JPS5814326A - Production for magnetic recording medium - Google Patents

Production for magnetic recording medium

Info

Publication number
JPS5814326A
JPS5814326A JP11185281A JP11185281A JPS5814326A JP S5814326 A JPS5814326 A JP S5814326A JP 11185281 A JP11185281 A JP 11185281A JP 11185281 A JP11185281 A JP 11185281A JP S5814326 A JPS5814326 A JP S5814326A
Authority
JP
Japan
Prior art keywords
substrate
film
magnetic layer
recording medium
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11185281A
Other languages
Japanese (ja)
Other versions
JPH0239019B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Ryuji Sugita
龍二 杉田
Toshiaki Kunieda
国枝 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11185281A priority Critical patent/JPH0239019B2/en
Publication of JPS5814326A publication Critical patent/JPS5814326A/en
Publication of JPH0239019B2 publication Critical patent/JPH0239019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the efficiency of vapor-deposition, by forming a magnetic layer on a substrate by a specific vacuum deposition method in the continuous production for a vertically magnetized recording medium. CONSTITUTION:A substrate 1 consisting of high-polymer materials which is fed from a supply roll 3 is wound up around a take-up roll 4 through a cylindrical can 2 which is rotated in the direction of an arrow A, and the steam from a vaporization source (such as Co-Cr alloy) 6 heated and melted by the irradiation of the electron beam is vapor-deposited to the substrate 1 through a slit S formed with masks 5 and 5 to form a vertically magnetized recording medium during this winding. In this vapor-deposition, the incidence angle (the acute angle between the normal direction of the substrate 1 and the incidence direction of the vaporized metal to the substrate 1) of the vaporized metal to the substrate 1 in the initial stage of formation of the magnetic layer (angle phi1) is made smaller than that in the latter stage of formation of the magnetic layer (angle phi2) (i), and the electron beam is irradiated to the vaporization source 6 so that an acceleration direction B faces to a movement direction A of the substrate 1 (ii).

Description

【発明の詳細な説明】 本発明は垂直記録方式に適した磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium suitable for perpendicular recording.

短波長記録特性の優れた磁気記録方式として、垂直記録
方式がある。この方式においては媒体の膜面に垂直方向
が磁化容易軸である垂直記録媒体が必要となる。このよ
うな媒体に信号を記録すると残留磁化は媒体の膜面に垂
直方向を向き、従りて信号が短波長になる程媒体内反磁
界は減少し、優れた再生出力が得られる。
A perpendicular recording method is a magnetic recording method with excellent short wavelength recording characteristics. This method requires a perpendicular recording medium whose axis of easy magnetization is perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented perpendicularly to the film surface of the medium, and therefore, the shorter the signal wavelength, the smaller the demagnetizing field within the medium, resulting in excellent reproduction output.

現在用いられている垂直記録媒体は非磁性基板上に直接
に、あるいはパーマロイ等の軟磁性薄膜を介して、CO
とCrを主成分とし垂直方向に磁化容易軸を有する磁性
層をスパッタリング法により形成したものである。Co
とOrを主成分としたスパッタ膜は、Crの量が約30
重量%以下の範囲では結晶系が稠密六方構造であシ、そ
のC軸を膜面に対して垂直方向に配向させることかで9
き、かつ垂直方向の異方性磁界が反磁界よりも大きくな
るまで飽和磁化を低下させることが可能なので垂直磁化
膜を実現できる。
Currently used perpendicular recording media use CO2 directly on a non-magnetic substrate or through a soft magnetic thin film such as permalloy.
A magnetic layer containing Cr and Cr as main components and having an axis of easy magnetization in the perpendicular direction is formed by a sputtering method. Co
In the sputtered film mainly composed of and Or, the amount of Cr is about 30
In the range below 9% by weight, the crystal system has a close-packed hexagonal structure, and by orienting its C axis in a direction perpendicular to the film surface,
Since it is possible to reduce the saturation magnetization until the anisotropic magnetic field in the perpendicular direction becomes larger than the demagnetizing field, a perpendicularly magnetized film can be realized.

ところでかかる垂直磁化膜を形成する場合、スパッタリ
ング法は磁性薄膜の形成速度が遅いので低コストで垂直
磁化膜を生産することが困難である。スパッタリング法
に対し、真空蒸着法(イオンブレーティング法のように
蒸発原子の一部をイオン化する方法も含む)によれば、
数1000λ/秒という速い形成速度で例えばCo−C
rの垂直磁化膜が得られることが本発明者によシ見出さ
れた。
However, when forming such a perpendicularly magnetized film, it is difficult to produce a perpendicularly magnetized film at low cost using the sputtering method because the speed of forming a magnetic thin film is slow. In contrast to the sputtering method, according to the vacuum evaporation method (including methods that ionize some of the evaporated atoms, such as the ion blating method),
For example, Co-C can be formed at a high formation rate of several thousand λ/sec.
The inventors have discovered that a perpendicular magnetization film of r can be obtained.

真空蒸着法においては基板を円筒状キャンの周側面に沿
って移動させつつ、薄膜の形成を行なうとテープ状の垂
直記録媒体が非常に生産性良く得られる。ここで蒸着法
により垂直磁化膜を形成する方法を第1図を用い説明す
る。
In the vacuum evaporation method, a tape-shaped perpendicular recording medium can be obtained with high productivity by forming a thin film while moving the substrate along the circumferential side of a cylindrical can. Here, a method for forming a perpendicularly magnetized film by vapor deposition will be explained with reference to FIG.

図にか―−示すように高分子材料よシ成る基板1は円筒
状キャン2に沿って矢印Aの向きに走行する。蒸発源6
と円筒状キャン2との間にはマスク6が配置されており
、蒸発原子はスリットSを通って基板1に付着する。3
,4はそれぞれ基板1の供給ロールと巻取りロールであ
る。
As shown in the figure, a substrate 1 made of a polymer material runs along a cylindrical can 2 in the direction of arrow A. Evaporation source 6
A mask 6 is disposed between the can 2 and the cylindrical can 2, and the evaporated atoms pass through the slit S and adhere to the substrate 1. 3
, 4 are a supply roll and a take-up roll for the substrate 1, respectively.

例えばCo−Cr蒸着膜が垂直磁化膜になるためには、
稠密六方構造のC軸が膜面に垂直方向に配向することが
必要であり、そのためにはスリットSの幅を狭くし、蒸
発原子中の垂直入射に近い成分のみが基板1に付着する
ようにしなければならない。しかしスリン)Sの幅を狭
くすると蒸発原子の付着効率Vが小さくなってしまう。
For example, in order for a Co-Cr vapor deposited film to become a perpendicular magnetization film,
It is necessary for the C axis of the dense hexagonal structure to be oriented perpendicularly to the film surface, and for this purpose, the width of the slit S is narrowed so that only the components of the evaporated atoms that are close to normal incidence are attached to the substrate 1. There must be. However, if the width of S is narrowed, the adhesion efficiency V of evaporated atoms will become smaller.

ただし、ηは 基板に付着した原子数 で定義される。However, η is Number of atoms attached to the substrate Defined by

本発明はC軸の配向性を劣化させずに付着効率ηを大き
くする垂直磁化膜の製造方法を提供するものである。
The present invention provides a method for manufacturing a perpendicularly magnetized film that increases the adhesion efficiency η without deteriorating the C-axis orientation.

以下に図面を用い本発明を説明する。The present invention will be explained below using the drawings.

第1図において、ψ1は膜形成初期における蒸発原子の
入射角(膜の法線方向と蒸発原子の基板への入射方向と
のなす鋭角を入射角と呼ぶ)、ψ2は膜形成後期におけ
る蒸発原子の入射角を示す。
In Figure 1, ψ1 is the incident angle of evaporated atoms in the early stage of film formation (the acute angle between the normal direction of the film and the direction of incidence of the evaporated atoms on the substrate is called the incident angle), and ψ2 is the incident angle of evaporated atoms in the late stage of film formation. indicates the angle of incidence of

スリットの幅を狭くすることによりψ 及びψ2を小さ
くするとC軸の配向性は良くなるが、付着効率ダは小さ
くなる。第2図はψ、=ψ2ミψとした場合の、Go−
Cr蒸着膜のψとC軸の配向性及び付着率ηとの関係を
示す図である。ただしC軸の配向性は(002)面に関
するロッキングカーブの半値幅Δθ6゜で表現している
。Δθ6゜が小さい程C軸の配向性が良く、Δθ5゜が
約100以下ならGo−Cr蒸着膜は垂直磁化膜になシ
得るが、そ6、− 。
If ψ and ψ2 are reduced by narrowing the width of the slit, the orientation of the C-axis will improve, but the adhesion efficiency will decrease. Figure 2 shows Go-
FIG. 3 is a diagram showing the relationship between ψ of a Cr vapor deposited film, C-axis orientation, and adhesion rate η. However, the orientation of the C-axis is expressed by the half-value width Δθ6° of the rocking curve regarding the (002) plane. The smaller Δθ6° is, the better the C-axis orientation is, and if Δθ5° is about 100 or less, the Go-Cr vapor deposited film can be used as a perpendicular magnetization film.

れ以上だと垂直磁化膜にならずに面内方向が磁化容易軸
になってしまう。第2図の曲線7,8はそれぞれΔθ6
゜と9との関係及びηとψとの関係を示す。この図より
ψ°が13°以下の場合にはΔθ6゜は10°以下であ
り、Co−Cr蒸着膜は垂直磁化膜になるが、ψが13
°以上では垂直磁化膜にならない。従ってψ1=ψ2と
した場合にはこの実験に使用した真空蒸着装置で垂直磁
化膜を作成する際の付着効率ηの最大値は第′2図より
約0.3となる。
If it is more than that, the in-plane direction becomes the axis of easy magnetization without forming a perpendicularly magnetized film. Curves 7 and 8 in Figure 2 are Δθ6, respectively.
The relationship between ° and 9 and the relationship between η and ψ are shown. From this figure, when ψ° is 13° or less, Δθ6° is 10° or less, and the Co-Cr vapor deposited film becomes a perpendicular magnetization film, but when ψ is 13° or less, Δθ6° is 10° or less.
If the temperature exceeds 100°, it will not become a perpendicularly magnetized film. Therefore, when ψ1=ψ2, the maximum value of the adhesion efficiency η when forming a perpendicularly magnetized film using the vacuum evaporation apparatus used in this experiment is about 0.3 from FIG. '2.

なお膜の組成はCo80wt%、Cr20wt %であ
る。これに対し、ψ、を10″、一定として、ψ2を変
化させた場合のΔθ5゜及び号を第3図に示す。
The composition of the film is 80 wt% Co and 20 wt% Cr. On the other hand, FIG. 3 shows Δθ5° and sign when ψ2 is varied with ψ constant at 10''.

曲線9,10はそれぞれΔθ6oとψ2との関係及びη
とψ2との関係を示す。この場合には第2図の場合と異
なり、ψ2が3°−36°の範囲で変化してもΔθ6゜
は殆ど変わらない。一方ψ2を大きくするとηは大きく
なり、例えばψ2=30OK設定するとηはO,Sであ
り、かつ垂直磁化膜となっている。膜の組成は第2図の
場合と同じ(Cr20wtチ、Cr20wtチであるら
ψ1が13°以下の場合、すなわち第3図においてΔθ
6oが10°以下になるようなψ1の場合には、上記と
同様にψ2を3°〜36°の範囲で変化させてもΔθ6
゜は殆ど変化せずCo−Cr垂直磁化膜が得られる。一
方ψ2を10゜一定として、ψ、を変化させた場合の第
2図と同じ組成の膜のΔ06゜及びηを第4図に示す。
Curves 9 and 10 are the relationship between Δθ6o and ψ2 and η
The relationship between and ψ2 is shown below. In this case, unlike the case in FIG. 2, Δθ6° hardly changes even if ψ2 changes within the range of 3° to 36°. On the other hand, when ψ2 is increased, η becomes larger. For example, when ψ2 is set to 30 OK, η is O, S, and the film is perpendicularly magnetized. The composition of the film is the same as in Fig. 2 (for 20 wt Cr and 20 wt Cr, if ψ1 is 13° or less, that is, in Fig. 3, Δθ
In the case of ψ1 such that 6o is 10° or less, even if ψ2 is changed in the range of 3° to 36° in the same way as above, Δθ6
A Co--Cr perpendicular magnetization film can be obtained with almost no change in angle. On the other hand, FIG. 4 shows Δ06° and η of a film having the same composition as in FIG. 2 when ψ2 is kept constant at 10° and ψ is varied.

曲線11.12はそれぞれΔθ6oとψ、との関係及び
Vとψ、との関係を示す。この場合のΔθ6゜とψ1と
の関係は第2図の場合と同様にψ、を大きくすると40
6゜も大きくなってしまうために高い付着効率でCo−
0r垂直磁化膜を得ることは困難である。従ってψ1を
第2図においてΔθ6゜が10°以下になるような角度
に設定しくただし、この角度は蒸着装置や蒸着条件によ
って変化する)、ψ2をψ1 よりも大なるように設定
することにょシ、高い付着効率でGo−Cr垂直磁化膜
が得られる。
Curves 11 and 12 show the relationship between Δθ6o and ψ and the relationship between V and ψ, respectively. In this case, the relationship between Δθ6° and ψ1 becomes 40 if ψ is increased, as in the case of Fig. 2.
Since the diameter increases by as much as 6°, Co-
It is difficult to obtain a 0r perpendicular magnetization film. Therefore, it is recommended to set ψ1 at an angle such that Δθ6° is 10° or less in Figure 2 (this angle varies depending on the vapor deposition equipment and deposition conditions), and to set ψ2 to be larger than ψ1. , a Go-Cr perpendicular magnetization film can be obtained with high deposition efficiency.

以上のように本発明の方法によればC軸の配向性を、劣
化させずに付着効率を高めることが可能である。
As described above, according to the method of the present invention, it is possible to increase the adhesion efficiency without deteriorating the C-axis orientation.

以上では基板を円筒状キャンの周側面に沿って7 − 移動させつつ薄膜の形成を行なう場合について述べたが
、第6図に示す様に基板1を平板13に沿って移動させ
つつ薄膜の形成を行なう場合についても同様のことが言
える。すなわちこの場合もψ。
In the above, a case has been described in which a thin film is formed while the substrate 1 is moved along the circumferential surface of a cylindrical can, but as shown in FIG. The same thing can be said when performing. In other words, in this case also ψ.

よりもψ2を大にすることにより高い付着効率で垂直磁
化膜を得ることができる。
A perpendicularly magnetized film can be obtained with high adhesion efficiency by increasing ψ2.

これまでの効果を更に大きくするためにとられるもうひ
とつの条件は、蒸発原子を加速電子の利用により得るこ
とと、そのいわゆる電子ビーム(第1図のB)の加速方
向が、基板の移動方向Aと、対向するよう(第1図に示
した関係)な条件を選ぶことである。更に好ましくは、
蒸発源容器のプールの断面形状をψ、〉ψ2にすること
である。
Another condition that can be used to further increase the effect so far is that the evaporated atoms are obtained by using accelerated electrons, and that the acceleration direction of the so-called electron beam (B in Figure 1) is in the direction of movement of the substrate. The key is to choose conditions that are opposite to A (the relationship shown in Figure 1). More preferably,
The cross-sectional shape of the pool of the evaporation source container is set to ψ, >ψ2.

これにより、おそらく蒸発原子の蒸気分布に指向性が現
れるためと見られる効果が付加される゛。その−例を第
6図に示した。
This adds an effect that is probably due to the appearance of directionality in the vapor distribution of evaporated atoms. An example of this is shown in FIG.

即ち、第3図と同じ条件で比較した時、付着効率ηが極
めて大きくとれるものである。したがっなお垂直磁化膜
はCo−Cr膜膜外外、C6−V。
That is, when compared under the same conditions as in FIG. 3, the adhesion efficiency η can be extremely high. Therefore, the perpendicular magnetization film is C6-V outside the Co-Cr film.

Co−Mo 、Go−W、バリウムフェライト膜等にお
いても得られるが、本発明の方法はいずれの膜に対tて
も有効である。
Although it can also be obtained with Co-Mo, Go-W, barium ferrite films, etc., the method of the present invention is effective for any film.

又本発萌により両面ディスクを作ることも可能で媒体の
形態、構成について限定を受けるものではない。
Furthermore, it is also possible to create a double-sided disc using this invention, and there are no limitations on the form or structure of the medium.

以上のように本発明によれば真空蒸着法により高い付着
効率で垂直磁化膜を得ることができる。
As described above, according to the present invention, a perpendicularly magnetized film can be obtained with high deposition efficiency by vacuum evaporation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記録媒体の製造方法において
基板を円筒状キャンの周側面に沿って移動させつつ磁性
薄膜の形成を行なう場合を示す図、第2図、第3図、第
4図および第6図はそれぞれ同じく本発明による磁気記
録媒体の製造方法における蒸発原子の入射角と、磁性薄
膜の配向性および付着効率との関係を示す図、第6図は
同じ、〈本発明による磁気記録媒体の製造方法において
基板を平板に沿って移動させつつ磁性薄膜の形成を行−
Ik唱う場合を示す図である。 1・・・・・・基板、2・・・・・・円筒状キャン、5
・・・・・・マスク、6・・・・・蒸発源、13・・・
・・・平板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 t/慎) 第3図 Lpl、<度)
FIG. 1 is a diagram showing a case where a magnetic thin film is formed while moving a substrate along the circumferential side of a cylindrical can in the method for manufacturing a magnetic recording medium according to the present invention, FIGS. 2, 3, and 4. and FIG. 6 are diagrams showing the relationship between the incident angle of evaporated atoms and the orientation and adhesion efficiency of the magnetic thin film in the method of manufacturing a magnetic recording medium according to the present invention, respectively. In a method for manufacturing a recording medium, a magnetic thin film is formed while moving a substrate along a flat plate.
It is a figure which shows the case where Ik is chanted. 1... Board, 2... Cylindrical can, 5
...Mask, 6...Evaporation source, 13...
...Flat plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure t/Shin) Figure 3 Lpl, <degree)

Claims (1)

【特許請求の範囲】[Claims] 磁化容易軸が膜面に垂直方向にある磁性層を、移動しつ
つある基板上に真空蒸着法によ多形成する際に、磁性層
形成初期における蒸発原子の入射角が磁性層形成後期に
おける入射角よりも小なるようにし、かつ、蒸発原子を
得るためのエネルギー源として加速電子を用い、上記電
子の加速方向と上記基板の移動方向が対向するようにす
ることを特徴とする磁気記録媒体の製造方法。
When forming a magnetic layer whose axis of easy magnetization is perpendicular to the film surface by vacuum evaporation on a moving substrate, the incident angle of evaporated atoms at the early stage of magnetic layer formation is the same as the incidence angle at the later stage of magnetic layer formation. A magnetic recording medium characterized by using accelerated electrons as an energy source for obtaining evaporated atoms so that the direction of acceleration of the electrons and the direction of movement of the substrate are opposite to each other. Production method.
JP11185281A 1981-07-16 1981-07-16 JIKIKIROKUBAITAINOSEIZOHOHO Expired - Lifetime JPH0239019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185281A JPH0239019B2 (en) 1981-07-16 1981-07-16 JIKIKIROKUBAITAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185281A JPH0239019B2 (en) 1981-07-16 1981-07-16 JIKIKIROKUBAITAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5814326A true JPS5814326A (en) 1983-01-27
JPH0239019B2 JPH0239019B2 (en) 1990-09-03

Family

ID=14571769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185281A Expired - Lifetime JPH0239019B2 (en) 1981-07-16 1981-07-16 JIKIKIROKUBAITAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0239019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076024A (en) * 1983-10-01 1985-04-30 Ulvac Corp Manufacturing device of vertical magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076024A (en) * 1983-10-01 1985-04-30 Ulvac Corp Manufacturing device of vertical magnetic recording medium
JPH0418373B2 (en) * 1983-10-01 1992-03-27 Ulvac Corp

Also Published As

Publication number Publication date
JPH0239019B2 (en) 1990-09-03

Similar Documents

Publication Publication Date Title
JPS5814326A (en) Production for magnetic recording medium
JPH0475577B2 (en)
JPS59162622A (en) Vertical magnetic recording material and its production
JPS58137134A (en) Manufacture of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH0334614B2 (en)
JPS58158030A (en) Magnetic recording medium
JPH0219533B2 (en)
JPS58125236A (en) Manufacture of magnetic recording medium
JPH0473215B2 (en)
JPS59157833A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH05159267A (en) Magnetic recording medium and production of the medium
JPS5862830A (en) Production of magnetic recording medium
JPS58102335A (en) Manufacture of magnetic recording medium
JPS59148126A (en) Magnetic recording medium for vertical recording
JPS5933628A (en) Manufacture of vertical magnetic recording medium
JPS58125235A (en) Manufacture of magnetic recording medium
JPS58199440A (en) Manufacture of magnetic recording medium
JPS58102334A (en) Manufacture of magnetic recording medium
JPS59172162A (en) Production of vertical magnetic recording medium
JPS58102333A (en) Manufacture of magnetic recording medium
JPH04206017A (en) Magnetic recording medium and manufacture thereof
JPS5922235A (en) Production of vertical magnetic recording medium
JPS5814327A (en) Production of magnetic recording medium