JPS61145870A - Thin-film field effect transistor and manufacture thereof - Google Patents

Thin-film field effect transistor and manufacture thereof

Info

Publication number
JPS61145870A
JPS61145870A JP26908784A JP26908784A JPS61145870A JP S61145870 A JPS61145870 A JP S61145870A JP 26908784 A JP26908784 A JP 26908784A JP 26908784 A JP26908784 A JP 26908784A JP S61145870 A JPS61145870 A JP S61145870A
Authority
JP
Japan
Prior art keywords
layer
thin film
semiconductor layer
organic thin
positive resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26908784A
Other languages
Japanese (ja)
Other versions
JPH0695574B2 (en
Inventor
Ikunori Kobayashi
郁典 小林
Sadakichi Hotta
定吉 堀田
Hiroki Saito
弘樹 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59269087A priority Critical patent/JPH0695574B2/en
Publication of JPS61145870A publication Critical patent/JPS61145870A/en
Publication of JPH0695574B2 publication Critical patent/JPH0695574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Abstract

PURPOSE:To obtain TFT free from such defects as corrosion of a first insulating film and disconnection of a gate bus wiring, by using an organic thin film as a second insulating layer so that a liquid not corroding a semiconductor layer, the first insulating layer and a first metal layer can be used as an etching liquid in a process of removing the second insulating layer. CONSTITUTION:After a gate electrode 2 is formed on a glass substrate 1 by selective connection, a silicon nitride insulating film 3 and an amorphous silicon semiconductor layer 41 are deposited sequentially, and further polyimide 61 is applied by coating. Subsequently, a part of the polyimide 61 other than a necessary part thereof is removed by using a positive resist and a developing solution therefor, and then the positive resist is removed. Thereafter an amorphous silicon semiconductor layer 51 containing phosphorus is deposited on the whole surface. Since the developing solution for the positive resist can be used for selective removal of the polyimide, the polyimide can be removed simultaneously with the development of the positive resist. Moreover, the silicon nitride 3 is not corroded even when the developing solution for the positive resist penetrates through a pinhole of the amorphous silicon semiconductor layer 41 or others, and also no disconnection occurs in a bus wiring of the gate electrode 2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液晶等と組合せて画像表示装置を構成するた
めのシリコンを主成分とする非晶質シリコン半導体より
なる薄膜電界効果トランジスタ以後TPTと呼ぶ)およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film field effect transistor (hereinafter referred to as TPT) made of an amorphous silicon semiconductor mainly composed of silicon and used in combination with a liquid crystal etc. to constitute an image display device. ) and its manufacturing method.

従来の技術 第3図に従来のTPTの要部構成断面図を示す。Conventional technology FIG. 3 shows a sectional view of the main part of a conventional TPT.

ガラス等の絶縁基板1上にゲート電極なる第1の導電体
2が被着形成され、第1の絶縁層3を介して非晶質シリ
コン半導体層が形成され、前記半導体層のチャンネル部
上に窒化シリコン等からなる第2の絶縁層8が被着形成
され、さらにソース・ドレイン電極17a、17bがリ
ン等を添加した非晶質シリコン層15を介して形成され
ている逆スタガー型TPTである。
A first conductor 2 serving as a gate electrode is deposited on an insulating substrate 1 made of glass or the like, an amorphous silicon semiconductor layer is formed with a first insulating layer 3 interposed therebetween, and an amorphous silicon semiconductor layer is formed on the channel portion of the semiconductor layer. This is an inverted stagger type TPT in which a second insulating layer 8 made of silicon nitride or the like is deposited, and source/drain electrodes 17a and 17b are formed via an amorphous silicon layer 15 doped with phosphorus or the like. .

次に上述の構造をもつTPTの製作工程について簡単に
説明する。まず、ガラス等の絶縁基板上にゲート電極な
る第1の金属層2を選択的に被着形成する。ついで全面
に第1の絶縁層3.非晶質シリコン半導体層4.窒化シ
リコン、酸化シリコン等からなる第2の絶縁層8を順次
被着する。この第2の絶縁層8は大気、液晶材料等に対
する保護、または不純物を含む非晶質シリコン層除去時
のチャンネル部保護を目的とするものである。次に前述
の第2の絶縁層8の一部をチャンネル部上に残した後に
、不純物を含む非晶質シリコン層を全面に被着する。そ
の後、第3図に示すように、非晶質シリコン半導体層お
よび不純物を含む非晶質シリコン層を島状にする。さら
に、ソース・ドレインを形成した後、第2の絶縁層上に
残つている不純物を含むシリコン層を除去して第3図に
示すTPTが完成する。(特願昭57−95343)発
明が解決しようとする問題点 このような従来あ構造、材料のTPTでは窒化シリコン
、酸化シリコン等からなる第2の絶縁層の除去工程にお
いてフッ酸系統のエツチング液を使用するために、第1
の非単結晶半導体層のピンホール等からエツチング液が
浸入して第1の絶縁膜の腐食およびゲート電極のバス配
線を切断するという不良を発生しやすかった。
Next, the manufacturing process of the TPT having the above structure will be briefly explained. First, a first metal layer 2 serving as a gate electrode is selectively deposited on an insulating substrate such as glass. Next, a first insulating layer 3 is applied to the entire surface. Amorphous silicon semiconductor layer 4. A second insulating layer 8 made of silicon nitride, silicon oxide, etc. is successively deposited. The purpose of this second insulating layer 8 is to protect against the atmosphere, liquid crystal material, etc., or to protect a channel portion when removing an amorphous silicon layer containing impurities. Next, after leaving a portion of the second insulating layer 8 on the channel portion, an amorphous silicon layer containing impurities is deposited over the entire surface. Thereafter, as shown in FIG. 3, the amorphous silicon semiconductor layer and the amorphous silicon layer containing impurities are formed into an island shape. Furthermore, after forming the source and drain, the silicon layer containing impurities remaining on the second insulating layer is removed to complete the TPT shown in FIG. 3. (Patent Application No. 57-95343) Problems to be Solved by the Invention In the conventional structure and material of TPT, a hydrofluoric acid-based etching solution is not used in the process of removing the second insulating layer made of silicon nitride, silicon oxide, etc. In order to use
The etching solution penetrates through pinholes in the non-single crystal semiconductor layer, which tends to cause corrosion of the first insulating film and breakage of the gate electrode bus wiring.

本発明はかかる問題点に鑑みなされたもので、第2の絶
縁層として液晶等に不純物が溶は出すことのない有機薄
膜を使用することにより、TPT作製工程における第1
の絶縁膜の腐食およびゲートバス配線切断の不良のない
TPTおよびその製造方法を提供することを目的として
いる。
The present invention was made in view of this problem, and by using an organic thin film that does not dissolve impurities into the liquid crystal etc. as the second insulating layer, the first insulating layer in the TPT manufacturing process is
An object of the present invention is to provide a TPT which is free from defects such as corrosion of the insulating film and disconnection of gate bus wiring, and a method for manufacturing the same.

問題点を解決するための手段 本発明は上記問題点を解決するため第2の絶縁層の除去
工程におけるエツチング液に、半導体層。
Means for Solving the Problems In order to solve the above problems, the present invention uses a semiconductor layer as an etching solution in the second insulating layer removal process.

第1の絶縁層、第1の金属層を腐食させない液が使用で
きるように、第2の絶縁層として有機薄膜を用いること
を特徴とする。
A feature is that an organic thin film is used as the second insulating layer so that a liquid that does not corrode the first insulating layer and the first metal layer can be used.

作用 本発明は上記の技術的手段により、第2の絶縁層である
有機薄膜層の除去工程において第1の半導体層のピンホ
ールなどより有機薄膜のエツチング液が浸入したとして
も、第1の絶縁膜が腐食されることなく、さらにゲート
電極のバス゛配線が切断されることのない良好なTPT
を作製できる。
Effect of the present invention By using the above-mentioned technical means, even if the etching solution for the organic thin film enters through a pinhole in the first semiconductor layer during the removal process of the organic thin film layer that is the second insulating layer, the first insulating layer can be removed. A good TPT that does not corrode the film and prevent the bus wiring of the gate electrode from being cut.
can be created.

実施例 第1図は本発明の一実施例であるTPTの要部構成断面
図を示す。第1図において、1はガラス基板、2はモリ
ブデンゲート電極、3は窒化シリコン絶縁膜、4は非晶
質シリコン半導体層、6はリンを含む非晶質シリコン半
導体層、6はポリイばド、7a、7bはアルばニウムよ
りなるソース・ドレイン電極である。そのTPTの工程
断面図を第2図に示す。まず第2図aに示すように、ガ
ラス基板1上にゲート電極2を選択的に被着形成した後
に窒化シリコン絶縁膜3、非晶シリコン半導体層41を
順次堆積し、さらにポリイミド61を塗布する。つづい
て、ポジレジスト及びその現像液を使用して前述のポリ
イばドロ1の必要以外の部分を除去し、ポジレジストを
除いて第2図すに至る。その後、第2図Cに示すように
全面にリンを含む非晶質シリコン半導体層61を堆積し
、第2図dに示すように非晶質シリコン半導体層41と
リンを含む非晶質シリコン半導体層51を島状に形成す
る。さらに第2図6に示すようにソース・ドレイン電極
7&、7bを被着形成し、それをマスクにして、ボリイ
はドロ上に被着しているリンを含む非晶質シリコン半導
体層62を除去して本発明によるTPTが完成する。
Embodiment FIG. 1 shows a sectional view of the main part of a TPT which is an embodiment of the present invention. In FIG. 1, 1 is a glass substrate, 2 is a molybdenum gate electrode, 3 is a silicon nitride insulating film, 4 is an amorphous silicon semiconductor layer, 6 is an amorphous silicon semiconductor layer containing phosphorus, 6 is a polyimide, Reference numerals 7a and 7b are source/drain electrodes made of aluminum. A cross-sectional view of the TPT process is shown in FIG. First, as shown in FIG. 2a, a gate electrode 2 is selectively deposited on a glass substrate 1, a silicon nitride insulating film 3 and an amorphous silicon semiconductor layer 41 are sequentially deposited, and polyimide 61 is further applied. . Subsequently, using a positive resist and its developer, unnecessary portions of the above-mentioned polyimide film 1 are removed, and the positive resist is removed, resulting in the process shown in FIG. Thereafter, as shown in FIG. 2C, an amorphous silicon semiconductor layer 61 containing phosphorus is deposited on the entire surface, and as shown in FIG. The layer 51 is formed into an island shape. Furthermore, as shown in FIG. 2, source/drain electrodes 7&, 7b are deposited and, using these as a mask, the amorphous silicon semiconductor layer 62 containing phosphorus deposited on the electrode is removed. Thus, the TPT according to the present invention is completed.

本実施例によれば、ポリイミドの選択的な除去にポジレ
ジスト用現像液を使用できるために、ポジレジスト現像
と同時にボリイばドを除去でキルという利点を有し、さ
らにポジレジスト現像液が非晶質シリコン半導体層41
のピンホールなどをとおして侵入しても窒化シリコン3
を腐食することなく、ゲート電極2のバス配線を切断す
ることもない。
According to this embodiment, since the positive resist developer can be used to selectively remove polyimide, there is an advantage that the polyimide can be removed and killed at the same time as the positive resist development, and furthermore, the positive resist developer is Crystalline silicon semiconductor layer 41
Silicon nitride 3
The bus wiring of the gate electrode 2 is not cut off without corroding the gate electrode 2.

また、ポリイミドは300℃の雰囲気下でも形状変化等
の劣化がないことから、リンを含む非晶質シリコン半導
体層を200℃〜300℃の比較的高温で堆積できるた
めに、非晶質シリコン半導体層との良好なオータックコ
ンタクトが得られて、その信頼性向上がはかれる。また
ポリイミドは液晶により溶解されないために、液晶に対
するチャンネル部の保護としても有効である。
In addition, since polyimide does not undergo deterioration such as shape change even in an atmosphere of 300°C, an amorphous silicon semiconductor layer containing phosphorus can be deposited at a relatively high temperature of 200°C to 300°C. Good auto-tack contact with the layer can be obtained, improving its reliability. Furthermore, since polyimide is not dissolved by liquid crystal, it is also effective in protecting the channel portion against liquid crystal.

さらに、従来のTPTの第2の絶縁層として使用した窒
化シリコン、酸化シリコン等の無機物質の被着方法より
もポリイばド等の有機薄膜の方がより容易であるために
コストダウン、製作量産性にすぐれる。
Furthermore, since organic thin films such as polyide are easier to deposit than inorganic materials such as silicon nitride and silicon oxide used as the second insulating layer of conventional TPT, costs can be reduced and mass production is possible. Excellent sex.

次に本発明の他の実施例について説明する。この実施例
では前述の実施例で使用したポリイミドの代わりに感光
性の日本合成ゴム(株)製JSRを用いる。本実施例に
よれば、JSHの必要以外の部分の除去工程においてレ
ジストを使用する必要がない。従って、前述の実施例に
加えてレジストの塗布および除去工程を簡略化できる利
点を有する。
Next, other embodiments of the present invention will be described. In this example, photosensitive JSR manufactured by Japan Synthetic Rubber Co., Ltd. is used in place of the polyimide used in the previous example. According to this embodiment, there is no need to use resist in the process of removing unnecessary portions of JSH. Therefore, in addition to the above-described embodiments, this embodiment has the advantage that the resist coating and removal steps can be simplified.

第4図は本発明の他の実施例であるTPTの要部構成断
面図である。本実施例は、図に示すごとく、有機薄膜層
であるポリイミド16をゲート電極2と同一の形状で被
着形成することにより、チャンネル部におけるソース・
ドレイン電極28a。
FIG. 4 is a sectional view of the main part of a TPT according to another embodiment of the present invention. In this embodiment, as shown in the figure, a polyimide layer 16, which is an organic thin film layer, is deposited in the same shape as the gate electrode 2, so that the source and
Drain electrode 28a.

28bとゲート電極2との重なりによって生じる奇生容
量を減少させるのに有効であり、その結果、TFTのス
イッチ動作特性が向上する。
This is effective in reducing the parasitic capacitance caused by the overlap between the gate electrode 28b and the gate electrode 2, and as a result, the switching characteristics of the TFT are improved.

なお、以上実施例は半導体層として非晶質シリコンを用
いたTPTを中心に説明したが、本発明は微結晶シリコ
ン、多結晶シリコン、単結晶シリコン等のシリコン全般
を半導体層として用いたTPTに適用できる。
Although the above embodiments have mainly been described with respect to TPTs using amorphous silicon as the semiconductor layer, the present invention is applicable to TPTs using any type of silicon such as microcrystalline silicon, polycrystalline silicon, single crystal silicon, etc. as the semiconductor layer. Applicable.

発明の効果 以上述べてきたように、本発明は不純物を含む半導体層
の除去工程等におけるTPTのチャンネル部保護に液晶
等に溶は出すことがなく、又耐熱性を有する有機薄膜を
用いることにより、そのエツチング液に有機溶剤の使用
が可能となり、従って、半導体層のピンホールなどをと
おしてエツチング液が浸入して第1の絶縁層を腐食しゲ
ートバス配線を切断することなく良好なTPTを作製で
きる効果を有する。また、誘電率の小さい有機薄膜を使
用することにより、ソース・ドレイン電極とゲート電極
の重なりによる奇生容量が小さくなり、TPTのスイッ
チ動作特性を向上させる効果をも有する。
Effects of the Invention As described above, the present invention protects the channel portion of TPT during the process of removing semiconductor layers containing impurities by using an organic thin film that does not dissolve into liquid crystals and has heat resistance. , it is now possible to use an organic solvent in the etching solution, and therefore a good TPT can be obtained without the etching solution penetrating through pinholes in the semiconductor layer, corroding the first insulating layer, and cutting the gate bus wiring. It has an effect that can be created. Furthermore, by using an organic thin film with a low dielectric constant, the parasitic capacitance caused by the overlap between the source/drain electrode and the gate electrode is reduced, which also has the effect of improving the switching characteristics of the TPT.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図は本発明の実施例におけるTPTの要部
構成断面図、第2図(a)〜(5)はそのTPTの工程
断面図、第3図は従来のTPTの構造断面図である。 1・・・・・・ガラス基板、2・・・・・・ゲート電極
、3・・・・・・絶縁薄膜層、4,41・・・・・・非
晶質シリコン半導体層、5,51.52,15.25・
・・・・・不純物を含む非晶質シリコン半導体層、6,
61.16・・・・・・有機薄膜層、7a 、7b 、
2T& 、27b−山−・ソース・ドレイン電極、8・
・・・・・第2の絶縁層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名CJ 、6           0 憾    d            、      
       −へ      寸q
Figures 1 and 4 are cross-sectional views of the main parts of a TPT according to an embodiment of the present invention, Figures 2 (a) to (5) are process cross-sectional views of the TPT, and Figure 3 is a structural cross-section of a conventional TPT. It is a diagram. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Gate electrode, 3... Insulating thin film layer, 4, 41... Amorphous silicon semiconductor layer, 5, 51 .52, 15.25・
...Amorphous silicon semiconductor layer containing impurities, 6,
61.16...Organic thin film layer, 7a, 7b,
2T&, 27b-mountain-source/drain electrode, 8.
...Second insulating layer. Name of agent: Patent attorney Toshio Nakao and one other person CJ, 60 d,
-to sizeq

Claims (5)

【特許請求の範囲】[Claims] (1)基板の一主面上に第1の導電体層が選択的に形成
され、絶縁薄膜層を介してシリコンを主成分とする第1
の半導体層が前記第1の導電体層と一部重り合う様に選
択的に形成され、有機薄膜層が前記第1の導電体層と前
記第1の半導体層とに一部重り合う様に選択的に形成さ
れ、第2の導電体層が不純物を含むシリコンを主成分と
する第2の半導体層を介して前記有機薄膜層と前記第1
の半導体層と一部重り合う様に選択的に形成されている
ことを特徴とする薄膜電界効果トランジスタ。
(1) A first conductor layer is selectively formed on one main surface of the substrate, and a first conductor layer mainly composed of silicon is formed through an insulating thin film layer.
a semiconductor layer is selectively formed so as to partially overlap the first conductor layer, and an organic thin film layer is formed so as to partially overlap the first conductor layer and the first semiconductor layer. A second conductive layer is formed selectively and connects the organic thin film layer and the first semiconductor layer through a second semiconductor layer mainly composed of silicon containing impurities.
A thin film field effect transistor characterized in that it is formed selectively so as to partially overlap with a semiconductor layer.
(2)有機薄膜層が耐熱性を有していることを特徴とす
る特許請求の範囲第1項記載の薄膜電界効果トランジス
タ。
(2) The thin film field effect transistor according to claim 1, wherein the organic thin film layer has heat resistance.
(3)有機薄膜層が感光性を有していることを特徴とす
る特許請求の範囲第1項記載の薄膜電界効果トランジス
タ。
(3) The thin film field effect transistor according to claim 1, wherein the organic thin film layer is photosensitive.
(4)有機薄膜層が選択的に形成された第1の導電体層
の形状の一部と整合して形成されていることを特徴とす
る特許請求の範囲第1項記載の薄膜電界効果トランジス
タ。
(4) The thin film field effect transistor according to claim 1, wherein the organic thin film layer is formed to match a part of the shape of the selectively formed first conductor layer. .
(5)基板上に第1の導電体層を選択的に形成する工程
と、全面に第1の絶縁薄膜層、第1の半導体層、有機薄
膜層を順次形成する工程と、前記第1の導電体層の一部
とに重なる様に前記有機薄膜層を選択的に残し他を除去
する工程と、全面に不純物を含む半導体層を形成する工
程と、残存している前記有機薄膜層を含む前記半導体層
および前記不純物を含む半導体層とを島状に形成する工
程と、前記残存している有機薄膜層の一部と前記不純物
を含む半導体層の一部に重なり合う様に第2の導電体層
を選択的に被着形成する工程と、前記有機薄膜層上に被
着している前記不純物を含む半導体層を除去する工程と
を有する薄膜電界効果トランジスタの製造方法。
(5) a step of selectively forming a first conductor layer on the substrate; a step of sequentially forming a first insulating thin film layer, a first semiconductor layer, and an organic thin film layer on the entire surface; The method includes a step of selectively leaving the organic thin film layer so as to overlap with a part of the conductor layer and removing the others, a step of forming a semiconductor layer containing impurities on the entire surface, and a step of removing the remaining organic thin film layer. forming the semiconductor layer and the impurity-containing semiconductor layer into an island shape; and forming a second conductor so as to overlap a part of the remaining organic thin film layer and a part of the impurity-containing semiconductor layer. A method for manufacturing a thin film field effect transistor, comprising the steps of selectively depositing a layer and removing the impurity-containing semiconductor layer deposited on the organic thin film layer.
JP59269087A 1984-12-19 1984-12-19 Method of manufacturing thin film field effect transistor Expired - Fee Related JPH0695574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59269087A JPH0695574B2 (en) 1984-12-19 1984-12-19 Method of manufacturing thin film field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269087A JPH0695574B2 (en) 1984-12-19 1984-12-19 Method of manufacturing thin film field effect transistor

Publications (2)

Publication Number Publication Date
JPS61145870A true JPS61145870A (en) 1986-07-03
JPH0695574B2 JPH0695574B2 (en) 1994-11-24

Family

ID=17467484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269087A Expired - Fee Related JPH0695574B2 (en) 1984-12-19 1984-12-19 Method of manufacturing thin film field effect transistor

Country Status (1)

Country Link
JP (1) JPH0695574B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956680A (en) * 1986-12-22 1990-09-11 Seiko Instruments Inc. Thin film transistor
JPH02118954U (en) * 1989-03-10 1990-09-25
JPH03295275A (en) * 1990-04-13 1991-12-26 Fuji Xerox Co Ltd Thin film transistor
KR100529569B1 (en) * 1997-12-09 2006-02-08 삼성전자주식회사 Manufacturing method of thin film transistor for liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212177A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof
JPS5954270A (en) * 1982-09-21 1984-03-29 Sanyo Electric Co Ltd Field effect transistor
JPS59113667A (en) * 1982-12-20 1984-06-30 Fujitsu Ltd Manufacture of thin film transistor
JPS59136971A (en) * 1983-01-26 1984-08-06 Toshiba Corp Manufacture of thin-film field-effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212177A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof
JPS5954270A (en) * 1982-09-21 1984-03-29 Sanyo Electric Co Ltd Field effect transistor
JPS59113667A (en) * 1982-12-20 1984-06-30 Fujitsu Ltd Manufacture of thin film transistor
JPS59136971A (en) * 1983-01-26 1984-08-06 Toshiba Corp Manufacture of thin-film field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956680A (en) * 1986-12-22 1990-09-11 Seiko Instruments Inc. Thin film transistor
JPH02118954U (en) * 1989-03-10 1990-09-25
JPH03295275A (en) * 1990-04-13 1991-12-26 Fuji Xerox Co Ltd Thin film transistor
KR100529569B1 (en) * 1997-12-09 2006-02-08 삼성전자주식회사 Manufacturing method of thin film transistor for liquid crystal display device

Also Published As

Publication number Publication date
JPH0695574B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JPS60103676A (en) Manufacture of thin film transistor array
JPS6151878A (en) Manufacture of thin-film transistor
JPS59208783A (en) Thin film transistor
US5963797A (en) Method of manufacturing semiconductor devices
JPH1195256A (en) Active matrix substrate
US6562667B1 (en) TFT for LCD device and fabrication method thereof
KR970010774B1 (en) Thin film transistor for liquid crystal device
JPH05304171A (en) Thin-film transistor
JPS61145870A (en) Thin-film field effect transistor and manufacture thereof
JPS6151972A (en) Thin film transistor array and manufacture thereof
JPH01101668A (en) Manufacture of thin film transistor array
JPH0587029B2 (en)
TW400653B (en) Thin film transistor, LCD having thin film transistors, and method for making TFT array board
JP4034376B2 (en) Manufacturing method of active matrix type liquid crystal display device
JPS6042868A (en) Manufacture of amorphous silicon thin film fet
KR20020076859A (en) a method of fabricating a array substrate with poly-silicon TFT and a poly-silicon TFT
JPH06169086A (en) Polycrystalline silicon thin film transistor
JPH05323380A (en) Production of thin-film transistor panel
JP3312490B2 (en) Method for manufacturing thin film transistor
KR100683143B1 (en) Method for producing polycrystalline silicon tft of fringe field switching mode
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
KR100239782B1 (en) Method of fabricating a thin film transistor
KR0156180B1 (en) Method for producing lcd device
KR100269356B1 (en) Method of fabricating thin film transistor
KR970005952B1 (en) Thin film transistor & method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees