JPS5922235A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS5922235A
JPS5922235A JP13083182A JP13083182A JPS5922235A JP S5922235 A JPS5922235 A JP S5922235A JP 13083182 A JP13083182 A JP 13083182A JP 13083182 A JP13083182 A JP 13083182A JP S5922235 A JPS5922235 A JP S5922235A
Authority
JP
Japan
Prior art keywords
film
substrate
cylindrical
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13083182A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kenji Kanai
金井 謙二
Kiyoshi Sasaki
清志 佐々木
Takeshi Takahashi
健 高橋
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13083182A priority Critical patent/JPS5922235A/en
Publication of JPS5922235A publication Critical patent/JPS5922235A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Abstract

PURPOSE:To obtain a vertically-magnetized Co-Cr film having a uniform composition in the length and film thickness directions, by arranging electron guns on the opposite side of a Cr material to a perpendicular line passing through the center of a cylindrical can in the moving direction of a substrate during vapor deposition. CONSTITUTION:In the device shown by the figure, the electron gun 17 for heating the Cr material 14 is arranged on the opposite side of the Cr material 14 to the perpendicular line 21 passing through the center of the cylindrical can 2 in the moving direction of a substrate. Thus, the arrangement of a CR evaporating source shown by the figure makes it possible to obtain the vertically-magnetized Co-Cr film having a uniform composition in the length and film thickness directions.

Description

【発明の詳細な説明】 本発明は垂直磁気記録方式に適した媒体の製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing a medium suitable for perpendicular magnetic recording.

短波長記録特性の優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては、媒体の膜面に垂
直方向が磁化容易軸である垂直記録媒体が必要となる。
A perpendicular magnetic recording system is a magnetic recording system with excellent short wavelength recording characteristics. This method requires a perpendicular recording medium whose axis of easy magnetization is perpendicular to the film surface of the medium.

このような媒体に信号を記録すると残留磁化は媒体の膜
面に垂直方向を向き、したがって、信号が短波長になる
程媒体内反磁界は減少し、優れた再生出力が得られる。
When a signal is recorded on such a medium, the residual magnetization is oriented perpendicularly to the film surface of the medium, so that the shorter the signal wavelength, the smaller the demagnetizing field within the medium, and the better the reproduced output.

垂直記録媒体は高分子材料あるいは非磁性金属等の非磁
性材料からなる基板上に、直接に、あるいはノく−マロ
イ等の軟磁性層を介して、COとOrを主成分とし膜面
に垂直方向に磁化容易軸を有する磁性層(以下この磁性
層をGo −Gτ垂直磁化膜と呼ぶ)をスパッタリング
法あるいは真空蒸着法により形成したものである。
Perpendicular recording media are made of a substrate made of a non-magnetic material such as a polymeric material or a non-magnetic metal, directly or through a soft magnetic layer such as Noku-Malloy, and are composed mainly of CO and Or and perpendicular to the film surface. A magnetic layer having an axis of easy magnetization in the direction (hereinafter this magnetic layer will be referred to as a Go-Gτ perpendicular magnetization film) is formed by sputtering or vacuum evaporation.

スパッタリング法、真空蒸着法のいずれの方法において
も、Go −Or垂直磁化膜が得られるが、特に後者に
よれば、数1000人/秒という非常に生産性の優れた
析出速度で膜が得られる。真空蒸着法においては、基板
を円筒状キャンの周側面に沿わせて移動させつつGo 
−Orの蒸着を行なうと、安定に長尺の垂直磁化膜を作
製することができる0第1図にこのような真空蒸着方式
を用いた製造装置の概略を示す。
A Go-Or perpendicular magnetization film can be obtained by both the sputtering method and the vacuum evaporation method, but the latter method in particular allows the film to be obtained at a highly productive deposition rate of several thousand people/second. . In the vacuum evaporation method, the substrate is moved along the circumferential surface of a cylindrical can while the Go
By vapor depositing -Or, a long perpendicularly magnetized film can be stably produced. FIG. 1 schematically shows a manufacturing apparatus using such a vacuum vapor deposition method.

図において、1は基板であり、円筒状キャン2の周側面
に沿って矢印3あるいは3′の方向に走行する。薄膜材
料であるGo −Or合金インゴット6はるつぼ5の中
に入っており、電子銃7から発生する電子ビーム8によ
って、加熱され蒸発する。
In the figure, reference numeral 1 denotes a substrate, which runs along the circumferential side of the cylindrical can 2 in the direction of arrow 3 or 3'. A Go-Or alloy ingot 6, which is a thin film material, is placed in a crucible 5, and is heated and evaporated by an electron beam 8 generated from an electron gun 7.

なお、るつぼ5と電子銃7をまとめて蒸発源と称する。Note that the crucible 5 and the electron gun 7 are collectively referred to as an evaporation source.

蒸発したOOおよびOr原子が移動しつつある基板1に
付着し、Co −Cr垂直磁化膜が形成される。9,1
0はそれぞれ゛基板1を巻くためのロールである。4は
不要な原子が基板に付着するのを防ぐだめのマスクであ
る。11.12はそれぞれ真空槽および排気系である。
The evaporated OO and Or atoms adhere to the moving substrate 1, forming a Co--Cr perpendicularly magnetized film. 9,1
0 are rolls for winding the substrate 1, respectively. 4 is a mask for preventing unnecessary atoms from adhering to the substrate. 11 and 12 are a vacuum chamber and an exhaust system, respectively.

なお1蒸発源として電子ビーム蒸発源を用いるのは、高
析出速度が安定に得られるためである。
Note that the reason why an electron beam evaporation source is used as the evaporation source is that a high deposition rate can be stably obtained.

ところセ第1図に示されるような製造装置にてQO−C
r膜を作製すると、垂直磁化膜が得られるが、1個の蒸
発源からCOとOrを蒸発させて、連続的に長尺の膜を
作製した場合には、長尺方向に組成の異なる膜ができる
。すなわち、Crの蒸気圧がCOよりも高いためにOr
が先に蒸発してし甘う。その結果、長尺のCo −Cr
膜を連続的に作製した場合には、蒸着初期にできた膜は
Orが多くなり、蒸着後期にはOrの少ない膜ができる
QO-C is manufactured using manufacturing equipment as shown in Figure 1.
When an R film is produced, a perpendicularly magnetized film is obtained, but when a long film is continuously produced by evaporating CO and Or from one evaporation source, films with different compositions in the longitudinal direction are obtained. I can do it. That is, since the vapor pressure of Cr is higher than that of CO, Or
It evaporates first and it's sweet. As a result, a long Co-Cr
When films are produced continuously, a film formed in the early stage of vapor deposition contains a large amount of Or, and a film formed in the late stage of vapor deposition contains a small amount of Or.

Go−Cr垂直磁化膜において、組成が異なると磁気特
性も異なるので、このことは好ましくない。
This is undesirable because in the Go-Cr perpendicularly magnetized film, different compositions result in different magnetic properties.

この問題を解決する手段として、三原蒸着法がある。三
原蒸着法においては、第2図に示すようにCOとCrを
別々の蒸発源から蒸発させて膜を形成する。13.15
はそれぞれCr材料14およびCO材料16を入れるた
めのるつぼである。17゜18はそれぞれOr月料およ
びCO材料を加熱し、蒸発させるための電子銃である。
As a means to solve this problem, there is the Mihara vapor deposition method. In the Mihara deposition method, as shown in FIG. 2, a film is formed by evaporating CO and Cr from separate evaporation sources. 13.15
are crucibles for containing Cr material 14 and CO material 16, respectively. Reference numerals 17 and 18 are electron guns for heating and vaporizing the Or and CO materials, respectively.

19.20はそれぞれ電子銃17および18から発生す
る電子ビームである。21は円筒状キャン2の中心を通
る鉛直線を示す。実際に第2図に示されるような構成の
製造装置により、連続的に長尺のGo−Cr垂直磁化膜
を作製すべく実験を行なった結果、長さ方向には組成の
均一な膜が得られるが、膜厚方向にかなりの組成変化が
あることが明らかになった。
19 and 20 are electron beams generated from electron guns 17 and 18, respectively. 21 indicates a vertical line passing through the center of the cylindrical can 2. As a result of conducting an experiment to continuously fabricate a long Go-Cr perpendicularly magnetized film using a manufacturing apparatus configured as shown in Figure 2, we were able to obtain a film with a uniform composition in the length direction. However, it became clear that there was a considerable compositional change in the film thickness direction.

例えば、第2図に示されるような構造の製造装置にて、
円筒状キャン2の周側面に沿って移動しつつある高分子
材料よりなる基板上にGo−Cr垂直磁化膜を作製し、
できた膜の組成を分析すると、膜表面におけるCr濃度
は18wt%であるが、Co−0r膜と基板との境界付
近のCTa度は29wt%であった。この程度の組成の
膜厚方向における変化があっても、垂直磁化膜として使
用することが可能ではあるが、より好ましくは、膜厚方
向の組成変化はできる限シ少ない方がよい。本発明はこ
のような状況に鑑みなされたものであり、長さ方向のみ
でなく膜厚方向にも組成の均一なGo −Cr垂直磁化
膜を作製するための装置である。
For example, in a manufacturing apparatus with a structure as shown in FIG.
A Go-Cr perpendicular magnetization film is produced on a substrate made of a polymeric material that is moving along the circumferential side of the cylindrical can 2,
Analysis of the composition of the resulting film revealed that the Cr concentration on the film surface was 18 wt%, but the CTa concentration near the boundary between the Co-Or film and the substrate was 29 wt%. Although it is possible to use the film as a perpendicularly magnetized film even if the composition changes to this extent in the film thickness direction, it is more preferable that the composition change in the film thickness direction be as small as possible. The present invention was made in view of this situation, and is an apparatus for producing a Go--Cr perpendicularly magnetized film having a uniform composition not only in the length direction but also in the film thickness direction.

以下に第3図を用いて本発明について説明する。The present invention will be explained below using FIG.

第3図は本発明による製造装置の1例を示し、第2図の
装置にくらべ蒸発源の配置が異なる。すなわち第2図の
装置においては、Cr材料14を加熱するための電子銃
1了が円筒状キャン2の中心を通る鉛直線21に対し、
基板の移動方向に関して、Cr材料14と同じ側にある
が、本発明の1例である第3図の装置においては、Cr
材料14を加熱するための電子銃17が円筒状キャン2
の中心を通る鉛直線21に対し、基板の移動方向に関し
て、Cr材料14の反対側にある。Orの蒸発源を第3
図に示すような配置にすることにより、長さ方向および
膜厚方向に組成のほぼ均一なC0−0r垂直磁化膜が得
られる。実際に、蒸発源の配置が第3図に示されるよう
になっている製造装置にて、円筒状キャン2の周側面に
沿って移動しつつある高分子材料よりなる基板上にGo
 −Cr垂直磁化膜を作製した。できた膜の組成を分析
すると、膜表面におけるCr濃度は23wt%、Go−
Cr膜と基板との境界付近のCr濃度は25 w t%
であり、膜厚方向にほぼ均一の組成を有するCo −(
ir垂直磁化膜が得られた。また、三原蒸着法により膜
を作製しているので、長さ方向の組成も均一であった。
FIG. 3 shows an example of a manufacturing apparatus according to the present invention, which differs from the apparatus shown in FIG. 2 in the arrangement of the evaporation source. In other words, in the apparatus shown in FIG. 2, the electron gun 1 for heating the Cr material 14 is located at
Although it is on the same side as the Cr material 14 with respect to the direction of movement of the substrate, in the apparatus of FIG.
The electron gun 17 for heating the material 14 is in the cylindrical can 2
is on the opposite side of the Cr material 14 with respect to the direction of movement of the substrate with respect to a vertical line 21 passing through the center of the substrate. The third evaporation source of Or
By arranging as shown in the figure, a C0-0r perpendicular magnetization film having a substantially uniform composition in the length direction and film thickness direction can be obtained. In fact, in a manufacturing apparatus in which the evaporation sources are arranged as shown in FIG.
A -Cr perpendicular magnetization film was produced. Analysis of the composition of the formed film revealed that the Cr concentration on the film surface was 23 wt%, Go-
The Cr concentration near the boundary between the Cr film and the substrate is 25 wt%
Co-(
An ir perpendicular magnetization film was obtained. Furthermore, since the film was produced by the Mihara vapor deposition method, the composition in the length direction was also uniform.

このように、本発明による装置を用いれば膜厚方向に組
成がほぼ均一になる原因はOrが昇華に−より蒸発し、
蒸発原子の密度はOr材料を加熱し、蒸発させるだめの
電子ビームの飛来方向に近い方向が最も多くなることに
あるものと考えられる。
As described above, when using the apparatus according to the present invention, the reason why the composition becomes almost uniform in the film thickness direction is that Or evaporates due to sublimation.
It is thought that the density of evaporated atoms is highest in the direction close to the direction of the electron beam that heats and evaporates the Or material.

以上述べたように、本発明の製造装置を用いて蒸着を行
なうことにより、長さ方向および膜厚方向に組成のほぼ
均一なGo−Or垂直磁化膜が得られる。
As described above, by performing vapor deposition using the manufacturing apparatus of the present invention, a Go-Or perpendicularly magnetized film having a substantially uniform composition in the length direction and film thickness direction can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCOとOrを同一の電子ビーム蒸発源から蒸発
させる方式の製造装置を示す図、第2図はCOとOrを
別々の電子ビーム蒸発源から蒸発させ名三原蒸着により
磁化膜を作製する方式の製造装置を示す図、第3図は本
発明による製造装置の一例を示す図である。 1・・・・・・基板、2・・・・・・円筒状キャン、5
,13゜16・・・・・・るつぼ、6・・・・・・Co
−Or合金材料、7・・・・電子銃、8・・・・・電子
ビーム、14・・・・・・Or材料、16・・・・・C
O材料、17・・・・・・Or材料蒸発用の電子銃、1
8・・・・・・CO材料蒸発用の電子銃。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 ?
Figure 1 shows a manufacturing device in which CO and Or are evaporated from the same electron beam evaporation source, and Figure 2 shows a manufacturing system in which CO and Or are evaporated from separate electron beam evaporation sources to produce a magnetized film by Mihara evaporation. FIG. 3 is a diagram showing an example of the manufacturing apparatus according to the present invention. 1... Board, 2... Cylindrical can, 5
,13゜16... Crucible, 6...Co
-Or alloy material, 7...Electron gun, 8...Electron beam, 14...Or material, 16...C
O material, 17...Electron gun for Or material evaporation, 1
8...Electron gun for CO material evaporation. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3?

Claims (1)

【特許請求の範囲】[Claims] GoとOrを主成分とし膜面に垂直方向に磁化容易軸の
ある磁性層を、円筒状キャンの周側面に沿って移動しつ
つある基板上に、GoとOrを別々の電子ビーム蒸発源
から蒸発させる三原蒸着法を用いて形成する装置であっ
て、Or材料を加熱するだめの電子銃が、上記基板の移
動方向において、上記円筒状キャンの中心を通る鉛直線
に対し、上記Or材料の反対側にあることを特徴とする
垂直磁気記録用媒体の製造装置。
A magnetic layer containing Go and Or as main components and having an axis of easy magnetization perpendicular to the film surface is placed on a substrate that is moving along the circumferential side of a cylindrical can, and Go and Or are evaporated from separate electron beam evaporation sources. The apparatus is formed using the Mihara vapor deposition method, in which an electron gun for heating the Or material is oriented in a direction in which the Or material is heated relative to a vertical line passing through the center of the cylindrical can in the direction of movement of the substrate. An apparatus for manufacturing a perpendicular magnetic recording medium, characterized in that the media are on opposite sides.
JP13083182A 1982-07-27 1982-07-27 Production of vertical magnetic recording medium Pending JPS5922235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13083182A JPS5922235A (en) 1982-07-27 1982-07-27 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13083182A JPS5922235A (en) 1982-07-27 1982-07-27 Production of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5922235A true JPS5922235A (en) 1984-02-04

Family

ID=15043714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13083182A Pending JPS5922235A (en) 1982-07-27 1982-07-27 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5922235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650159A1 (en) * 1993-10-20 1995-04-26 Matsushita Electric Industrial Co., Ltd. Manufacturing method of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650159A1 (en) * 1993-10-20 1995-04-26 Matsushita Electric Industrial Co., Ltd. Manufacturing method of magnetic recording medium
US5549936A (en) * 1993-10-20 1996-08-27 Matsushita Electric Industrial Co., Ltd. Manufacturing method of magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0319613B2 (en)
JPS6153770B2 (en)
JPS5922235A (en) Production of vertical magnetic recording medium
JPS5922234A (en) Production of vertical magnetic recording medium
KR900001141B1 (en) Mafnetic recording medium and its producing method there of
JPS56165933A (en) Production of magnetic recording body
JPS5877025A (en) Production of magnetic recording medium
JPS58102336A (en) Manufacture of magnetic recording medium
JPS58125236A (en) Manufacture of magnetic recording medium
JPS5833620B2 (en) Method for manufacturing magnetic recording media
JPS5850628A (en) Production of magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPS5814326A (en) Production for magnetic recording medium
JPS5994241A (en) Production of vertical magnetic recording medium
JP3038084B2 (en) Method of forming soft magnetic thin film
JPS58102334A (en) Manufacture of magnetic recording medium
JPH0121534B2 (en)
JPH0334615B2 (en)
JPS6043221A (en) Magnetic recording medium
JPS63136322A (en) Production of magnetic recording medium
JPS60175220A (en) Manufacture of magnetic recording medium
JPS58137134A (en) Manufacture of magnetic recording medium
JPS5870430A (en) Manufacture of magnetic recording medium
JPS62275322A (en) Production of vertical magnetic recording medium
JPH04328324A (en) Manufacture of magnetic recording medium