JPH0243772A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH0243772A
JPH0243772A JP19503188A JP19503188A JPH0243772A JP H0243772 A JPH0243772 A JP H0243772A JP 19503188 A JP19503188 A JP 19503188A JP 19503188 A JP19503188 A JP 19503188A JP H0243772 A JPH0243772 A JP H0243772A
Authority
JP
Japan
Prior art keywords
diffusion
hydrogen treatment
diffusion material
electrode material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19503188A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19503188A priority Critical patent/JPH0243772A/en
Publication of JPH0243772A publication Critical patent/JPH0243772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To efficiently remove an electrode material component deposited during a plasma hydrogen treatment process without giving any damage to device so as to eliminate a leakage current and a defective wire bonding due to an electrode material component by a method wherein a plasma hydrogen treatment process is made after the formation of a source and a drain diffusion layer through a thermal diffusion material and before the removal of the thermal diffusion material. CONSTITUTION:A plasma hydrogen treatment process is made after the formation of a source diffusion layer 7 and a drain diffusion layer 8 through a thermal diffusion material 6 and before the removal of the thermal diffusion material 6. For instance, a polycrystalline silicon film 3 is formed on a quartz substrate 1 and patterned into a specified form, and then a gate electrode 5 is built through the intermediary of a gate oxide film 4, thereafter an application type diffusion material 6, whose main component is silanol, is applied onto the silicon film 3, which is subjected to a thermal diffusion for the formation of the source diffusion layer 7 and the drain diffusion layer 8 on the polycrystalline silicon film 3. Then, when the quartz substrate 1 is subjected to a plasma hydrogen treatment, an electrode material component is deposited the diffusion material 6 to form an electrode material component layer 9. Then, the diffusion material 6 is removed through an etching using fluoric acid, whereby the electrode material component layer 9 deposited on the diffusion material 6 is completely removed with the diffusion material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、等倍イメージセンサや液晶装置等に使用され
る薄膜トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a thin film transistor used in a 1:1 image sensor, a liquid crystal device, etc.

[従来の技術] 従来、薄膜トランジスタは、絶縁基体、例えば、石英基
板上に非晶質シリコン膜を形成した後、この非晶質シリ
コン膜を溶融再結晶化法等によって多結晶シリコン膜と
成し、その後、この多結晶シリコン膜を半導体材料とし
て、ゲート酸化膜の形成、ゲート電極の形成、ソース・
ドレイン拡散層の形成、眉間絶縁膜の形成、コンタクト
ホールの形成、アルミニウム電極層の形成及びプラズマ
水素処理の各工程を順次に実行して製造されている。
[Prior Art] Conventionally, thin film transistors are manufactured by forming an amorphous silicon film on an insulating substrate, for example, a quartz substrate, and then forming the amorphous silicon film into a polycrystalline silicon film by melting and recrystallizing the film. Then, this polycrystalline silicon film is used as a semiconductor material to form a gate oxide film, a gate electrode, a source and
It is manufactured by sequentially performing the steps of forming a drain diffusion layer, forming a glabella insulating film, forming a contact hole, forming an aluminum electrode layer, and plasma hydrogen treatment.

ここに、プラズマ水素処理は、多結晶シリコン膜に存在
するトラップ(捕獲準位)を水素原子で満たし、その移
動度を上げるために行われるものであって、通常、平行
平板型プラズマ水素処理装置を用いて行われる。
Here, plasma hydrogen treatment is performed to fill the traps (capture levels) existing in the polycrystalline silicon film with hydrogen atoms and increase their mobility, and is usually performed using a parallel plate type plasma hydrogen treatment equipment. This is done using

[発明が解決しようとする課題] しかしながら、かかる平行平板型プラズマ水素処理装置
を用いてプラズマ水素処理を行うと、水素イオンが電極
の表面に衝突し、水素イオンによるスパッタリング現象
が発生し、鉄、ニッケル、クロム等を主成分とする電極
材料成分が基板に堆積してしまい、これがリークやワイ
ヤボンディング不良の原因となっていた。ここに;かか
る電極材料成分は、化学エツチングでは除去できず、ま
た、スパッタエツチングを実行すると、その除去は可能
となるものの、デバイスにダメージを与えてしまうとい
う不都合があった。
[Problems to be Solved by the Invention] However, when plasma hydrogen treatment is performed using such a parallel plate type plasma hydrogen treatment apparatus, hydrogen ions collide with the surface of the electrode, and a sputtering phenomenon due to hydrogen ions occurs, causing iron, Electrode material components containing nickel, chromium, etc. as main components are deposited on the substrate, causing leakage and wire bonding defects. However, such electrode material components cannot be removed by chemical etching, and if sputter etching is performed, although it is possible to remove them, there is a disadvantage in that they damage the device.

本発明は、かかる点に鑑み、プラズマ水素処理工程にお
いて堆積する電極材料成分をデバイスにダメージを与え
ることなく効率的に除去し、電極材料成分によるリーク
やワイヤボンディング不良を完全になくし、歩留まりの
向上を図ることができるようにした薄膜トランジスタの
製造方法を提供することを目的とする。
In view of this, the present invention efficiently removes electrode material components deposited during the plasma hydrogen treatment process without damaging devices, completely eliminates leaks and wire bonding defects due to electrode material components, and improves yield. An object of the present invention is to provide a method for manufacturing a thin film transistor that can achieve the following.

[課題を解決するための手段] 本発明は、プラズマ水素処理工程を有する薄膜トランジ
スタの製造方法において、プラズマ水素処理工程を、熱
拡散材6によるソース・ドレイン拡散層7及び8の形成
後、熱拡散材6の除去前に実行するようにしたものであ
る。
[Means for Solving the Problems] The present invention provides a method for manufacturing a thin film transistor that includes a plasma hydrogen treatment step, in which the plasma hydrogen treatment step is performed by thermal diffusion after forming source/drain diffusion layers 7 and 8 using a thermal diffusion material 6. This is executed before the material 6 is removed.

[作用] 本発明では、プラズマ水素処理工程の際、水素イオンの
衝突によって電極から飛び出す電極材料成分は、熱拡散
材6上に堆積することになるが、かかる電極材料成分は
、プラズマ水素処理工程の後に行われる熱拡散材6の除
去工程の際に、リフトオフ法によって完全に除去するこ
とができる。
[Function] In the present invention, during the plasma hydrogen treatment step, the electrode material components ejected from the electrode due to the collision of hydrogen ions are deposited on the thermal diffusion material 6; In the step of removing the heat diffusing material 6 that is performed after the above step, the heat diffusing material 6 can be completely removed by a lift-off method.

したがって、スパッタエツチングを実行して電極材料成
分を除去する場合のようにデバイスにダメージを与える
ことなく、効率的、且つ、完全に電極材料成分を除去す
ることができる。
Therefore, the electrode material components can be efficiently and completely removed without damaging the device unlike when removing the electrode material components by performing sputter etching.

[実施例] 以下、第1図ないし第6図を参照して、本発明の一実施
例につき説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

先ず、第1図に示すように、石英基板1を用意した後、
減圧CVDを実行して、石英基板1上に非晶質シリコン
膜2を堆積する。
First, as shown in FIG. 1, after preparing a quartz substrate 1,
An amorphous silicon film 2 is deposited on a quartz substrate 1 by performing low pressure CVD.

次に、溶融再結晶化法を実行して、第2図に示すように
、非晶質シリコン膜2を多結晶シリコン膜化して多結晶
シリコン膜3を形成する。
Next, a melt recrystallization method is performed to convert the amorphous silicon film 2 into a polycrystalline silicon film to form a polycrystalline silicon film 3, as shown in FIG.

尚、非晶質シリコン膜2を形成することなく、減圧CV
Dによって最初から多結晶シリコン膜3を形成するよう
にしても良い。
Note that, without forming the amorphous silicon film 2, low pressure CV
The polycrystalline silicon film 3 may be formed from the beginning using D.

次に、第3図に示すように、多結晶シリコン膜3を所定
形状にパターニングした後、ゲート酸化膜4を介してゲ
ート電極5を形成し、その後、表面全域にシラノールを
主成分とする塗布型拡散材6を塗布し、熱拡散を行い、
多結晶シリコン膜3にソース・ドレイン拡散層7及び8
を形成する。
Next, as shown in FIG. 3, after patterning the polycrystalline silicon film 3 into a predetermined shape, a gate electrode 5 is formed via the gate oxide film 4, and then a coating containing silanol as a main component is applied to the entire surface. Apply mold diffusion material 6, perform thermal diffusion,
Source/drain diffusion layers 7 and 8 are formed on the polycrystalline silicon film 3.
form.

次に、所定の平行平板型プラズマ水素処理装置を使用し
てプラズマ水素処理を行う。このようにすると、第4図
に示すように、塗布型拡散材6上に電極材料成分が堆積
し、電極材料成分層9が形成されるところとなる。
Next, plasma hydrogen treatment is performed using a predetermined parallel plate type plasma hydrogen treatment apparatus. In this way, as shown in FIG. 4, the electrode material component is deposited on the coating type diffusion material 6, and an electrode material component layer 9 is formed.

次に、フッ酸(HF:H20= 1 :5)を使用して
塗布型拡散材6をエツチングにより除去する。このよう
にすると、第5図に示すように、塗布型拡散材6上に形
成されていた電極材料成分層9は、リフトオフ法によっ
て塗布型拡散材6とともに完全に除去されてしまう。
Next, the coating type diffusion material 6 is removed by etching using hydrofluoric acid (HF:H20=1:5). In this case, as shown in FIG. 5, the electrode material component layer 9 formed on the coating type diffusion material 6 is completely removed together with the coating type diffusion material 6 by the lift-off method.

そこで、次に、第6図に示すように、層間絶縁膜10、
コンタクトホール11及び12、アルミニウム配線層1
3及び14を順次に形成する。ここに、薄膜トランジス
タを得ることができる。
Therefore, as shown in FIG. 6, the interlayer insulating film 10,
Contact holes 11 and 12, aluminum wiring layer 1
3 and 14 are formed sequentially. Here, a thin film transistor can be obtained.

このように、本実施例においては、塗布型拡散材6によ
るソース・ドレイン拡散層7及び8の形成後、塗布型拡
散材6を除去する前に、プラズマ水素処理を行うことに
よって、電極材料成分を塗布型拡散材6上に堆積させ、
これを塗布型拡散材6をエツチングにより除去する際に
併せて除去するようにしているので、プラズマ水素処理
を行うことによって形成される電極材料成分層9を完全
に除去することができる。
As described above, in this example, after the source/drain diffusion layers 7 and 8 are formed using the coated diffusion material 6 and before the coated diffusion material 6 is removed, plasma hydrogen treatment is performed to reduce the electrode material components. is deposited on the coating type diffusion material 6,
Since this is removed at the same time as the coated diffusion material 6 is removed by etching, the electrode material component layer 9 formed by plasma hydrogen treatment can be completely removed.

したがって、本実施例によれば、スパッタエツチングを
実行して電極材料成分を除去する場合のようにデバイス
にダメージを与えることなく、効率的に電極材料成分層
9を除去し、電極材料成分によるリークやワイヤボンデ
ィング不良を完全になくし、歩留まりの向上を図ること
ができるという効果がある。
Therefore, according to this embodiment, the electrode material component layer 9 can be efficiently removed without damaging the device unlike when removing the electrode material component by performing sputter etching, and leakage caused by the electrode material component can be removed. This has the effect of completely eliminating wire bonding defects and improving yield.

尚、上述の実施例においては、熱拡散材として塗布型拡
散材6を使用した場合につき述べたが、この代わりに、
CVDによって熱拡散材を形成するようにしても良い。
In addition, in the above-mentioned embodiment, the case was described in which the coating type diffusion material 6 was used as the heat diffusion material, but instead of this,
The heat diffusion material may be formed by CVD.

[発明の効果] 本発明によれば、プラズマ水素処理工程を、熱拡散材に
よるソース・ドレイン拡散層の形成後、熱拡散材の除去
前に行うという構成を採用したことにより、プラズマ水
素処理工程時、水素イオンの衝突によって電極から飛び
出す電極材料成分を熱拡散材上に堆積させることによっ
て、これを熱拡散材を除去する際に、熱拡散材とともに
完全に除去することができるので、スパッタエツチング
を行う場合のようにデバイスにダメージを与えることな
く、効率的、且つ、完全に電極材料成分を除去すること
ができ、この結果、電極材料成分に起因するリークやワ
イヤボンディング不良を完全になくし、歩留まりの向上
を図ることができるという効果がある。
[Effects of the Invention] According to the present invention, the plasma hydrogen treatment step is performed after the formation of the source/drain diffusion layer using the thermal diffusion material and before the removal of the thermal diffusion material. By depositing the electrode material components that fly out of the electrode due to hydrogen ion collisions on the heat diffusion material, it is possible to completely remove them together with the heat diffusion material when the heat diffusion material is removed. It is possible to efficiently and completely remove the electrode material components without damaging the device as would be the case when performing this method.As a result, leaks and wire bonding defects caused by the electrode material components are completely eliminated. This has the effect of improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明による薄膜トランジスタの
製造方法の一実施例を示す断面図である。 1・・・石英基板 6・・塗布型拡散材(熱拡散材) 7.8・・・ソース・ドレイン拡散層 9・・・電極材料成分層 第2図 第3図
1 to 6 are cross-sectional views showing an embodiment of the method for manufacturing a thin film transistor according to the present invention. 1... Quartz substrate 6... Coated diffusion material (thermal diffusion material) 7.8... Source/drain diffusion layer 9... Electrode material component layer Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】 プラズマ水素処理工程を有する薄膜トランジスタの製造
方法において、 上記プラズマ水素処理工程を、熱拡散材によるソース・
ドレイン拡散層の形成後、上記熱拡散材の除去前に行う
ようにしたことを特徴とする薄膜トランジスタの製造方
法。
[Claims] In a method for manufacturing a thin film transistor having a plasma hydrogen treatment step, the plasma hydrogen treatment step is performed by using a heat diffusion material as a source.
A method for manufacturing a thin film transistor, characterized in that the process is performed after forming a drain diffusion layer and before removing the heat diffusion material.
JP19503188A 1988-08-04 1988-08-04 Manufacture of thin film transistor Pending JPH0243772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19503188A JPH0243772A (en) 1988-08-04 1988-08-04 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19503188A JPH0243772A (en) 1988-08-04 1988-08-04 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH0243772A true JPH0243772A (en) 1990-02-14

Family

ID=16334384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19503188A Pending JPH0243772A (en) 1988-08-04 1988-08-04 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH0243772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057182A (en) * 1997-09-05 2000-05-02 Sarnoff Corporation Hydrogenation of polysilicon thin film transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057182A (en) * 1997-09-05 2000-05-02 Sarnoff Corporation Hydrogenation of polysilicon thin film transistors

Similar Documents

Publication Publication Date Title
WO2015039388A1 (en) Method for manufacturing an array substrate
CN107564803A (en) Lithographic method, process equipment, film transistor device and its manufacture method
JPH0243772A (en) Manufacture of thin film transistor
JPS61180458A (en) Manufacture of semiconductor device
JPS6042868A (en) Manufacture of amorphous silicon thin film fet
JPH02186641A (en) Manufacture of thin film field-effect transistor element
JP4301628B2 (en) Dry etching method
JPH02199842A (en) Manufacture of thin-film field-effect transistor element
JP2673429B2 (en) Method for manufacturing thin film transistor
KR100611221B1 (en) Polycrystalline Si Thin Film Transistor and method of fabricating the same
JPS6320383B2 (en)
JPH0653160A (en) Method of forming self-aligned contact
JPS61145870A (en) Thin-film field effect transistor and manufacture thereof
JPH03201540A (en) Manufacture of thin film transistor
KR100615822B1 (en) Method for eliminating the particle of semiconductor device
KR100333370B1 (en) Method for manufacturing semiconductor device
JPS63261881A (en) Manufacture of compound semiconductor
JPS6247161A (en) Manufacture of thin film transistor
JPS6279625A (en) Manufacture of semiconductor device
JPH04119648A (en) Manufacture of semiconductor device
JPH02139931A (en) Manufacture of semiconductor device
JPH03259527A (en) Manufacture of semiconductor device
JPS61288445A (en) Manufacture of semiconductor device
JPS61292916A (en) Forming method for contact hole
JPH0456234A (en) Manufacture of thin film semiconductor element