波形である。それぞれの交軸点深さにおいて得られるラテラル波とき裂の回折波の波形は図4と同等であると仮定している。
図9から明確にラテラル波とき裂の回折波を識別でき、図4と比較して著しくSN比が改善していることがわかる。
FIG. 9 is a diagram showing a combined waveform of 20 diffracted waves with varying intersection point depths.
This figure is a composite waveform obtained by adding up all 20 diffracted waves in which the intersection point depth is changed from 0.5 mm to 10 mm at intervals of 0.5 mm in the apparatus of FIG. It is assumed that the waveform of the lateral wave and the crack diffracted wave obtained at each intersection point depth is equivalent to that in FIG.
From FIG. 9, it is clear that the lateral wave and the diffracted wave of the crack can be identified, and the SN ratio is remarkably improved as compared with FIG.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

上述した図5は、確認試験に用いた送信探触子12と受信探触子14の構成図である。
送信探触子12と受信探触子14の縦波用くさび15aは、2つの屈折角45度縦波用くさびを対称形に合わせた形状を持ち、対象となる対称軸には超音波ビームの透過を妨げるための音響分割面13を設けている。また、O点及びO′点を中心としてフェーズドアレイ探触子15bを搭載するための傾斜部を設けている。
FIG. 5 described above is a configuration diagram of the transmission probe 12 and the reception probe 14 used in the confirmation test.
The longitudinal wave wedge 15a of the transmission probe 12 and the reception probe 14 has a shape in which two wedges for longitudinal waves of 45 degrees in refraction angle are matched to a symmetrical shape, and an ultrasonic beam is placed on the target symmetry axis. An acoustic dividing surface 13 for preventing transmission is provided. Further, an inclined portion for mounting the phased array probe 15b is provided around the point O and the point O '.

縦波用くさび15aに10MHzで32チャンネルのフェーズドアレイ探触子15b(素子間隔0.6mm)を搭載した。フェーズドアレイ探触子15bを用いるのは、ビームをセクタスキャンさせ、任意の深さDに交軸点Xを設けるためである。   The longitudinal wave wedge 15a was equipped with a phased array probe 15b (element spacing 0.6 mm) of 32 channels at 10 MHz. The reason why the phased array probe 15b is used is that the beam is sector-scanned and the intersection point X is provided at an arbitrary depth D.

縦波用くさび15aの対称軸で、試験体3の表面直下の深さ0.1mmから深さ10mmの間を40等分し、41個の交軸点を設けて、連続して41回のTOFD探傷を行った。
なおこの確認試験では、それぞれの交軸点Xにおいて超音波ビーム(入射波S1と回折波S2)が集束する集束探傷を用いた。
The axis of symmetry of the longitudinal wave wedge 15a is divided into 40 equal parts between a depth of 0.1 mm and a depth of 10 mm immediately below the surface of the test body 3, and 41 intersecting axes are provided. TOFD flaw detection was performed.
In this confirmation test, focused flaw detection in which the ultrasonic beam (incident wave S1 and diffracted wave S2) is focused at each intersection X is used.

試験体3として平板に深さ0.4、0.5、0.75、1.0、1.5及び2mmの放電加工ノッチを加工し、ノッチ下端での回折波を評価する試験を行った。超音波探傷は、それぞれのノッチに対してノッチの長手方向に直交する方向に探触子12,14を走査させ、回折波S2の波形を採取した。すなわち、交軸点Xの異なる41回の探傷画像を各ノッチに対して求めた。これらの画像を重ね合わせることで、本発明の効果の確認と、き裂の下端位置の測定精度(すなわちき裂の深さ測定精度)の検証を行った。なお、ノッチの長手に直交する方向に走査したのは、き裂が探触子12,14の中央位置にあるときに回折波のビーム路程が最も短くなる幾何条件を用いて深さを測定するためである。   As test body 3, electric discharge machining notches having a depth of 0.4, 0.5, 0.75, 1.0, 1.5, and 2 mm were processed on a flat plate, and a test for evaluating a diffracted wave at the lower end of the notch was performed. . In the ultrasonic flaw detection, the probes 12 and 14 were scanned in the direction orthogonal to the longitudinal direction of the notches with respect to the respective notches, and the waveform of the diffracted wave S2 was collected. That is, 41 flaw detection images having different intersection points X were obtained for each notch. By superimposing these images, the effect of the present invention was confirmed, and the measurement accuracy of the lower end position of the crack (that is, the crack depth measurement accuracy) was verified. Scanning in the direction perpendicular to the length of the notch is to measure the depth by using a geometric condition in which the beam path of the diffracted wave is shortest when the crack is at the center position of the probes 12 and 14. Because.

(試験結果)
図10は、交軸点深さDが2mmの場合の、設定した各交軸点深さにおけるTOFD探傷で得られた探傷波形と、これらの各探傷波形を合成して求めた合成波形を示す図である。
この図では、代表的な交軸点深さ(0.1mm、0.6mm、1.1mm、1.6mm、2.1mm、2.6mm及び3.1mm)におけるそれぞれの探傷画像を、41の探傷画像を合成した本発明による探傷画像と比較している。どの交軸点深さの探傷画像からも明確にノッチ先端での回折波の特定が困難であり、き裂深さの測定は困難である。一方、右下の本発明による探傷画像には明確にき裂先端の回折波の像が明確に表れており、き裂深さの測定が可能であるのがわかる。
(Test results)
FIG. 10 shows a flaw detection waveform obtained by TOFD flaw detection at each set cross axis depth when the cross axis depth D is 2 mm, and a composite waveform obtained by combining these flaw detection waveforms. FIG.
In this figure, each flaw detection image at a representative intersection point depth (0.1 mm, 0.6 mm, 1.1 mm, 1.6 mm, 2.1 mm, 2.6 mm and 3.1 mm) is represented by 41 This is compared with the flaw detection image according to the present invention in which the flaw detection image is synthesized. It is difficult to clearly identify the diffracted wave at the tip of the notch from the flaw detection images at any intersection depth, and it is difficult to measure the crack depth. On the other hand, the diffracted wave image of the crack tip clearly appears in the flaw detection image according to the present invention at the lower right, and it can be seen that the crack depth can be measured.

図11は、ノッチ深さが1.0、1.5、2.0mmの場合の合成波形の合成Bスコープ(左図)と合成Aスコープ(右図)を示す図である。
この図から、ラテラル波と回折波を明確に分離できることがわかる。
FIG. 11 is a diagram showing a composite B scope (left diagram) and a composite A scope (right diagram) of the composite waveform when the notch depth is 1.0, 1.5, and 2.0 mm.
From this figure, it can be seen that the lateral wave and the diffracted wave can be clearly separated.

図12は、得られた合成波形からノッチ先端での回折波を抽出し、伝搬時間より幾何学的に深さを求めた図である。この図において、横軸はノッチ深さ、縦軸は伝搬時間差である。
この図から、測定値は、幾何学的に求めた計算結果とよく一致しており、本発明による合成波形によってノッチ先端の回折波を正確に捉えていることがわかる。
FIG. 12 is a diagram in which a diffracted wave at the tip of the notch is extracted from the resultant combined waveform, and the depth is obtained geometrically from the propagation time. In this figure, the horizontal axis represents the notch depth and the vertical axis represents the propagation time difference.
From this figure, it can be seen that the measured value is in good agreement with the calculation result obtained geometrically, and the diffracted wave at the tip of the notch is accurately captured by the composite waveform according to the present invention.

上述した実施例1では、ノッチの下端位置を測定しているが、測定したエコーはノッチ下端の回折波を測定していることは明確であり、埋没したき裂の上端及び下端測定にも有効であることは明らかである。また、表層部のき裂に対して適用したが、本発明は表層部のき裂のみならず、内部のき裂に対しても有効である。   In Example 1 described above, the lower end position of the notch is measured, but it is clear that the measured echo measures the diffracted wave at the lower end of the notch, and is also effective for measuring the upper and lower ends of the buried crack. Obviously. Although applied to a crack in the surface layer portion, the present invention is effective not only for a crack in the surface layer portion but also for an internal crack.

図13は、従来のTOFD法を試験体内部に適用した模式図であり、図14は本発明を試験体内部に適用した模式図である。この図において●は音場強度が50%、△は25%の位置、破線は開先形状を示している。
図13は従来のTOFD法による音場の例を示している。この音場から離れた範囲のき裂の検出は、超音波ビームの中心軸から離れることで検出は困難になる。
一方、図14は本発明による例を示している。本発明では、交軸点深さを順次変化させるため、フェーズドアレイ探傷で屈折角を変えた複数の交軸点での探傷を行うことができる。これにより探傷可能な領域が増大するとともに、得られた画像を足し合わせて本発明の画像(回折波の合成波形)を求めることで、同じビーム路程で得られるき裂の回折波は強調され、一方、ランダムに発生するノイズは足し合わせることで小さくなり、結果としてSN比を著しく増大させることが可能である。
FIG. 13 is a schematic diagram in which the conventional TOFD method is applied to the inside of the test specimen, and FIG. 14 is a schematic diagram in which the present invention is applied to the inside of the test specimen. In this figure, ● indicates a position where the sound field intensity is 50%, Δ indicates a position where it is 25%, and a broken line indicates a groove shape.
FIG. 13 shows an example of a sound field by the conventional TOFD method. Detection of a crack in a range away from this sound field becomes difficult to detect by moving away from the central axis of the ultrasonic beam.
On the other hand, FIG. 14 shows an example according to the present invention. In the present invention, since the intersection point depth is sequentially changed, flaw detection can be performed at a plurality of intersection points whose refraction angles are changed by phased array flaw detection. As a result, the flaw detection area increases, and by adding the obtained images to obtain the image of the present invention (the combined waveform of the diffracted waves), the diffracted wave of the crack obtained in the same beam path is emphasized, On the other hand, randomly generated noise is reduced by adding together, and as a result, the SN ratio can be significantly increased.

上述した本発明の方法と装置によれば、(1)フェーズドアレイ探触子15bのセクタスキャンにより、入射する超音波ビーム(入射波S1)の方向を変化させて、送信探触子12と受信探触子14の超音波ビームの中心軸が交差する交軸点Xの試験体3の表面からの交軸点深さDを順次変化させ、かつ受信探触子14により複数の交軸点深さDに対応する複数の回折波S2を受信し、(2)複数の回折波S2を重ね合わせて回折波S2の合成波形S3を作成するので、試験体3の内部又はその表層で発生する位相が変化するノイズを大幅に低減し、試験体3の内部に存在する異物(例えばき裂)からの回折波のSN比を大幅に増大することができる。   According to the method and apparatus of the present invention described above, (1) the direction of the incident ultrasonic beam (incident wave S1) is changed by the sector scan of the phased array probe 15b, and the transmission probe 12 and the reception are received. The crossing point depth D from the surface of the test body 3 at the crossing point X at which the central axis of the ultrasonic beam of the probe 14 intersects is sequentially changed, and a plurality of crossing point depths are obtained by the receiving probe 14. A plurality of diffracted waves S2 corresponding to the length D are received, and (2) a plurality of diffracted waves S2 are superimposed to create a composite waveform S3 of the diffracted waves S2, so that a phase generated inside the test body 3 or on its surface Can be greatly reduced, and the SN ratio of the diffracted wave from a foreign substance (for example, a crack) existing inside the specimen 3 can be greatly increased.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

1、2 斜角探触子、3 試験体、4 き裂、5 き裂端部、
6 くさび、7 フェーズドアレイ探触子、8 交軸点、
10 超音波探傷装置、12 送信探触子、13 音響分割面、
14 受信探触子、15a 縦波用くさび状部材(縦波用くさび)、
15b フェーズドアレイ探触子、
16 制御装置、18 表示装置、20 画像処理装置、
A ラテラル波、B 回折波、C 底面エコー、D 交軸点深さ、
X 交軸点、S1 入射波、S2 回折波、S3 合成波形、S4 回折波
1, 2 Bevel probe, 3 specimens, 4 cracks, 5 crack ends,
6 wedges, 7 phased array probe, 8 intersection points,
10 ultrasonic flaw detector, 12 transmission probe, 13 acoustic dividing plane,
14 reception probe, 15a wedge member for longitudinal wave (wedge for longitudinal wave),
15b phased array probe,
16 control device, 18 display device, 20 image processing device,
A lateral wave, B diffracted wave, C bottom echo, D intersection depth,
X intersection point, S1 incident wave, S2 diffracted wave, S3 combined waveform, S4 diffracted wave

Claims (7)

送信探触子と受信探触子の間隔を一定に保持した状態で、送信探触子により試験体内部に超音波ビームを入射させ、受信探触子により前記超音波ビームの回折波を受信するTOFD法による超音波探傷方法であって、
前記送信探触子と受信探触子は、くさびと、その上に搭載されたフェーズドアレイ探触子とからなり、
フェーズドアレイ探触子のセクタスキャンにより、入射する超音波ビームの方向を変化させて、送信探触子と受信探触子の超音波ビームの中心軸が交差する交軸点の試験体表面からの交軸点深さを順次変化させ、かつ前記受信探触子により複数の交軸点深さに対応する複数の回折波を受信し、
前記複数の回折波を重ね合わせて回折波の合成波形を作成する、ことを特徴とするTOFD法による超音波探傷方法。
With the distance between the transmission probe and the reception probe kept constant, an ultrasonic beam is incident on the inside of the test body by the transmission probe, and the diffracted wave of the ultrasonic beam is received by the reception probe. An ultrasonic flaw detection method using a TOFD method,
The transmission probe and the reception probe consist of a wedge and a phased array probe mounted thereon,
The direction of the incident ultrasonic beam is changed by the sector scan of the phased array probe, and the cross-axis point where the central axis of the ultrasonic beam of the transmitting probe and the receiving probe intersects from the specimen surface A plurality of diffracted waves corresponding to a plurality of cross-axis point depths are received by the reception probe by sequentially changing the cross-axis point depths,
An ultrasonic flaw detection method using a TOFD method, wherein a composite waveform of diffraction waves is created by superimposing the plurality of diffraction waves.
前記回折波の合成波形から試験体内部の異物からの回折波を抽出し、伝搬時間より幾何学的に異物の深さを求める、ことを特徴とする請求項1に記載のTOFD法による超音波探傷方法。   2. The ultrasonic wave by the TOFD method according to claim 1, wherein a diffracted wave from a foreign substance inside a specimen is extracted from a composite waveform of the diffracted wave, and a depth of the foreign substance is obtained geometrically from a propagation time. Flaw detection method. 試験体表面近傍のき裂測定に適用し、き裂端部からの回折波と表層部を伝搬するラテラル波を分離する、ことを特徴とする請求項1に記載のTOFD法による超音波探傷方法。   The ultrasonic flaw detection method by the TOFD method according to claim 1, wherein the method is applied to measurement of a crack near the surface of a specimen and separates a diffracted wave from a crack end portion and a lateral wave propagating through a surface layer portion. . 同じ屈折角同士の超音波ビームの送受信において、屈折角を変化させて、前記交軸点深さを順次変化させる、ことを特徴とする請求項1に記載のTOFD法による超音波探傷方法。   The ultrasonic flaw detection method by the TOFD method according to claim 1, wherein in transmission / reception of ultrasonic beams having the same refraction angle, the refraction angle is changed, and the intersection point depth is sequentially changed. 前記交軸点深さの変化は、所望の計測範囲において、0.1mm以上、1.0mm以内のピッチであり、交軸点深さの数は、5以上、100以下である、ことを特徴とする請求項1に記載のTOFD法による超音波探傷方法。   The change of the intersection point depth is a pitch of 0.1 mm or more and 1.0 mm or less in a desired measurement range, and the number of intersection point depths is 5 or more and 100 or less. An ultrasonic flaw detection method by the TOFD method according to claim 1. 送信探触子と受信探触子の間隔を一定に保持した状態で、送信探触子により試験体内部に超音波ビームを入射させ、受信探触子により前記超音波ビームの回折波を受信するTOFD法による超音波探傷装置であって、
前記送信探触子と受信探触子は、くさびと、その上に搭載されたフェーズドアレイ探触子とからなり、
さらに前記送信探触子と受信探触子を制御する制御装置を備え、該制御装置により、
フェーズドアレイ探触子のセクタスキャンにより、入射する超音波ビームの方向を変化させて、送信探触子と受信探触子の超音波ビームの中心軸が交差する交軸点の試験体表面からの交軸点深さを順次変化させ、かつ前記受信探触子により複数の交軸点深さに対応する複数の回折波を受信し、
前記複数の回折波を重ね合わせて回折波の合成波形を作成する、ことを特徴とするTOFD法による超音波探傷装置。
With the distance between the transmission probe and the reception probe kept constant, an ultrasonic beam is incident on the inside of the test body by the transmission probe, and the diffracted wave of the ultrasonic beam is received by the reception probe. An ultrasonic flaw detector by the TOFD method,
The transmission probe and the reception probe consist of a wedge and a phased array probe mounted thereon,
Furthermore, a control device for controlling the transmission probe and the reception probe is provided.
The direction of the incident ultrasonic beam is changed by the sector scan of the phased array probe, and the cross-axis point where the central axis of the ultrasonic beam of the transmitting probe and the receiving probe intersects from the specimen surface A plurality of diffracted waves corresponding to a plurality of cross-axis point depths are received by the reception probe by sequentially changing the cross-axis point depths,
An ultrasonic flaw detector using a TOFD method, wherein a composite waveform of diffracted waves is created by superimposing the plurality of diffracted waves.
回折波の前記合成波形を表示する表示装置と、
前記合成波形から異物の回折波を抽出し、伝搬時間より幾何学的に異物の深さを求める画像処理装置とを備える、ことを特徴とする請求項4に記載のTOFD法による超音波探傷装置。
A display device for displaying the combined waveform of diffracted waves;
5. An ultrasonic flaw detector using the TOFD method according to claim 4, further comprising: an image processing device that extracts a diffracted wave of foreign matter from the synthesized waveform and geometrically determines the depth of the foreign matter from a propagation time. .
JP2012106640A 2012-05-08 2012-05-08 Ultrasonic flaw detection method and apparatus by TOFD method Active JP5829175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106640A JP5829175B2 (en) 2012-05-08 2012-05-08 Ultrasonic flaw detection method and apparatus by TOFD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106640A JP5829175B2 (en) 2012-05-08 2012-05-08 Ultrasonic flaw detection method and apparatus by TOFD method

Publications (2)

Publication Number Publication Date
JP2013234886A true JP2013234886A (en) 2013-11-21
JP5829175B2 JP5829175B2 (en) 2015-12-09

Family

ID=49761128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106640A Active JP5829175B2 (en) 2012-05-08 2012-05-08 Ultrasonic flaw detection method and apparatus by TOFD method

Country Status (1)

Country Link
JP (1) JP5829175B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050811A (en) * 2014-08-29 2016-04-11 株式会社Ihi検査計測 Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
KR20200089272A (en) * 2017-10-31 2020-07-24 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Ultrasonic phased array transducer device for non-destructive testing of components under test
US10877002B2 (en) 2016-02-10 2020-12-29 Ihi Corporation Ultrasonic flaw detection device and ultrasonic flaw detection method
CN114199998A (en) * 2020-09-18 2022-03-18 宝山钢铁股份有限公司 Manual detection method and device for non-fusion and slag inclusion defects of welded pipe groove
CN115856087A (en) * 2023-02-27 2023-03-28 南昌航空大学 Full-focusing imaging method based on longitudinal wave transmitting-receiving ultrasonic phased array probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957447A (en) * 2017-10-17 2018-04-24 郑州聚成电气技术有限公司 A kind of fast non-destructive detection method of thermosets underbead crack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153847A (en) * 1999-11-25 2001-06-08 Sumitomo Metal Ind Ltd Ultrasonic falw detector and ultrasonic flaw detecting method
JP2002062281A (en) * 2000-08-15 2002-02-28 Toshiba Corp Flaw depth measuring method and its device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153847A (en) * 1999-11-25 2001-06-08 Sumitomo Metal Ind Ltd Ultrasonic falw detector and ultrasonic flaw detecting method
JP2002062281A (en) * 2000-08-15 2002-02-28 Toshiba Corp Flaw depth measuring method and its device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050811A (en) * 2014-08-29 2016-04-11 株式会社Ihi検査計測 Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
US10877002B2 (en) 2016-02-10 2020-12-29 Ihi Corporation Ultrasonic flaw detection device and ultrasonic flaw detection method
KR20200089272A (en) * 2017-10-31 2020-07-24 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Ultrasonic phased array transducer device for non-destructive testing of components under test
JP2021501341A (en) * 2017-10-31 2021-01-14 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Phased array ultrasonic oscillator device for non-destructive inspection of the object to be inspected
JP7284181B2 (en) 2017-10-31 2023-05-30 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Phased array ultrasonic transducer device for non-destructive inspection of objects to be inspected
KR102644117B1 (en) * 2017-10-31 2024-03-05 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Ultrasonic phased array transducer device for non-destructive testing of components under test
CN114199998A (en) * 2020-09-18 2022-03-18 宝山钢铁股份有限公司 Manual detection method and device for non-fusion and slag inclusion defects of welded pipe groove
CN114199998B (en) * 2020-09-18 2024-03-08 宝山钢铁股份有限公司 Manual detection method and device for welding pipe groove unfused and slag inclusion defects
CN115856087A (en) * 2023-02-27 2023-03-28 南昌航空大学 Full-focusing imaging method based on longitudinal wave transmitting-receiving ultrasonic phased array probe

Also Published As

Publication number Publication date
JP5829175B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5829175B2 (en) Ultrasonic flaw detection method and apparatus by TOFD method
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
JP2008139304A (en) Ultrasonic immersing inspection for member having arbitrary surface profile
JP4838697B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection wedge
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP2010276465A (en) Ultrasonic flaw detector and method therefor
JP5565904B2 (en) Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2013242202A (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
JP4600335B2 (en) Ultrasonic inspection method and apparatus
KR101163551B1 (en) Sensistivity calibration referece block for phased-array ultrasonic inspection
JP5250248B2 (en) Defect end detection method and defect end detection device
JP5061891B2 (en) Crack depth measurement method
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
WO2018147036A1 (en) Ultrasound probe
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP5123644B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
TWI793693B (en) Ultrasonic inspection device and ultrasonic inspection method
JP2005345217A (en) Ultrasonic flaw detecting method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151021

R150 Certificate of patent or registration of utility model

Ref document number: 5829175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250