JPH0240740B2 - - Google Patents

Info

Publication number
JPH0240740B2
JPH0240740B2 JP57008344A JP834482A JPH0240740B2 JP H0240740 B2 JPH0240740 B2 JP H0240740B2 JP 57008344 A JP57008344 A JP 57008344A JP 834482 A JP834482 A JP 834482A JP H0240740 B2 JPH0240740 B2 JP H0240740B2
Authority
JP
Japan
Prior art keywords
film
cylindrical
roll
magnetic metal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008344A
Other languages
Japanese (ja)
Other versions
JPS58126981A (en
Inventor
Hiroshi Myama
Yasuhiko Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP834482A priority Critical patent/JPS58126981A/en
Publication of JPS58126981A publication Critical patent/JPS58126981A/en
Publication of JPH0240740B2 publication Critical patent/JPH0240740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は薄膜製造装置に関し、磁性体金属薄膜
を記録層とする磁気記録媒体、特に長尺の磁気テ
ープ等の磁気記録媒体等の薄膜の製造に有用な薄
膜製造装置に関し、薄膜の結晶性の向上を図るこ
とを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film manufacturing apparatus, and a thin film manufacturing apparatus useful for manufacturing thin films of magnetic recording media having a magnetic metal thin film as a recording layer, particularly magnetic recording media such as long magnetic tapes. The purpose of this study is to improve the crystallinity of thin films.

以下磁性体金属薄膜の場合を中心に述べる。近
年、磁気記録装置の高密度記録化にともない従来
から使用されているγ−Fe2O3の針状結晶をバイ
ンダーと共に基体に接着した塗布型記録媒体に対
し、金属薄膜型の磁気記録装置の研究開発が行な
われている。これらの磁気記録媒体は、非磁性の
基板上に、真空蒸着、スパツタリング、イオンプ
レーテイング法等の手段により、磁性金属材料を
薄膜で形成するものであり、塗布型に比べて記録
層を薄くできることから高密度化の点で有利とな
つている。また、従来の長手記録に対し、同じ
く、真空蒸着法、スパツタリング法等の手段を用
いて、垂直磁化記録層を形成することも提案され
ており、この方式によれば、従来の磁気記録方式
の10倍程度の高密度記録が可能になる。
The case of a magnetic metal thin film will be mainly described below. In recent years, with the trend towards higher density recording in magnetic recording devices, metal thin film magnetic recording devices have been changing from the conventionally used coating type recording media in which needle-shaped γ-Fe 2 O 3 crystals are adhered to the substrate together with a binder. Research and development is underway. These magnetic recording media are made by forming a thin film of magnetic metal material on a non-magnetic substrate by means such as vacuum evaporation, sputtering, or ion plating, and the recording layer can be made thinner than in coating-type media. This makes it advantageous in terms of high density. Furthermore, for conventional longitudinal recording, it has also been proposed to form a perpendicular magnetization recording layer using vacuum evaporation, sputtering, or other means. Enables high-density recording approximately 10 times higher.

ここで、これらの磁性金属材料を形成する手段
としてはメツキ等湿式法以外に真空蒸着、スパツ
タリング、イオンプレーテイング法等の真空技術
を利用した方法が採用されているが、これらの方
法で単純に磁性金属材料を薄膜化すれば、所望の
特性のものが得られる訳ではない。特に磁気記録
材料として要求される点は、高飽和磁気、高抗磁
力等であり、そのためには、磁性金属膜として高
い結晶性が要求されることが多い。例えば、垂直
磁化記録用CoCr膜においては、その膜のC軸配
向度の角度半値幅(回折X線強度が1/2になる角
度幅)は、10゜以内が垂直磁化記録用磁性体とし
て最適と報告されている。(昭52年電気関係学会
東北支部連合大会−1B15「CoCr垂直磁化膜の結
晶配向」) 従つて高い結晶性を有する磁性金属膜を、基体
上にいかに効率良く形成するかが課題となつてい
る。
In addition to wet methods such as plating, methods using vacuum techniques such as vacuum evaporation, sputtering, and ion plating methods are used to form these magnetic metal materials; Making a magnetic metal material thinner does not necessarily provide desired characteristics. In particular, magnetic recording materials are required to have high saturation magnetism, high coercive force, etc., and for this purpose, high crystallinity is often required as a magnetic metal film. For example, in a CoCr film for perpendicular magnetization recording, the angular half-width of the film's C-axis orientation (the angular width at which the diffraction It is reported that. (1972 Tohoku Branch Federation Conference of Electrical Related Societies - 1B15 "Crystal Orientation of CoCr Perpendicular Magnetization Film") Therefore, the challenge is how to efficiently form a magnetic metal film with high crystallinity on a substrate. .

従来の磁気記録媒体等の形成に用いられる薄膜
製造装置を第1図に示す。ベルジヤー内部の構造
としては、高分子フイルム1を送り出す供給ロー
ル2と、フイルム1の加熱もしくは、冷却を行な
う円筒状のキヤン3およびフイルム1を巻き取る
巻取りロール4からフイルム走行系が構成され
る。また、円筒状キヤン3と対向する位置には、
磁気金属材料の蒸発源5が設置され、本装置で
は、スパツタリング法としてスパツタ用電極を設
置した。円筒状キヤン3とスパッタリング電極5
との間には、ベルジヤー内の不必要な部分にスパ
ツタリングされた磁性金属材料が付着するのを防
ぐため、スパツタリング電極に対応しても開口部
をもつ防着板6が設置されている。この防着板6
は円筒状キヤン3上を走行するフイルム1に接触
してしまうと、フイルム1にキズを発生させるこ
とが考えられることから、円筒状キヤン3とは、
3〜6mm程度離して設置してある。ベルジヤー内
部は、1×10-6torr程度の真空に排気口7より排
気され、1×10-3〜1×10-2torr程度のガス圧で
スパツタリングが行なえるよう各種ガスをベルジ
ヤー内部に導入するガス導入口8が設置されてい
る。次に、このような装置を用いて、以下に示す
条件により磁性金属膜を高分子フイルム上に形成
した。
FIG. 1 shows a conventional thin film manufacturing apparatus used for forming magnetic recording media and the like. As for the internal structure of the bell gear, a film running system is composed of a supply roll 2 for feeding out the polymer film 1, a cylindrical can 3 for heating or cooling the film 1, and a take-up roll 4 for winding the film 1. . In addition, at a position facing the cylindrical can 3,
An evaporation source 5 of a magnetic metal material was installed, and in this apparatus, a sputtering electrode was installed as a sputtering method. Cylindrical can 3 and sputtering electrode 5
In order to prevent the sputtered magnetic metal material from adhering to unnecessary parts within the bell gear, a deposition prevention plate 6 having an opening corresponding to the sputtering electrode is installed between the bell gear and the bell jar. This anti-adhesion plate 6
If it comes into contact with the film 1 running on the cylindrical can 3, it may cause scratches on the film 1, so the cylindrical can 3 is
They are placed approximately 3 to 6 mm apart. The inside of the bell gear is evacuated to a vacuum of about 1×10 -6 torr through the exhaust port 7, and various gases are introduced into the bell gear so that sputtering can be performed at a gas pressure of about 1×10 -3 to 1×10 -2 torr. A gas inlet 8 is installed. Next, using such an apparatus, a magnetic metal film was formed on the polymer film under the conditions shown below.

スパツタリング条件 スパツタリングターゲツト……Co80Cr20合金 スパツタ用ガス……アルゴン スパツタ時圧力……5×10-3torr キヤン送り速度……0.1m/min キヤン温度……80℃ キヤンとターゲツトの距離……80mm 以上の条件により、高分子フイルム上にCoCr
合金膜を0.5μmの膜厚で連続形成し、これらの膜
につき、X線デフラクトメータを用いて膜のC軸
結晶配向度を評価した。第2図は、その測定デー
タで、グラフ中横軸はX線の反射角2θであり、縦
軸はX線反射強度を示す。この結果より前記した
従来の製造装置を用いて製作したCoCr合金膜の
C軸配向度は角度分布の半値幅で15゜前後と、か
なり結晶性の点で劣り、磁性記録媒体の製造装置
としては充分とは云えない。
Sputtering conditions Sputtering target...Co 80 Cr 20 alloy Sputtering gas...Argon Sputtering pressure...5 x 10 -3 torr Can feed speed...0.1m/min Can temperature...80℃ Distance between can and target ...CoCr on the polymer film under conditions of 80 mm or more.
Alloy films were continuously formed to a thickness of 0.5 μm, and the degree of C-axis crystal orientation of these films was evaluated using an X-ray defractometer. FIG. 2 shows the measured data, in which the horizontal axis shows the X-ray reflection angle 2θ, and the vertical axis shows the X-ray reflection intensity. As a result, the degree of C-axis orientation of the CoCr alloy film produced using the conventional production equipment described above is approximately 15° in terms of the half-width of the angular distribution, which is considerably inferior in terms of crystallinity, making it difficult to use as a production equipment for magnetic recording media. I can't say it's enough.

本発明は上記問題点を改善し、高分子フイルム
上に連続して磁性金属等の薄膜を形成する真空蒸
着装置、スパツタリング装置、イオンプレーテイ
ング装置等の薄膜製造装置において、形成された
磁性金属膜の高結晶化を図ることを目的とするも
のである。
The present invention improves the above-mentioned problems and uses a thin film manufacturing apparatus such as a vacuum evaporation apparatus, a sputtering apparatus, and an ion plating apparatus that continuously forms a thin film of magnetic metal or the like on a polymer film. The purpose of this is to achieve high crystallization.

本発明の実施例として、実験に用いた薄膜製造
装置のベルジヤー内部の構造を第3図に示す。各
部の構成は第1図の従来例で示した装置と基本的
には同じであり、高分子フイルム9を送り出す供
給ロール10とフイルム9の加熱もしくは冷却を
行なう円筒状のキヤン11及びフイルム9を巻取
る巻取りロール12からフイルム走行系が構成さ
れる。また、円筒状キヤン11と対向する位置に
は、磁性金属材料の蒸発源13が設置され本装置
では、スパツタリング法としてスパツタ用電極を
設置した。また、円筒状キヤン11とスパツタ電
極13との間には、ベルジヤー内部の不必要な部
分にスパツタリングされた磁性金属材料が付着す
るのを防ぐため、スパツタリング電極13に対応
した開口部をもつ防着板14が設置されている。
また、防着板14端にキヤン11との間の空隙か
らスパツタリングされた磁性金属材料が、まわり
込んで不必要に高分子フイルム9に付着するのを
防ぐため、防着板14の開口部のフイルムの入射
部と送り出し部とに、円筒状キヤン11上の高分
子フイルム9と接触して回転する防着ローラ1
5,16が設置されている。防着ローラ15,1
6は供給ロール10、巻取りロール12の軸方向
と平行に、高分子フイルム9の走行方向と垂直な
方向(即ちフイルムの幅方向)に延伸して設けら
れる。
As an example of the present invention, FIG. 3 shows the internal structure of a bell jar of a thin film manufacturing apparatus used in an experiment. The configuration of each part is basically the same as the apparatus shown in the conventional example in FIG. A film running system is constituted by the take-up roll 12 that takes up the film. Further, an evaporation source 13 of a magnetic metal material was installed at a position facing the cylindrical can 11, and in this apparatus, a sputtering electrode was installed for the sputtering method. In addition, an opening corresponding to the sputtering electrode 13 is provided between the cylindrical can 11 and the sputtering electrode 13 to prevent the sputtered magnetic metal material from adhering to unnecessary parts inside the bell gear. A board 14 is installed.
In addition, in order to prevent the magnetic metal material sputtered from the gap between the end of the deposition prevention plate 14 and the can 11 from going around and unnecessarily attaching to the polymer film 9, the opening of the deposition prevention plate 14 is An anti-adhesion roller 1 that rotates in contact with the polymer film 9 on the cylindrical can 11 is provided at the film entrance part and the delivery part.
5 and 16 are installed. Anti-stick roller 15,1
6 is provided so as to extend parallel to the axial directions of the supply roll 10 and take-up roll 12, and in a direction perpendicular to the running direction of the polymer film 9 (ie, the width direction of the film).

以上のような本発明の薄膜製造装置を用いて、
まずベルジヤー内部を1×10-6torr程度の真空に
排気口17より真空排気した後、ガス導入口18
より1×10-3〜1×10-2torr程度までガスを導入
して、スパツタリング電極13上の磁性金属材料
19をスパツタリングし、円筒キヤン11上の高
分子フイルム9の幅方向全面に連続的に磁性金属
膜を形成した。なお、スパツタリング条件は、比
較例に同じにして実験を行なつた。
Using the thin film manufacturing apparatus of the present invention as described above,
First, the inside of the bell gear is evacuated to a vacuum of about 1×10 -6 torr through the exhaust port 17, and then the gas inlet 18
The magnetic metal material 19 on the sputtering electrode 13 is sputtered by introducing gas to about 1×10 -3 to 1×10 -2 torr to continuously spread it over the entire widthwise surface of the polymer film 9 on the cylindrical can 11. A magnetic metal film was formed on the surface. The experiment was conducted under the same sputtering conditions as in the comparative example.

以上の方法により、高分子フイルム上に形成し
たCoCr合金膜のC軸結晶配向度は、X線デフラ
クトメータを用して測定した結果、第4図に示す
ように、グラフ横軸をX線の反射角2θとし、縦
軸をX線反射強度とすると、比較例で得たデータ
(第2図)と比較して、X線反射強度で約5倍の
値が得られ、また、C軸配向度の角度分布の半値
幅でも10゜以内と結晶性の点で改善されているデ
ータが得られた。
Using the above method, the degree of C-axis crystal orientation of the CoCr alloy film formed on the polymer film was measured using an X-ray defractometer, and as shown in Figure 4, the horizontal axis of the graph was When the reflection angle is 2θ and the vertical axis is the X-ray reflection intensity, the X-ray reflection intensity is approximately 5 times larger than the data obtained in the comparative example (Figure 2), and the C-axis The half width of the angular distribution of the degree of orientation was also within 10°, indicating an improvement in crystallinity.

また防着ローラ15及び16が、円筒状キヤン
11上の高分子フイルム9に接触して回転するた
め高分子フイルム9面にキズ等を発生させること
もなく、高品質の磁気記録媒体が得られた。
Furthermore, since the adhesion prevention rollers 15 and 16 rotate in contact with the polymer film 9 on the cylindrical can 11, no scratches or the like occur on the surface of the polymer film 9, and a high-quality magnetic recording medium can be obtained. Ta.

上記実施例で防着ローラは、円筒状キヤンと同
期して回転するものとして説明したが、円筒状キ
ヤンと0.5〜1mm程度離して設置しても本発明は
有効であり、完全に防着板と円筒状キヤンとのス
キ間を無くして設置する必然性はない。しかし、
この場合でも、万が一高分子フイルムが防着ロー
ラに接触しても、防着ローラが同期して回転する
ことから、高分子フイルム面にキズを発生させる
ことがなく、磁気媒体として品質が維持される。
In the above embodiment, the anti-adhesive roller was explained as rotating in synchronization with the cylindrical can, but the present invention is effective even if it is installed at a distance of about 0.5 to 1 mm from the cylindrical can, and the anti-adhesive roller is completely removed. There is no necessity to install it with no gap between the can and the cylindrical can. but,
Even in this case, even if the polymer film comes into contact with the anti-adhesive roller, the anti-adhesive roller rotates synchronously, so there will be no scratches on the surface of the polymer film, and its quality as a magnetic medium will be maintained. Ru.

また、防着ローラとしては、防着板の開口部の
両側に設置される必要はなく、形成される膜のス
タート部に少なくとも設置されれば本発明は有効
である。
Furthermore, the anti-adhesive rollers do not need to be installed on both sides of the opening of the anti-adhesive plate, and the present invention is effective as long as they are installed at least at the starting portion of the film to be formed.

さらに本発明は磁気記録媒体を製作する場合を
中心に述べたが、これに限定されるものではなく
結晶性が要求される薄膜の製造装置として、他の
ものにも適用できるものである。
Furthermore, although the present invention has been described mainly in the case of producing a magnetic recording medium, it is not limited thereto, and can be applied to other apparatuses for producing thin films that require crystallinity.

以上のように本発明は、磁性金属材料等を高分
子フイルム等の表面に真空技術を利用して連続薄
膜形成する薄膜製造装置においてベルジヤー内部
で蒸着もしくはスパツタリングされた蒸着材料が
不必要に付着するのを防ぐ防着板と、円筒状キヤ
ンとの間に、それらのすき間に蒸着もしくはスパ
ツタリングされた材料がまわり込んで付着するの
を防ぐための防着ローラを、防着板の少なくとも
供給ロール側の開口部付近傍に、フイルム状基板
に走行方向と垂直な方向に延伸して装着したもの
であり、高分子フイルム上に形成された磁性金属
材料の結晶性を向上させる利点を有する。
As described above, the present invention is directed to a thin film manufacturing apparatus that forms a continuous thin film of a magnetic metal material or the like on the surface of a polymer film using vacuum technology, in which the vapor deposition material deposited or sputtered inside the bell gear is unnecessarily attached. Between the deposition prevention plate and the cylindrical can, a deposition prevention roller is installed between the deposition prevention plate and the cylindrical can to prevent material deposited or sputtered from getting around and adhering to the gap between the deposition prevention plate and the cylindrical can. It is attached near the opening of a film-like substrate in a direction perpendicular to the running direction, and has the advantage of improving the crystallinity of the magnetic metal material formed on the polymer film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薄膜製造装置の概略構成図、第
2図は従来の装置を用いて得られた磁性金属膜の
結晶配向度を示す図、第3図は本発明の一実施例
における薄膜製造装置概略構成図、第4図はその
装置を用いて得られた磁性金属膜の結晶配向度を
示す図である。 9……高分子フイルム、10……供給ロール、
12……巻取りロール、13……蒸発源、14…
…防着板、11……円筒状キヤン、15,16…
…防着ローラ、19……磁性金属材料。
FIG. 1 is a schematic configuration diagram of a conventional thin film manufacturing apparatus, FIG. 2 is a diagram showing the degree of crystal orientation of a magnetic metal film obtained using the conventional apparatus, and FIG. 3 is a diagram showing a thin film in an embodiment of the present invention. FIG. 4, which is a schematic diagram of the manufacturing apparatus, is a diagram showing the degree of crystal orientation of a magnetic metal film obtained using the apparatus. 9... Polymer film, 10... Supply roll,
12... Winding roll, 13... Evaporation source, 14...
...Adhesion prevention plate, 11...Cylindrical can, 15, 16...
...Adhesion prevention roller, 19...Magnetic metal material.

Claims (1)

【特許請求の範囲】[Claims] 1 フイルム状基板を供給する第1のロールと、
薄膜形成後のフイルム状基板を巻取る第2のロー
ルと、前記第1のロールと第2のロールとの中間
に設けられ、前記フイルム状基板を円筒状表面に
沿つて走行させるごとく配された円筒状キヤン
と、前記円筒状キヤンに対向して設けられた蒸発
源とを少なくとも有し、前記円筒状キヤンと蒸発
源との間に、蒸発源に対向する部分に開口部を有
する防着板を設け、さらに前記防着板と円筒状キ
ヤンとの間に位置し、少なくとも第1のロール側
の開口部近傍にフイルム状基板の走行方向と垂直
な方向に延伸した防着ローラを設けたことを特徴
とする薄膜製造装置。
1 a first roll supplying a film-like substrate;
a second roll for winding up the film-like substrate after the thin film has been formed; and a second roll provided between the first roll and the second roll, and arranged to run the film-like substrate along the cylindrical surface. A deposition prevention plate having at least a cylindrical can and an evaporation source provided opposite to the cylindrical can, and having an opening in a portion facing the evaporation source between the cylindrical can and the evaporation source. further provided with an anti-adhesive roller located between the anti-adhesion plate and the cylindrical can and extending in a direction perpendicular to the running direction of the film-like substrate at least near the opening on the first roll side. Thin film manufacturing equipment featuring:
JP834482A 1982-01-21 1982-01-21 Thin film manufacturing device Granted JPS58126981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP834482A JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP834482A JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Publications (2)

Publication Number Publication Date
JPS58126981A JPS58126981A (en) 1983-07-28
JPH0240740B2 true JPH0240740B2 (en) 1990-09-13

Family

ID=11690592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP834482A Granted JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Country Status (1)

Country Link
JP (1) JPS58126981A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501708A (en) * 1973-05-04 1975-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501708A (en) * 1973-05-04 1975-01-09

Also Published As

Publication number Publication date
JPS58126981A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US4474832A (en) Magnetic recording media
JPH0240740B2 (en)
JP3204719B2 (en) Manufacturing method of magnetic recording medium
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JP3358352B2 (en) Film forming equipment
JP2987406B2 (en) Film forming method and film forming apparatus
JPS6052930A (en) Production of vertical magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS61233429A (en) Sputtering device
JP2004273084A (en) Method for manufacturing magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPS6093640A (en) Producing device of magnetic recording medium
JPS60164930A (en) Production of magnetic recording medium
JPS5850629A (en) Production of magnetic recording medium
JPS58199440A (en) Manufacture of magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPH0626021B2 (en) Method of manufacturing magnetic recording medium
JPH08319572A (en) Plasma cvd device
JPS58108035A (en) Manufacture of flexible magnetic recording medium
JPS6126938A (en) Production of vertically magnetized recording medium
JPH01264631A (en) Production of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPH07114731A (en) Production of magnetic recording medium
JPS60147932A (en) Magnetic recording medium manufacturing device
JPS5814326A (en) Production for magnetic recording medium