JPS6043221A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6043221A
JPS6043221A JP58149469A JP14946983A JPS6043221A JP S6043221 A JPS6043221 A JP S6043221A JP 58149469 A JP58149469 A JP 58149469A JP 14946983 A JP14946983 A JP 14946983A JP S6043221 A JPS6043221 A JP S6043221A
Authority
JP
Japan
Prior art keywords
magnetic
film
alloy
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149469A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sagawa
佐川 広行
Toshio Masutani
枡谷 俊雄
Kenji Yazawa
健児 矢沢
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58149469A priority Critical patent/JPS6043221A/en
Publication of JPS6043221A publication Critical patent/JPS6043221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer

Abstract

PURPOSE:To upgrade coercive force and to make magnetic characteristic isotropic without execution of a diagonal vapor deposition method by forming an underlying layer consisting of Ge or an alloy contg. Ge on one main plane of a non-magnetic base and forming a thin magnetic metallic film thereon. CONSTITUTION:A thin magnetic metallic film 2 consisting of any one matel among Co, Fe and Ni or an alloy thereof is formed on a non-magnetic base 1 and an underlying layer 3 which expands volumetrically when solidifies, more particularly an underlying layer consisting of Ge or an alloy contg. Ge, for example, an alloy of Ge (5.0% volumetric expansion rate when Ge solidifies) and Au or In is deposited by evaporation under said film to 30-300Angstrom thickness. The layer 3 consists of 80-100atom% Ge and the balance Au or In, etc. The film 2 is formed to 50-1,000Angstrom thickness by vapor deposition from the direction roughly perpendicular to for example, the base 1 without execution of diagonal vapor deposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体、特に非磁性支持体上に金属磁性
薄)模を被着したいわゆる金属薄膜型磁気記録媒体に係
わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to magnetic recording media, and particularly to so-called metal thin film type magnetic recording media in which a metal magnetic thin pattern is deposited on a non-magnetic support.

背景技術とその問題点 従来一般に普及され一ζいる磁気記録媒体は、針状の磁
性粉と高分子結合剤とを主体とする磁性塗料を非磁すノ
1支持体」=に塗布して磁性層を形成した塗布型の磁気
記録媒体である。
BACKGROUND TECHNOLOGY AND PROBLEMS Conventional magnetic recording media have been made magnetic by coating a non-magnetic support with a magnetic paint mainly consisting of acicular magnetic powder and a polymeric binder. It is a coated magnetic recording medium with layers formed on it.

これに比し、Co、 Fe、 Ni等の磁性金属、或い
はこれらの合金を真空蒸着、スパンクリング、或いはイ
オンブレーティング等のいわゆるフィジカル・ペーパー
−デポジション技術によって非磁性支持体上に形成する
金属薄膜型の磁気記録媒体は、その磁性層中に非磁性の
結合剤が混入されていないために著しく高い残留磁束密
度を肖るご、とができること、また磁性層を極めて薄く
形成することができるために高出力且つ短波長応答性に
ず(れているという利点を有する。
In contrast, magnetic metals such as Co, Fe, and Ni, or alloys thereof, are formed on a nonmagnetic support by so-called physical paper deposition techniques such as vacuum evaporation, spankling, or ion blating. Thin-film magnetic recording media can have extremely high residual magnetic flux density because no non-magnetic binder is mixed into the magnetic layer, and the magnetic layer can be formed extremely thin. Therefore, it has the advantage of high output and short wavelength response.

しかしながら、この種の薄膜型の磁気記録媒体において
、そのCO等の磁性金属を車に非磁性支持体上に例えば
蒸着したたりでは、充分11」1い抗磁力11cを有す
る磁性層を得ることは困カ1(である。このような薄膜
型磁気記録媒体において、1用い抗磁力11cを有する
磁性層を得る方法としては、非り月!1支持体に対して
、上述の磁性金属の蒸発粒子をP[めに入射さセる斜め
蒸着法が提案され°(いる。ところがこのような斜め蒸
着法による場合、蔑着りJ率が低く生産性に劣るという
欠点がある。
However, in this type of thin-film magnetic recording medium, it is impossible to obtain a magnetic layer having a coercive force 11c sufficiently high by depositing a magnetic metal such as CO on a non-magnetic support. Problem 1: In such a thin-film magnetic recording medium, a method for obtaining a magnetic layer having a coercive force of 11c is to apply evaporated particles of the above-mentioned magnetic metal to the support. An oblique evaporation method has been proposed in which the incident light is incident on P[°(°). However, when using such an oblique evaporation method, the disadvantage is that the J rate is low and the productivity is inferior.

発明の目的 本発明は、斜め蒸着法によらない場合におい゛(も、非
磁性支持体上に高い抗磁力を有し、その面内で磁気特性
が等方向とされた磁性金属薄膜型の磁気記録媒体を提イ
ハするものである。
Purpose of the Invention The present invention provides a magnetic metal thin film type magnetic material having a high coercive force on a non-magnetic support and whose magnetic properties are isotropic in the plane, even when the oblique vapor deposition method is not used. It proposes a recording medium.

発明の概要 本発明におい”(は、第1図に示すように、非磁47F
支持体(1)−ヒに、Co、 Fe、 Niの各金属の
いずれか、或いはこれら金属の合金による金属磁性Wt
膜(2)を形成するものであるが、この磁性$ 11f
fi (21の一トに、凝固時に体積が膨張する下地層
(3)、特にGeまたはGeを含む合金、例えばGe(
Geの凝固時の体積膨張率は5.0%)と篩若しくはI
nとの合金より成る下地層を30〜300人の厚さに蒸
着する。
Summary of the Invention In the present invention, as shown in FIG.
Support (1) - metal magnetic Wt made of any of Co, Fe, Ni, or an alloy of these metals
This is what forms the film (2), and this magnetic $ 11f
fi (Part 21 is a base layer (3) whose volume expands during solidification, especially Ge or an alloy containing Ge, such as Ge (
The volume expansion coefficient of Ge during solidification is 5.0%) and the sieve or I
A base layer made of an alloy with n is deposited to a thickness of 30 to 300 mm.

このト地層(3)は、Geが80〜100原子%、残部
Au若しくはIn等とする。
This layer (3) contains 80 to 100 atomic % of Ge, and the remainder is Au, In, or the like.

また化番性VN K+ +21は、50〜1000人、
望ましくは100〜309人の厚さに、例えば斜め蒸着
によることなく、例えば非磁性支持体(1)に対しほぼ
垂直をなす方向よりの蒸着によって形成する。
In addition, the number of VN K+ +21 is 50 to 1000 people,
It is preferably formed to a thickness of 100 to 309 nm, for example, not by oblique deposition, but by deposition, for example, in a direction substantially perpendicular to the nonmagnetic support (1).

非磁性支持体としては、例えばポリエチレンテレフタレ
ート、ポリアミド、ポリアミドイミド。
Examples of the nonmagnetic support include polyethylene terephthalate, polyamide, and polyamideimide.

ポリイミド等の市分子フィルム、ガラスセラミック、サ
ファイア或いは表向を酸化した金属扱等を用いることが
できる。
A molecular film such as polyimide, glass ceramic, sapphire, or a metal treated with an oxidized surface can be used.

実施例 実施例1 非磁性支持体+11としてイ1英基扱を用い、これの上
に、順次Geと、Co −30原子%Niの合金を蒸着
して、第1図で説明したよ・うに、非磁性支持体(1)
上に厚さ 100人のGeの土地層(3)を介し゛(C
o−Niの金属磁性薄膜(2)を形成した。これらの蒸
着は、第2図に示す蒸着装置を用いた。この蒸着装置は
、ヘルジャ−(4)内に、下地層(3)の蒸着踪t5+
 <この実施例でばGeの蒸着源)と、金属磁性薄11
沁2)の蒸着源(6)(この実施例ではCo−Ni合金
の蒸着淘)とを配置し、これらに対向して非磁性支持体
+1)を保持したホルダー(7)を配置し、両者間にシ
ャンク−(8)が配置された構成を採り得る。(9)は
加熱源例えばハロゲンランプを示す。この場合、I X
 lO= torrの圧力下でその蒸着を行った。
Examples Example 1 A1 is treated as a non-magnetic support +11, on which Ge and an alloy of Co-30 atomic % Ni are sequentially deposited, as explained in FIG. 1. Non-magnetic support (1)
Through a 100-thick Ge land layer (3) on top
An o-Ni metal magnetic thin film (2) was formed. For these vapor depositions, a vapor deposition apparatus shown in FIG. 2 was used. This evaporation apparatus is capable of depositing a base layer (3) in a herger (4) at t5+.
<In this example, a Ge deposition source) and a metal magnetic thin film 11
2) vapor deposition source (6) (in this example, a Co-Ni alloy vapor deposition source) is placed, and a holder (7) holding a non-magnetic support +1) is placed opposite to these, and both A configuration may be adopted in which a shank (8) is disposed between them. (9) indicates a heating source such as a halogen lamp. In this case, I
The deposition was carried out under a pressure of lO=torr.

このようにして夫々蒸着時の基板温度ずなわら非磁性支
持体(1)に対する加熱温度を250“Cとした場合と
、300℃とした場合の各磁気記録媒体の磁気特性、す
なわち抗磁力Hcと角型比Rsとの、Co−Ni金金属
磁性成膜2)の膜厚との関係を測定した結果を第3図に
示す。同図中曲線Q[Il及び(11)は基板温度を2
50℃とした場合のIlcとRsを示し、(12)及び
(13)は300℃とした場合のllcとRsを示し、
G。
In this way, the magnetic properties of each magnetic recording medium when the heating temperature for the non-magnetic support (1) was set to 250"C and 300"C, that is, the coercive force Hc Figure 3 shows the results of measuring the relationship between the squareness ratio Rs and the film thickness of the Co-Ni gold metal magnetic film 2). 2
Ilc and Rs are shown when the temperature is 50°C, (12) and (13) are llc and Rs when the temperature is 300°C,
G.

−N 4股(2)の厚さが100〜300人では一様に
高いllcとRsを示している。
-N People with a thickness of 4 legs (2) of 100 to 300 uniformly show high llc and Rs.

実施例2 実施例1と同様の方法によるも、下地層(3)とじ−ζ
厚さ 120人のGe−10原子%1n合金層を、金属
磁性薄膜(2)として同様の厚さ200人のCo−N1
Wを夫人蒸着した。このようにして得た磁気記録媒体の
抗磁力ticは5400e、角型比Rsは73.4%で
あった。
Example 2 The base layer (3) was bound by the same method as in Example 1.
A Ge-10 atomic% 1n alloy layer with a thickness of 120 mm is used as a metal magnetic thin film (2) and a Co-N1 layer with a similar thickness of 200 mm is used as the metal magnetic thin film (2).
W was vapor-deposited. The magnetic recording medium thus obtained had a coercive force tic of 5400e and a squareness ratio Rs of 73.4%.

実施例3 実施例1と同様の方法によるも、−ト地層(3)としζ
厚さ 100人のGe−5原子%^U合金層を蒸着し、
金属磁性薄膜(2)として厚さ220人のCo−Ni層
を夫夫蒸着した。このようにして得た磁気記録媒体の1
1cは6100e、 Rsば72.4%であった。
Example 3 By the same method as in Example 1, ζ
Deposit a Ge-5 atomic%^U alloy layer with a thickness of 100 people,
A Co--Ni layer having a thickness of 220 mm was deposited as a metal magnetic thin film (2). 1 of the magnetic recording medium obtained in this way
1c was 6100e, Rs was 72.4%.

実施例4 非磁性支持体(1)として、Il’lJ分子フィルムを
川面し、これの上に5tO2非晶質映を50人の1ソー
さにイ」着し、これの上に実施例1にお&Jると同様に
厚さ100人のGe下地層(3)を介して厚さ 200
人のCo−Ni磁性薄映(2)を形成した。このように
して得たθ)、気記録媒体のIlcは4700e、 R
sは75.8%であ21.た。面、この場合、支持体(
1)に刻する5i02映の形成は、例えば第2図に示す
ようにヘルジャ−(4)内にSji着Vぶ(14)を設
け、ヘルジャ−(4)内に酸素ガスを送り込んで、この
ようにして5i02を支1”i体1−に付着させ、その
後、排気しCGe及びCo−Niの各蒸着を順次行う。
Example 4 As a non-magnetic support (1), an Il'lJ molecular film was placed on the surface, and a 5tO2 amorphous film was placed on top of it in a 50-person beam, and Example 1 was placed on top of this. 200mm thick through Ge underlayer (3) 100mm thick like Ni&J
A Co-Ni magnetic thin film (2) of a person was formed. θ) obtained in this way, Ilc of the recording medium is 4700e, R
s is 75.8% and 21. Ta. surface, in this case the support (
1) The formation of the 5i02 image inscribed in 1) can be achieved, for example, by providing a Sji-ring V (14) in the herjar (4) as shown in Fig. 2, and feeding oxygen gas into the herjar (4). In this manner, 5i02 is adhered to the support 1''i body 1-, and then the air is evacuated and CGe and Co--Ni are sequentially deposited.

実施例5 実施例4と同様の方法によるも、金属磁性薄1’M(2
)として200人の厚さのCog!体の范着層とした。
Example 5 A metal magnetic thin film of 1'M (2
) as 200 thick Cog! It was used as an adhesive layer on the body.

このようにして得た媒体の特性は、Ilcが6500+
:、角型比が70.1%であった。
The characteristics of the medium obtained in this way are that Ilc is 6500+
:, the squareness ratio was 70.1%.

面、実施例4及び5のように支持体fll 、、l−3
i 02の非晶質膜を形成するときは、下地層(3)の
成+19! 411が量子するか5i021%にかえて
Si、或いは他の化合物の非晶質IIIを形成すること
もできる。
surface, support fll,,l-3 as in Examples 4 and 5
When forming an amorphous film of i 02, the formation of the base layer (3) is +19! Instead of 411 quantum or 5i021%, it is also possible to form amorphous III of Si or other compounds.

また、金属磁性膜は上述した各別のように一層に限られ
るものではなく例えば上述の土地層を介在さ−Uた多層
構造とすることもできる。
Further, the metal magnetic film is not limited to a single layer as described above, but may have a multilayer structure, for example, with the above-mentioned land layer interposed therebetween.

発明の効果 上述したように本発明によれば晶抗磁力、高角型比を有
し、磁気的特性に優れた磁気記録媒体が19tられた。
Effects of the Invention As described above, according to the present invention, a magnetic recording medium having crystal coercive force, high squareness ratio, and excellent magnetic properties was produced.

これは、1・地層(3)としてその凝固時に体積膨張の
生しる層を配したことによってこの凝固時の膨張によっ
′ζこれの上に金属磁性薄膜が斜め蒸着によらずとも微
細化され一ζ晶い抗磁力が得られるものと思われる。そ
して、この]−地層(3)は30〜300人で上述のl
lcの向上等の効果が得られた。
This is achieved by placing a layer (1), which undergoes volumetric expansion during solidification, as 1. Geological layer (3), and due to the expansion during solidification, a thin metal magnetic thin film is deposited on top of this layer without diagonal deposition. It is thought that a crystalline coercive force can be obtained. And this layer (3) has 30 to 300 people and the above-mentioned l
Effects such as improvement in lc were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記録媒体の一例の路線的断面
図、第2図は蒸着装)Vの一例の構成図、第3図は磁気
的特性曲線図である。 (41は非磁性支持体、(2)は金属磁性薄膜、(3)
は下地層である。
FIG. 1 is a linear sectional view of an example of a magnetic recording medium according to the present invention, FIG. 2 is a configuration diagram of an example of a vapor deposition system), and FIG. 3 is a diagram of magnetic characteristic curves. (41 is a non-magnetic support, (2) is a metal magnetic thin film, (3)
is the underlying layer.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体と、この非磁性支持体の一生面に形成され
たGeまたはGeを含む合金よりなる土地層と、これの
上に形成された金属磁性薄膜とより成る磁気記録媒体。
A magnetic recording medium comprising a non-magnetic support, a land layer made of Ge or an alloy containing Ge formed on the entire surface of the non-magnetic support, and a metal magnetic thin film formed thereon.
JP58149469A 1983-08-16 1983-08-16 Magnetic recording medium Pending JPS6043221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149469A JPS6043221A (en) 1983-08-16 1983-08-16 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149469A JPS6043221A (en) 1983-08-16 1983-08-16 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6043221A true JPS6043221A (en) 1985-03-07

Family

ID=15475813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149469A Pending JPS6043221A (en) 1983-08-16 1983-08-16 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6043221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390254A (en) * 1989-08-31 1991-04-16 Alps Electric Co Ltd Manufacture of amorphous metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390254A (en) * 1989-08-31 1991-04-16 Alps Electric Co Ltd Manufacture of amorphous metal

Similar Documents

Publication Publication Date Title
JPS6321254B2 (en)
JPS6043221A (en) Magnetic recording medium
JPS5968815A (en) Magnetic recording medium
JPS6043220A (en) Magnetic recording medium
JPS6043226A (en) Production of magnetic recording medium
JPS5877025A (en) Production of magnetic recording medium
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPS60231911A (en) Magnetic recording medium
JPS6292116A (en) Magnetic recording medium
JPH03160616A (en) Double-layer perpendicular magnetic recording medium and its production
JPS59148126A (en) Magnetic recording medium for vertical recording
JPS63113928A (en) Magnetic recording medium
JPS61120347A (en) Manufacture of magnetic recording medium
JPS58122618A (en) Manufacture of magnetic recording medium
JPS58137134A (en) Manufacture of magnetic recording medium
JPS5922234A (en) Production of vertical magnetic recording medium
JPS60237625A (en) Magnetic recording medium
JPS5922235A (en) Production of vertical magnetic recording medium
JPS6043225A (en) Manufacture of magnetic recording medium
JPS61241993A (en) Composite magnetoresistance effect element
JPS5862825A (en) Magnetic recording medium
JPS60140542A (en) Production of magnetic recording medium
JPS6020314A (en) Magnetic recording medium
JPS61153821A (en) Magnetic recording medium and its production
JPS62270021A (en) Production of magnetic recording medium