JPH02186641A - Manufacture of thin film field-effect transistor element - Google Patents

Manufacture of thin film field-effect transistor element

Info

Publication number
JPH02186641A
JPH02186641A JP1006180A JP618089A JPH02186641A JP H02186641 A JPH02186641 A JP H02186641A JP 1006180 A JP1006180 A JP 1006180A JP 618089 A JP618089 A JP 618089A JP H02186641 A JPH02186641 A JP H02186641A
Authority
JP
Japan
Prior art keywords
film
insulating film
upper insulating
amorphous
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1006180A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
宏之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1006180A priority Critical patent/JPH02186641A/en
Publication of JPH02186641A publication Critical patent/JPH02186641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the yield of the present element by a method wherein a metal protective film is formed on an upper insulating film, the films other than the films, which are located on a gate electrode, are removed and after source and drain electrodes are formed, the metal protective film is removed. CONSTITUTION:A gate electrode 12 is formed of a metal on an insulative substrate 11 and a gate insulating film 13 is formed by a plasma CVD method. Moreover, an amorphous Si layer 14 which is used as an amorphous semiconductor layer and an upper insulating film 15 are deposited in order. Then, unnecessary parts of a metal protective film 1 formed on the film 15 and the film 15 are etched away leaving a pattern only on the gate electrode 12. Here, the exposed surface of the layer 14 is cleaned using hydrofluoric acid and after a source 18 and a drain 19 are formed by performing an etching work on a metal film 17 and an n<+> amorphous Si film 16, which are immediately formed, a part, which is exposed between the source and the drain, of the film 1 is etched. Lastly, an unnecessary part of the layer 14 is etched away. Thereby, an ohmic contact of the source with the drain csn be formed with good reproducibility in the whole substrate and the good uniformity of an ON-current is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁性基板上に設けられた薄膜電界効果型トラ
ンジスタ素子の製造方法に関し、特にアクティブマトリ
クス型液晶デイスプレィに好適な製造が容易な薄膜電界
効果型トランジスタ素子の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film field effect transistor element provided on an insulating substrate, and in particular to a method for manufacturing a thin film field effect transistor element that is easy to manufacture and is suitable for active matrix liquid crystal displays. The present invention relates to a method for manufacturing a field effect transistor element.

〔従来の技術〕[Conventional technology]

壁掛はカラーテレビに代表される薄型パネルデイスプレ
ィとして、薄膜電界効果型トランジスタを一方のガラス
基板に一つ一つ画素のスイッチとしてアレイ化したアク
ティブマトリックス型液晶デイスプレィの研究開発が活
発に行なわれている。このデイスプレィの実用化のため
には、量産時も製造歩留まりが減少しないようなプロセ
スマージンの大きい製造方法の開発が重要である。
Wall-mounted displays are thin panel displays such as color TVs, and research and development is actively being conducted on active matrix liquid crystal displays, in which thin-film field-effect transistors are arrayed on one glass substrate, each as a switch for each pixel. There is. In order to put this display into practical use, it is important to develop a manufacturing method with a large process margin so that manufacturing yield does not decrease even during mass production.

第2図に従来の逆スタッガード型薄膜電界効果型トラン
ジスタの製造プロセスを示す。以下、この従来の製造プ
ロセスについて説明する。絶縁性基板21上に金属でゲ
ート電極22を形成する(第2図(a))。次に、プラ
ズマCVD法によりゲート絶縁膜23として窒化シリコ
ンや酸化シリコンのような絶縁膜を形成する。さらに、
非晶質半導体膜として例えばアモルファス5i24、上
部絶縁膜25を順次堆積させる(第2図(b))。この
上部絶縁膜25はゲート絶縁膜と同様に窒化シリコン膜
や酸化シリコン膜が用いられる。次に上部絶縁膜25を
ゲート電極22上の一部を残して、不用部分をエツチン
グ除去する(第2図(C))。ここで、露出したアモル
ファスSi24の表面をフッ酸を用いて清浄化し、ただ
ちにn+アモルファス5i26と金属膜27を成膜する
(第2図(d))。金属膜27とn+アモルファスSi
26をエツチング加工することによりソース28とトレ
イン2つを形成するく第2図(e)〉。最後に、不用な
部分のアモルファス5i24をエツチング除去すること
により、lヘランジスタが完成する。
FIG. 2 shows a manufacturing process for a conventional inverted staggered thin film field effect transistor. This conventional manufacturing process will be explained below. A gate electrode 22 made of metal is formed on an insulating substrate 21 (FIG. 2(a)). Next, an insulating film such as silicon nitride or silicon oxide is formed as the gate insulating film 23 by plasma CVD. moreover,
For example, an amorphous semiconductor film 5i24 and an upper insulating film 25 are sequentially deposited (FIG. 2(b)). This upper insulating film 25 is made of a silicon nitride film or a silicon oxide film, similar to the gate insulating film. Next, unnecessary portions of the upper insulating film 25 are removed by etching, leaving a portion on the gate electrode 22 (FIG. 2(C)). Here, the surface of the exposed amorphous Si 24 is cleaned using hydrofluoric acid, and the n+ amorphous 5i 26 and metal film 27 are immediately formed (FIG. 2(d)). Metal film 27 and n+ amorphous Si
By etching 26, a source 28 and two trains are formed (FIG. 2(e)). Finally, the unnecessary portions of the amorphous layer 5i24 are removed by etching to complete the 1 helangister.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の逆スタッガード型薄膜電界効果型トランジスタの
製造プロセスには2つの問題がある。第1の問題点は、
n+アモルファス5i26を成膜する前に行なうアモル
ファスSi24の表面を清浄化するためのフッ酸処理で
ある。これは、アモルファスSi表面に形成されている
酸化膜等を除去し、ソース・トレインコンタクトのオー
ミック性を改善するために行なっている。しかし、この
工程で上部絶縁膜25がフッ酸によりエツチングされて
しまうため、フッ酸の濃度を薄くし、処理時間を短くし
なければならない。このため、アモルファスSiの表面
状態によってはフッ酸処理が不十分になり、オーミック
コンタクトが形成できす、再現性や歩留まりが悪い問題
があった。
There are two problems with the conventional manufacturing process for reverse staggered thin film field effect transistors. The first problem is
This is a hydrofluoric acid treatment for cleaning the surface of the amorphous Si 24 before forming the n+ amorphous 5i 26. This is done in order to remove the oxide film etc. formed on the amorphous Si surface and improve the ohmic properties of the source/train contact. However, since the upper insulating film 25 is etched by hydrofluoric acid in this step, the concentration of hydrofluoric acid must be reduced and the processing time must be shortened. Therefore, depending on the surface condition of the amorphous Si, the hydrofluoric acid treatment may be insufficient, making it impossible to form an ohmic contact, resulting in problems with poor reproducibility and yield.

第2の問題点は、第2図(e)のn+アモルファルSi
26をエツチングし、ソース・トレインを形成するプロ
セスにある。n+アモルファスSiエツチングは通常ド
ライエツチングで行なうが、この時上部絶縁膜25もエ
ツチングされてしまう。従って、ドライエツチング時の
エツチング加工の制御や均一性が悪いと、上部絶縁膜2
5がすべてエツチングされてしまう問題があった。
The second problem is that the n+ amorphous Si shown in Fig. 2(e)
26 is in the process of etching to form the source train. N+ amorphous Si etching is normally performed by dry etching, but at this time the upper insulating film 25 is also etched. Therefore, if the control and uniformity of the etching process during dry etching is poor, the upper insulating film 2
There was a problem where all 5's were etched.

本発明はこのような問題点を解決し、歩留り良く薄膜電
界効果トランジスタを作製することを目的としている。
The present invention aims to solve these problems and manufacture thin film field effect transistors with high yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の薄膜電界効果型トランジスタ素子の製造方法は
、絶縁性基板上にゲート電極、ゲート絶縁膜、非晶質半
導体膜、上部絶縁膜を順次形成し、前記ゲート電極上以
外の部分の前記上部絶縁膜を除去した後、ソース及びド
レイン電極を形成する薄膜電界効果型トランジスタ素子
の製造方法において、前記上部絶縁膜の上に金属保護膜
を形成し、前記ゲート電極上以外の部分の前記金属保護
膜と前記上部絶縁膜を除去し、前記ソース及びドレイン
電極を形成し、最後に前記金属保護膜を除去することを
特徴とする。
The method for manufacturing a thin film field effect transistor element of the present invention includes sequentially forming a gate electrode, a gate insulating film, an amorphous semiconductor film, and an upper insulating film on an insulating substrate, and In the method for manufacturing a thin film field effect transistor device in which source and drain electrodes are formed after removing an insulating film, a metal protective film is formed on the upper insulating film, and the metal protective film is removed at a portion other than on the gate electrode. The method is characterized in that the film and the upper insulating film are removed, the source and drain electrodes are formed, and finally the metal protective film is removed.

〔作用〕[Effect]

本発明は上部絶縁膜がフッ酸処理やドライエツチング工
程でエツチングされるのを防止するために、上部絶縁膜
の上に金属保護膜を形成し、この金属保護膜をエツチン
グのストッパーとして利用する点に特徴がある。
The present invention is to form a metal protective film on the upper insulating film in order to prevent the upper insulating film from being etched during the hydrofluoric acid treatment or dry etching process, and to use this metal protective film as an etching stopper. There are characteristics.

まず、本発明の逆スタッガード型薄膜電界効果型トラン
ジスタの製造プロセスについて説明する。第1図に本発
明の製造プロセスを示す。絶縁性基板11上に金属でゲ
ート電極12を形成する(第1図(a>)。次に、プラ
ズマCVD法によりゲート絶縁膜13として窒化シリコ
ンや酸化シリコンのような絶縁膜を形成する。さらに、
非晶質半導体層としてアモルファス5i14.上部絶縁
膜15を順次堆積させる(第1図(b))。この上部絶
縁膜15はゲート絶縁膜と同様に窒化シリコン膜や酸化
シリコン膜が用いられる。本発明では、上部絶膜膜15
をフッ酸処理やドライエツチングでエツチングされるの
を防ぐために、上部絶縁膜15の上に金属保護膜1を形
成する。次に金属保護膜1と上部絶縁膜25をゲート電
極22上のパターンのみを残して、不用部分をエツチン
グ除去するく第1図(C))。このエツチングは例えば
金属保護膜をウェットエツチングで、上部絶縁膜をドラ
イエツチングでエツチングすることにより再現性、制御
性よく加工することができる。
First, the manufacturing process of the inverted staggered thin film field effect transistor of the present invention will be explained. FIG. 1 shows the manufacturing process of the present invention. A gate electrode 12 is formed of metal on an insulating substrate 11 (FIG. 1 (a)). Next, an insulating film such as silicon nitride or silicon oxide is formed as a gate insulating film 13 by plasma CVD. ,
Amorphous 5i14. as the amorphous semiconductor layer. The upper insulating film 15 is sequentially deposited (FIG. 1(b)). This upper insulating film 15 is made of a silicon nitride film or a silicon oxide film, similar to the gate insulating film. In the present invention, the upper insulating film 15
In order to prevent etching by hydrofluoric acid treatment or dry etching, a metal protective film 1 is formed on the upper insulating film 15. Next, unnecessary portions of the metal protective film 1 and the upper insulating film 25 are removed by etching, leaving only the pattern on the gate electrode 22 (FIG. 1C). This etching can be performed with good reproducibility and controllability, for example, by etching the metal protective film by wet etching and etching the upper insulating film by dry etching.

ここで、露出したアモルファスSil 4の表面をフッ
酸を用いて清浄化し、ただちにn+アモルファスSil
 6と金属膜17を成膜する(第1図(d))、金属膜
17とn+アモルファス5i16をエツチング加工する
ことによりソース18とドレイン1つを形成する(第2
図(e))。さらに、ソース・ドレインの短絡を防ぐた
めに金属保護膜1のうちソースとドレイン間に露出した
部分をエツチングする。最後に、不用な部分のアモルフ
ァス5i14をエツチング除去することにより、トラン
ジスタが完成する。
Here, the surface of the exposed amorphous Sil 4 was cleaned using hydrofluoric acid, and the surface of the n+ amorphous Sil 4 was immediately cleaned.
A source 18 and a drain are formed by etching the metal film 17 and the n+ amorphous layer 16 (FIG. 1(d)).
Figure (e)). Further, in order to prevent a short circuit between the source and the drain, the exposed portion of the metal protective film 1 between the source and the drain is etched. Finally, unnecessary portions of the amorphous layer 5i14 are removed by etching to complete the transistor.

ここで、金属保護膜1の役割について詳細に説明する。Here, the role of the metal protective film 1 will be explained in detail.

第1図(c)において上部絶縁膜15を除去した後に現
われるアモルファスSi表面はフォトレジストプロセス
による有機物汚染や酸化膜ができている。このため、表
面の特別な処理をせずにソース、トレイン電極を形成す
ると、n+層を用いてもコンタクト抵抗が大きくなり、
オーミック電極にならない。アモルファス5i14の表
面の清浄化プロセスは再現性よく良好なトランジスタ特
性を得るのに必要不可欠のものである。量産性に向き確
実な清浄化プロセスとして、フッ酸処理がある。これは
、適当な濃度のフッ酸で表面の酸化膜をエツチングする
ことにより、表面の汚染も取り除けるため、非常に有効
なプロセスである。
In FIG. 1(c), the amorphous Si surface that appears after removing the upper insulating film 15 has organic contamination and an oxide film formed by the photoresist process. For this reason, if source and train electrodes are formed without special surface treatment, the contact resistance will increase even if an n+ layer is used.
It does not become an ohmic electrode. The cleaning process of the surface of the amorphous 5i14 is essential for obtaining good transistor characteristics with good reproducibility. Hydrofluoric acid treatment is a reliable cleaning process suitable for mass production. This is a very effective process because surface contamination can be removed by etching the oxide film on the surface with hydrofluoric acid at an appropriate concentration.

しかし、プラズマCVDで作製した窒化シリコン膜やシ
リコン酸化膜はフッ酸によるエツチングレートが非常に
速いため、Si表面が清浄化される程度のフッ酸処理で
も上部絶縁膜がエツチングされてしまう。これまでは上
部絶縁膜が無くならない程度にフッ酸濃度を薄くし、処
理時間を短くして清浄化処理を行なっている。そのため
、コンタクト特性の再現性が悪かったり、面内で不均一
性が発生したりして、歩留まりの低下を引き起こす。そ
こで、フッ酸ではエツチングされ難い金属保護膜を上部
絶縁膜の上に形成することにより、フッ酸処理を十分性
なうことができるようになる。その結果、トランジスタ
特性の均一性や再現性が向上し、歩留まり向上に非常に
効果がある。
However, since the etching rate of silicon nitride films and silicon oxide films produced by plasma CVD with hydrofluoric acid is very high, the upper insulating film is etched even when the hydrofluoric acid treatment is sufficient to clean the Si surface. Up to now, the cleaning process has been carried out by reducing the concentration of hydrofluoric acid to the extent that the upper insulating film is not lost and by shortening the processing time. Therefore, the reproducibility of contact characteristics is poor and non-uniformity occurs within the surface, resulting in a decrease in yield. Therefore, by forming a metal protective film, which is difficult to be etched with hydrofluoric acid, on the upper insulating film, the hydrofluoric acid treatment can be carried out sufficiently. As a result, the uniformity and reproducibility of transistor characteristics are improved, which is extremely effective in improving yield.

この金属保護膜には、フッ酸に対するエツチングレート
が遅ければなんでもよく、例えばクロム等を使うことが
できる。
This metal protective film may be made of any material as long as it has a slow etching rate with respect to hydrofluoric acid, such as chromium.

また、第1図(e)に示されているn+アモルファス5
i16をエツチングするプロセスにもこの金属保護膜が
有効である。このプロセスにはドライエツチングを用い
るが、上部絶縁膜もエツチングされてしまう。従って、
エツチング時間が長すぎると上部絶縁膜も除去されてし
まう不良が発生する。ところが、一般に金属はSiはエ
ツチングするCF4系のガスにはエツチングされにくい
ため、第1図(e)のようにエツチングは金属保護膜1
で停止する。従って、上部絶縁膜はまったくエツチング
されないため、エツチングに不均一性があってもエツチ
ング時間が長くなってもよい。このプロセスでも歩留ま
りがよくなる。
In addition, n+ amorphous 5 shown in FIG. 1(e)
This metal protective film is also effective in the process of etching i16. Although dry etching is used in this process, the upper insulating film is also etched. Therefore,
If the etching time is too long, a defect occurs in which the upper insulating film is also removed. However, in general, metals are difficult to be etched by CF4 gas, which etches Si.
Stop at. Therefore, since the upper insulating film is not etched at all, the etching time may be long even if there is non-uniformity in the etching. This process also improves yield.

〔実施例〕〔Example〕

本発明の実施例について第1図を用いながら説明する。 An embodiment of the present invention will be described with reference to FIG.

絶縁性基板11としてホウケイ酸ガラス板を用いた。洗
浄後、絶縁性基板11上にスパッタ法によりクロミウム
を厚さ1100n成膜し、フォトリソグラフィ法により
ゲート電極12を形成する。ここでは、ゲート電極材料
としてクロミウムを用いたが他の材料、例えばアルミニ
ウムやタンタル等の他の金属でもよい。
A borosilicate glass plate was used as the insulating substrate 11. After cleaning, a chromium film with a thickness of 1100 nm is formed on the insulating substrate 11 by sputtering, and a gate electrode 12 is formed by photolithography. Although chromium is used here as the gate electrode material, other materials such as aluminum, tantalum, and other metals may be used.

次に、プラズマCVD法を用いてゲート絶縁膜13、ア
モルファス5i14、上部絶縁膜15を順次成膜する。
Next, a gate insulating film 13, an amorphous film 14, and an upper insulating film 15 are sequentially formed using a plasma CVD method.

ゲート絶縁膜13には膜厚400nmの窒化シリコン膜
を用いた。成膜条件は、SiH4とNH3を原料ガスと
して、流量比1ニア、真空度100Pa、高周波電力密
度0.2W/cm2、基板温度250℃であり、本条件
で光学バンドギャップ5.4eVの良好な絶縁性を有す
る窒化シリコン膜が得られる。ここでは、窒化シリコン
膜を用いたが他の絶縁材料、例えば窒化シリコン、五酸
化タンタル等の絶縁膜でもよい。アモルファス5t14
は、SiH4ガスを原料とし、真空度100Pa、高周
波電力密度0.02W / cm 2、基板温度250
℃の条件で厚さ1100n成膜した。次に、上部絶縁膜
15として、ゲート絶縁膜13と同じ条件で窒化シリコ
ン膜を膜厚1100n成膜した。上部絶縁膜15は他の
絶縁材料でもよい。ここでは、プラズマCVD法を用い
て、ゲート絶縁膜、アモルファスSi、上部絶縁膜の3
層を形成しているが、光CVD法、スパッタ法等の他の
成膜方法を用いてもよい。
A silicon nitride film with a thickness of 400 nm was used as the gate insulating film 13. The film forming conditions were as follows: SiH4 and NH3 were used as source gases, flow rate ratio was 1Nia, vacuum degree was 100 Pa, high frequency power density was 0.2 W/cm2, and substrate temperature was 250°C. Under these conditions, a good optical band gap of 5.4 eV was obtained. A silicon nitride film having insulating properties is obtained. Although a silicon nitride film is used here, an insulating film made of other insulating materials such as silicon nitride, tantalum pentoxide, etc. may also be used. amorphous 5t14
uses SiH4 gas as raw material, vacuum degree 100 Pa, high frequency power density 0.02 W/cm2, substrate temperature 250 Pa.
A film with a thickness of 1100 nm was formed under conditions of .degree. Next, as the upper insulating film 15, a silicon nitride film with a thickness of 1100 nm was formed under the same conditions as the gate insulating film 13. The upper insulating film 15 may be made of other insulating materials. Here, we used a plasma CVD method to form three layers: gate insulating film, amorphous Si, and upper insulating film.
Although a layer is formed, other film forming methods such as a photo-CVD method and a sputtering method may be used.

次に、本発明の特徴である上部絶縁膜のエツチング防止
層として、クロミウム1をスパッタ法を用いて膜厚30
0nm形成する。材料は他の金属例えばタンタル、タン
グステン等でもよい。成膜方法も蒸着法等地の方法で形
成してもよい。
Next, as an etching prevention layer for the upper insulating film, which is a feature of the present invention, chromium 1 was etched to a thickness of 30 mm using a sputtering method.
0 nm is formed. The material may also be other metals such as tantalum, tungsten, etc. The film may be formed by other methods such as vapor deposition.

次に、フォトリソグラフィ法を用いてゲート電極の形状
にフォトレジスト膜を形成し、このフォトレジスト膜を
マスクにして、クロミウム1をウェットエツチング法を
用いてエツチングし、弓続きCF4ガスを用いたドライ
エツチング法により上部絶縁膜15をパターニングする
Next, a photoresist film is formed in the shape of the gate electrode using photolithography, and using this photoresist film as a mask, chromium 1 is etched using a wet etching method, followed by dry etching using CF4 gas. The upper insulating film 15 is patterned by an etching method.

フォトレジスト膜の剥離後、アモルファス5i14の表
面の清浄化のために、1%HF液に1分間浸すフッ酸処
理を行なう。従来は上部絶縁膜15をエツチングしない
ように0.05%)IF液に30秒浸す処理しか行えな
かった。
After peeling off the photoresist film, in order to clean the surface of the amorphous 5i14, a hydrofluoric acid treatment is performed by immersing it in a 1% HF solution for 1 minute. Conventionally, in order to avoid etching the upper insulating film 15, it was only possible to immerse the upper insulating film 15 in a 0.05% IF solution for 30 seconds.

このフッ酸処理後、ただちにプラズマCVD法を用いて
n+アモルファスSil 6、スパッタ法を用いてソー
ス・ドレイン電極となるクロミウムから成る金属膜17
を形成する。n+アモルファスSil 6の成膜は、P
H3を0.5%混合しなS i tl 4を原料カスに
用い、真空度100Pa、高周波電力密度0.02W 
/ cm 2、基板温度250℃の条件で厚さ50nm
成膜した。クロミウム17の膜厚は150nmである。
Immediately after this hydrofluoric acid treatment, a metal film 17 made of n+ amorphous Sil 6 is deposited using a plasma CVD method, and a metal film 17 made of chromium, which will become the source/drain electrode, is deposited using a sputtering method.
form. The deposition of n+ amorphous Sil 6 was performed using P
Si tl 4 mixed with 0.5% H3 was used as the raw material waste, vacuum degree was 100 Pa, and high frequency power density was 0.02 W.
/cm2, thickness 50nm at a substrate temperature of 250℃
A film was formed. The film thickness of chromium-17 is 150 nm.

ここで、フォトリソグラフィ法によりソース・ドレイン
の形状にフォトレジスト膜を形成し、まず電極となるク
ロミウム17をウェットエツチングする。次に、n+ア
モルファス5i16をドライエツチングによりパターニ
ングする。この時、エツチング時間を多少長くしても上
部絶縁膜15はエツチングされるおそれはない。そして
、上部絶縁膜15を保護するクロミウム膜1をウェット
エツチング法により除去し、ソース・ドレイン18.1
9が形成される。最後に、アモルファス5i14の不用
な部分をエツチング除去し、トランジスタが完成する。
Here, a photoresist film is formed in the shape of a source/drain by photolithography, and first, chromium 17, which will become an electrode, is wet-etched. Next, the n+ amorphous 5i16 is patterned by dry etching. At this time, there is no fear that the upper insulating film 15 will be etched even if the etching time is increased somewhat. Then, the chromium film 1 protecting the upper insulating film 15 is removed by wet etching, and the source/drain 18.1 is etched.
9 is formed. Finally, unnecessary portions of the amorphous 5i14 are removed by etching to complete the transistor.

このような製造プロセスで作製した薄膜電界効果型トラ
ンジスタは歩留まりよく上部絶縁膜を残して形成できる
。また、基板内で250 mm角の範囲でON電流の分
布が30%以内に入り、良好な均一性が得られた。
A thin film field effect transistor manufactured by such a manufacturing process can be formed with a high yield while leaving an upper insulating film. Furthermore, the ON current distribution was within 30% within a 250 mm square area within the substrate, and good uniformity was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は上部絶縁膜のエツチング防止層として金属保護
膜を使用することにより、n+層形成前のフッ酸処理を
十分行える。その結果、基板全体で再現性よくソース・
トレインのオーミックコンタクトが形成できるようにな
り、良好なON電流の均一性が得られる。また、上部絶
縁膜上のn+アモルファスSiのエツチングのプロセス
マージンが大きくなり、歩留まりも改善される。
In the present invention, by using a metal protective film as an etching prevention layer for the upper insulating film, the hydrofluoric acid treatment before forming the n+ layer can be carried out sufficiently. As a result, the source and
It becomes possible to form an ohmic contact with the train, and good uniformity of ON current can be obtained. Further, the process margin for etching the n+ amorphous Si on the upper insulating film is increased, and the yield is also improved.

夕の製造工程図、第2図は、従来の薄膜電界効果型トラ
ンジスタの製造工程図をそれぞれ示す。
FIG. 2 shows a manufacturing process diagram of a conventional thin film field effect transistor.

11.21・・・絶縁性基板、12.22・・・ゲート
電極、13.23・・・ゲート絶縁膜、14.24・・
・アモルファスSi、15.25・・・上部絶縁膜、1
・・・金属保護膜、16.26・・・n+アモルファス
Si、17.27・・・金属膜、18.28・・・ソー
ス、19.29・・・ドレイン。
11.21... Insulating substrate, 12.22... Gate electrode, 13.23... Gate insulating film, 14.24...
・Amorphous Si, 15.25... Upper insulating film, 1
...Metal protective film, 16.26...n+ amorphous Si, 17.27...Metal film, 18.28...Source, 19.29...Drain.

代理人 弁理士  内 原  晋Agent Patent Attorney Susumu Uchihara

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の薄膜電界効果型トランジス戸 図 肩 ? FIG. 1 shows a thin film field effect transistor door of the present invention. figure shoulder ?

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上にゲート電極、ゲート絶縁膜、非晶質半
導体膜、上部絶縁膜を順次形成し、前記ゲート電極上以
外の部分の前記上部絶縁膜を除去した後、ソース及びド
レイン電極を形成する薄膜電界効果型トランジスタ素子
の製造方法において、前記上部絶縁膜の上に金属保護膜
を形成し、前記ゲート電極上以外の部分の前記金属保護
膜と前記上部絶縁膜を除去し、前記ソース及びドレイン
電極を形成し、最後に前記金属保護膜を除去する工程を
有することを特徴とした薄膜電界効果型トランジスタ素
子の製造方法。
A gate electrode, a gate insulating film, an amorphous semiconductor film, and an upper insulating film are sequentially formed on an insulating substrate, and after removing the upper insulating film in a portion other than on the gate electrode, a source and a drain electrode are formed. In the method for manufacturing a thin film field effect transistor element, a metal protective film is formed on the upper insulating film, the metal protective film and the upper insulating film are removed in a portion other than over the gate electrode, and the metal protective film and the upper insulating film are removed from the source and drain regions. A method for manufacturing a thin film field effect transistor element, comprising the steps of forming an electrode and finally removing the metal protective film.
JP1006180A 1989-01-12 1989-01-12 Manufacture of thin film field-effect transistor element Pending JPH02186641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006180A JPH02186641A (en) 1989-01-12 1989-01-12 Manufacture of thin film field-effect transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006180A JPH02186641A (en) 1989-01-12 1989-01-12 Manufacture of thin film field-effect transistor element

Publications (1)

Publication Number Publication Date
JPH02186641A true JPH02186641A (en) 1990-07-20

Family

ID=11631350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006180A Pending JPH02186641A (en) 1989-01-12 1989-01-12 Manufacture of thin film field-effect transistor element

Country Status (1)

Country Link
JP (1) JPH02186641A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311443A (en) * 1991-03-26 1993-11-22 Semiconductor Energy Lab Co Ltd Production of diamond coated member
JPH06283430A (en) * 1993-01-28 1994-10-07 Applied Materials Inc Method for execution of multilayer cvd at inside of single chamber
WO2006006369A1 (en) * 2004-07-12 2006-01-19 Pioneer Corporation Semiconductor device
JP2006128593A (en) * 2004-09-29 2006-05-18 Sony Corp Nonvolatile memory device and method for producing the same
JP2006147811A (en) * 2004-11-19 2006-06-08 Casio Comput Co Ltd Thin film transistor and method of manufacturing the same
JP2007304557A (en) * 2006-05-09 2007-11-22 Lg Philips Lcd Co Ltd Liquid crystal display and method of fabricating the same
JP2014033181A (en) * 2012-04-06 2014-02-20 Semiconductor Energy Lab Co Ltd Insulating film, manufacturing method of semiconductor device, and semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311443A (en) * 1991-03-26 1993-11-22 Semiconductor Energy Lab Co Ltd Production of diamond coated member
JPH06283430A (en) * 1993-01-28 1994-10-07 Applied Materials Inc Method for execution of multilayer cvd at inside of single chamber
US6338874B1 (en) 1993-01-28 2002-01-15 Applied Materials, Inc. Method for multilayer CVD processing in a single chamber
JPWO2006006369A1 (en) * 2004-07-12 2008-04-24 パイオニア株式会社 Semiconductor device
WO2006006369A1 (en) * 2004-07-12 2006-01-19 Pioneer Corporation Semiconductor device
JP2006128593A (en) * 2004-09-29 2006-05-18 Sony Corp Nonvolatile memory device and method for producing the same
JP2006147811A (en) * 2004-11-19 2006-06-08 Casio Comput Co Ltd Thin film transistor and method of manufacturing the same
JP2007304557A (en) * 2006-05-09 2007-11-22 Lg Philips Lcd Co Ltd Liquid crystal display and method of fabricating the same
JP2011107713A (en) * 2006-05-09 2011-06-02 Lg Display Co Ltd Liquid crystal display device and method for manufacturing the same
JP2014033181A (en) * 2012-04-06 2014-02-20 Semiconductor Energy Lab Co Ltd Insulating film, manufacturing method of semiconductor device, and semiconductor device
US9570626B2 (en) 2012-04-06 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US10096719B2 (en) 2012-04-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
KR20200027055A (en) * 2012-04-06 2020-03-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US10741694B2 (en) 2012-04-06 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US11437523B2 (en) 2012-04-06 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
JPS6151878A (en) Manufacture of thin-film transistor
JPH0640550B2 (en) Method of manufacturing thin film transistor
JPH0555570A (en) Thin film semiconductor device and manufacture thereof
JPS62205664A (en) Manufacture of thin film transistor
JPH02186641A (en) Manufacture of thin film field-effect transistor element
JPH05304171A (en) Thin-film transistor
JP3901460B2 (en) Thin film transistor manufacturing method
JPH02199842A (en) Manufacture of thin-film field-effect transistor element
JPS6014474A (en) Manufacture of thin film transistor
JPH0547981B2 (en)
JPS6347981A (en) Thin film transistor and manufacture thereof
JPH02232925A (en) Selective etching of amorphous silicon
KR100611221B1 (en) Polycrystalline Si Thin Film Transistor and method of fabricating the same
JPH09270517A (en) Method of manufacturing thin film transistor
JPH09129590A (en) Manufacture of thin film transistor
KR100217140B1 (en) Manufacturing method of tft
JPS6292371A (en) Thin-film transistor and manufacture thereof
KR970006256B1 (en) Fabrication of tft
KR100304911B1 (en) Method for manufacturing thin film transistor
JPS62299084A (en) Manufacture of thin film transistor
JP2004165286A (en) Method for manufacturing thin film transistor
KR970006253B1 (en) Fabrication method of tft
JPS62241377A (en) Thin film transistor and manufacture thereof
JP2000147535A (en) Transparent conductive film
JPH05283692A (en) Manufacture of thin film transistor array