JPS6043226A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS6043226A JPS6043226A JP15180383A JP15180383A JPS6043226A JP S6043226 A JPS6043226 A JP S6043226A JP 15180383 A JP15180383 A JP 15180383A JP 15180383 A JP15180383 A JP 15180383A JP S6043226 A JPS6043226 A JP S6043226A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- metal
- ion
- recording medium
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thin Magnetic Films (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は磁気記録媒体、特に非磁性基体上に金屈磁1り
:’)’+V 112を被着したいわゆる金属薄膜型磁
気記録媒体の!liJ法tこ係わる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to magnetic recording media, particularly to so-called metal thin film type magnetic recording media in which a gold dielectric layer (')'+V 112 is deposited on a non-magnetic substrate. LiJ law is involved.
背景技術とその問題点
従来一般に普及されCいる磁気記録媒体は、針状の佑性
粉と高分子結合剤とを主体とする磁性塗料を非磁性基体
上に塗布して磁性1背を形成した塗布型の磁気記録媒体
である。BACKGROUND TECHNOLOGY AND PROBLEMS The magnetic recording media that have been widely used in the past have a magnetic backbone formed by coating a non-magnetic substrate with a magnetic paint mainly consisting of acicular powder and a polymeric binder. It is a coating type magnetic recording medium.
これに比し、Co、 Fe、 Ni等の磁性金属、或い
はこれらの合金を真空苺着、スパッタリング、或いはイ
オンブレーティング等のいわゆるフィジカル・ベーパー
・デポジション技術によっ′ζ非磁性基体上に形成する
金属薄膜型の磁気記録媒体は、その磁性層中に非磁性の
結合剤が混入されていないために著しく商い残留磁束密
度を得ることができること、また磁性層を極めて薄く形
成することができるために高出力且つ短波長応答性にず
くれζいるという利点を有する。In contrast, magnetic metals such as Co, Fe, and Ni, or alloys thereof, are formed on non-magnetic substrates by so-called physical vapor deposition techniques such as vacuum deposition, sputtering, or ion blasting. The metal thin film type magnetic recording medium has the ability to obtain a significantly higher residual magnetic flux density because no non-magnetic binder is mixed into the magnetic layer, and the magnetic layer can be formed extremely thin. It has the advantage of high output and short wavelength response.
しかしながら、この種の薄膜型の侑4気記録媒体におい
て、そのCo等の磁性金属を車に非磁性基体上に例えば
M着したたりでは、充分1口Iい抗(d)月lcを自す
る磁性層をt4することは困ゲ1(である。このような
薄1膜型磁気記録媒体におい”ζ、1111い抗硼)月
1(。However, in this type of thin-film type recording medium, if a magnetic metal such as Co is dropped onto a non-magnetic substrate on a car, for example, one drop of magnetic metal will have a sufficient resistance (d) to 100 ml. It is difficult to maintain the magnetic layer at t4. In such a thin single-film magnetic recording medium, it is difficult to maintain the magnetic layer at t4.
を有する磁性1t4tを得る方法としくは、非θケ性)
、(体に対して、上述の磁性金属の茎発粒子を♀゛1め
に入射させる斜め蒸着法が提案されている。とご7)が
このような斜め蒸着法による場合、蒸着効率が低く生産
性に劣るという欠点がある。The method for obtaining magnetic 1t4t having a non-θ magnetic property is
, (An oblique evaporation method has been proposed in which the above-mentioned magnetic metal stem particles are incident on the body at the ♀ 1st point. Togo 7) When such an oblique evaporation method is used, the evaporation efficiency is low. The disadvantage is that productivity is low.
発明の目的
本発明の1の目的は、斜め蒸着法によらない場合におい
ても、非磁性支持体」−に11]1い抗9クカをイjし
、その面内で磁気特性が等方向とされた金属磁fil
’r+V、 IQ型の磁気記録媒体を得ようとするもの
である。OBJECTS OF THE INVENTION The first object of the present invention is to provide a non-magnetic support with an anti-magnetic force of 11]1 to 9 degrees even when the oblique vapor deposition method is not used, so that the magnetic properties are uniformly oriented within that plane. metal magnetic fil
The purpose is to obtain a 'r+V, IQ type magnetic recording medium.
本発明の他の目的は上述したように高い抗磁力を得ると
同時に角型比の高い金属磁性薄膜型の磁気記録媒体を得
ようとするものである。Another object of the present invention is to obtain a metal magnetic thin film type magnetic recording medium which has a high coercive force and a high squareness ratio as described above.
発明の概要
本発明においてはミ第1図に示すように、非磁性基体(
1)上に、凝固(同化)時に体積が膨張する金属の一ト
地j賛(2)を形成し、これの上に金属磁性薄膜(3)
を形成する。Summary of the Invention In the present invention, as shown in Fig. 1, a non-magnetic substrate (
1) A metal layer (2) whose volume expands during solidification (assimilation) is formed on top, and a metal magnetic thin film (3) is formed on top of this.
form.
特に本発明においては、少くとも上述のド地層(2)、
更に成る場合は続いてこれの上の金属磁性薄膜(3)の
形成をガス中放電によるイオン蒸着、いわゆるイオンブ
レーティングによって行う。In particular, in the present invention, at least the above-mentioned stratum (2),
If a further layer is to be formed, a metal magnetic thin film (3) is subsequently formed thereon by ion vapor deposition using discharge in gas, so-called ion blating.
因みに、基体+11上に、通常の真空蒸着法によって一
ヒ述した凝固時に体積が膨張する金属の下地I餌を形成
し、これの上に金属磁性薄1挨を形成する場合、下地層
の存在によって、これの上の金属磁性薄膜を、斜め蒸着
によらずにほぼ垂直方向からの蒸着法によって形成する
場合においてもIn;い抗(σり力Heは得られるもの
の、この場合、抗磁力Hにと角型比Rsが、上地層のI
!itさに依存性を自し、これらHc及びRsと上地層
の厚さは、第2図中曲線(21)及び(22)に4くず
よ・うにFill!層の111さが大になるにつれHc
が大となる傾向を示すものの、反面Rsが低下しζしま
う傾向を不ず。Incidentally, in the case where a metal base material whose volume expands during solidification is formed on the substrate +11 by a normal vacuum evaporation method, and a metal magnetic thin film is formed on this, the presence of the base layer is Therefore, even if a metal magnetic thin film is formed on this film not by oblique evaporation but by evaporation from a substantially perpendicular direction, the coercive force H can be obtained. The squareness ratio Rs of the upper layer is
! These Hc and Rs and the thickness of the overlying layer are shown in curves (21) and (22) in Figure 2 as shown in Figure 2. As the 111 of the layer increases, Hc
However, on the other hand, there is a tendency for Rs to decrease and ζ to increase.
しかるに、上述した本発明方法による場合、すなわら、
F地層をガス中放電によるイオンブレーティング、すな
わちいわば低真空蒸着によるときは、Hc及びRsの双
方をIllめることかできるのである。However, in the case of the method of the present invention described above, namely,
When the F formation is ion-blated by discharge in gas, that is, by so-called low-vacuum evaporation, it is possible to reduce both Hc and Rs.
実施例
本発明におい”ζは第1図で説明したように、非磁性基
体+11上に下地M (2)と、金属磁性薄膜i’F
II史(3)とを形成し“ζ磁気記録媒体をf、する。Embodiment In the present invention, "ζ" is a base layer M (2) on a non-magnetic substrate +11 and a metal magnetic thin film i'F as explained in FIG.
II history (3) and form the "ζ magnetic recording medium f.
ここに非磁性基体+11は、例えばポリエチレンう〜レ
フタレート、ポリアミド、ポリアミドイミド、ポリイミ
ド等の高分子ソイルノ・、或いはガラスセラミック、ザ
ファイヤ若しくは表面をr’if化した金属扱等の無機
物基板等を用い得る。Here, the nonmagnetic substrate +11 may be, for example, a polymeric soil substrate such as polyethylene phthalate, polyamide, polyamideimide, polyimide, or an inorganic substrate such as glass ceramic, zaphire, or a metal treated with an R'IF surface. .
上ttl l= 12)は、基体(1)上にイオンブに
一ティングによって被着するものであるが、その被着に
際し゛ζ基体(1)」−で、液相から面相に凝固、すな
わち固化するとき、その体積が膨張する特性を示す金属
、例えばBi、Ga、Sb、Ge、Stの夫々、或いは
これらのいずれかを含む金属、例えばSi −Cu、5
i−Au、Ge−Au、Ge−In等の合金によ、って
構成され、その厚さは30〜300人に選定される。The above ttl l = 12) is deposited on the substrate (1) by an ion beam, but during the deposition, it is solidified from a liquid phase to a surface phase, that is, on the substrate (1). Metals whose volume expands when solidified, such as Bi, Ga, Sb, Ge, and St, or metals containing any of these, such as Si-Cu, 5
It is made of an alloy such as i-Au, Ge-Au, Ge-In, etc., and its thickness is selected from 30 to 300.
表1は、−J二連した各飼料の固化時の体積膨張率1Δ
V/Vl(ここに、■は液状時の体積、Δ■ばその固化
による体f′IV変化分をボず)と、融点rn、pを示
したものである。Table 1 shows the volumetric expansion rate 1Δ of each of the -J double feeds upon solidification.
V/Vl (herein, ■ is the volume in liquid state, and Δ■ is the change in body f'IV due to solidification), and the melting points rn and p are shown.
表1
金属磁性+!¥ 11% +31は、イオンブレーティ
ング或いは通常の蒸着によって、Co、I’e、Niの
いずれか、或いはその合金を100〜1000人の厚さ
に被着することによって形成し得る。Table 1 Metal magnetism +! ¥ 11% +31 can be formed by depositing Co, I'e, Ni, or an alloy thereof to a thickness of 100 to 1000 mm by ion blasting or ordinary vapor deposition.
第3図は、下地層(2)、更に成る場合は、金属磁性m
欣+31を形成するイオンブレーティング装置!’J
’、の路線的構成図で、図中(4)はヘルジャ、ずなゎ
ら真空容器で、この容器(4)内に、非磁11.基体(
1)を保持する支持体(5)が配置され、この支持体f
51と容器(4)との間に直流電源(6)が接続される
。また容器(4)内には、基体([)と対向し゛(、蒸
着沙旧7)が配tI!l:されイl。Figure 3 shows the underlayer (2), and if it further comprises a metal magnetic m
Ion brating device that forms Shin+31! 'J
In the diagram, (4) is a Herja, Zunawara vacuum container, and inside this container (4), non-magnetic 11. Substrate (
1) is arranged, and this support f
A DC power supply (6) is connected between 51 and the container (4). Also, inside the container (4), a vapor deposition layer 7 is arranged facing the substrate ([). l: It's been done.
一方、この蒸着源(7)と基体(1)との間にはil’
li因波ご1イル(8)が配置され、これに、t:i1
周波?1111ル!(9)よりの商用波が供給される。On the other hand, there is an il' between the vapor deposition source (7) and the substrate (1).
li inhago 1 ile (8) is placed, and to this, t:i1
frequency? 1111 le! (9) Commercial waves are supplied.
001は容器(4)内に送り込む、Δr。001 is Δr fed into the container (4).
N2.02等のガス供給海で、(11)は拡散型ポンプ
等の真空ポンプが連結されて容器(4)内のυ(気をな
す排気口を角、ず。面、蒸着伽(7)は、例えば図示し
ないが電子銃からの電子ビームのf!ii!!S’!に
よ−2で或いは抵抗加熱にょゲで蒸着相が蒸発するよ・
)になされる。In the gas supply sea such as N2.02, (11) is connected to a vacuum pump such as a diffusion type pump, and the exhaust port that produces air (υ) inside the container (4) is connected to the corner. For example, although not shown, the deposited phase is evaporated by f!ii!!S'! of an electron beam from an electron gun or by resistance heating.
) to be done.
容器(4)内は、−且juI真空に排気され、ガス供給
源00)からのガス、例えばArを5 X 10−’
〜1O−3torr程度となるように送り込む、そして
このガス中放電による蒸着物のイオンを生成させ、これ
を基体(11に射突被着させる。The inside of the container (4) is evacuated to a vacuum of - and juI, and a gas, e.g.
The gas is fed at a pressure of about 1 O-3 torr, and ions of the deposit are generated by the discharge in the gas, and the ions are deposited on the substrate (11) by injection.
実施例1
厚さ50μmのポリイミド基体(1)上に第3図で説明
したイオンブレ−ティング装置によっ゛(、Biを厚さ
50人にイオンブレーティングして下地層(2)を形成
した。この場合、容器(4)内には、八rを3.8X
10−’ torrに導入し、画周波電源(9)のパワ
ーは200−1直流電源(6)は、−’ i k Vと
した。その後、容器(4)内を抽気し、ト地1響(21
上に基体(1)の血に対してほぼ垂直方向からCo−N
iを350人の厚さに真空蒸着して金属磁性薄膜(3)
を形成し−C磁気記録媒体を得た。このようにして得た
媒体を試料1とする。Example 1 A base layer (2) was formed on a polyimide substrate (1) having a thickness of 50 μm by ion-blating Bi to a thickness of 50 μm using the ion-blating apparatus described in FIG. In this case, 8r is 3.8X in the container (4).
The power of the image frequency power supply (9) was set to 200-1, and the power of the DC power supply (6) was set to -' i kV. After that, the inside of the container (4) was bled out, and
Co-N is applied on the substrate (1) from a direction almost perpendicular to the blood.
A metal magnetic thin film (3) is made by vacuum evaporating i to a thickness of 350 mm.
A -C magnetic recording medium was obtained. The medium thus obtained is designated as sample 1.
次に本発明と対比される例として比較例1〜3を挙げる
。Next, Comparative Examples 1 to 3 will be listed as examples to be compared with the present invention.
比較例1
実施例1と同様に、厚さ50μmのポリイミド基体上に
50人の厚さにBiの一ト地層と、これの上に350人
の厚さのCo−Niの金属磁性iiv股を形成するが、
この例では、下地層のBiを、Arガス(3,8X 1
0−’ torr)中で蒸着し、その後、Co−Niを
真空蒸着して金属磁性薄膜を形成し−(磁気記録媒体を
作成した。このようにし7て14Ilた媒体を試料2と
する。Comparative Example 1 Similarly to Example 1, a layer of Bi with a thickness of 50 μm was placed on a polyimide substrate with a thickness of 50 μm, and a metal magnetic layer of Co-Ni with a thickness of 350 μm was placed on top of this. form, but
In this example, the Bi base layer is replaced with Ar gas (3,8X 1
After that, Co--Ni was vacuum-deposited to form a metal magnetic thin film (a magnetic recording medium was prepared. Sample 2 was a medium with 14 Il in this way.
比較例2
比較例1と同様の構成によるも、Bi土地層及びこれの
上のCo−Ni金属磁v目1!股を、ともに真空蒸着し
た。このようにし”(冑た磁気記録媒体を試料3とする
。Comparative Example 2 Even with the same configuration as Comparative Example 1, a Bi land layer and a Co--Ni metal magnetic layer thereon were formed. Both crotches were vacuum-deposited. The magnetic recording medium prepared in this manner is referred to as sample 3.
比較例3
比較例2に倶いてB i ”I・地層の厚さを)30人
とした。このようにして得た磁気記録媒体を試料4とす
る。Comparative Example 3 Continuing with Comparative Example 2, the number of people (B i ''I・thickness of the stratum) was set at 30 people.The magnetic recording medium obtained in this manner is referred to as Sample 4.
これら試料、1〜4の各磁気的特性を表2に列記する。The magnetic properties of these samples 1 to 4 are listed in Table 2.
表2
これより明らかなように、本発明製法によっ”ζ得た磁
気記録媒体は抗磁力He及び角型比Rsの双方に関して
ずぐれた特性を示している。Table 2 As is clear from this, the magnetic recording medium obtained by the manufacturing method of the present invention exhibits excellent characteristics in terms of both the coercive force He and the squareness ratio Rs.
尚、」−述した本発明製法の実施例においては、下地層
の形成をガス中放電によるイオンブレーティングによっ
゛ζ形成した場合であるが、1地層上の金属磁性薄1挨
をイオンブレーティングによっ゛ζ形成した場合におい
ても同様にl(c及びRsにすぐれた磁気記録媒体を得
ることができた。In the embodiment of the production method of the present invention described above, the underlayer was formed by ion blating using discharge in gas, but the metal magnetic thin film on one geological layer was ion-blasted. Even when ζ was formed by rating, a magnetic recording medium with excellent l(c and Rs) could be obtained.
また、金属磁性薄1模は垂直方向からの蒸着のみならず
、斜め蒸着によって形成することもできるし、またこの
金属磁性薄膜は一層に限られるものではなく上述の下地
層を介在させた多層構造とすることもできる。In addition, the metal magnetic thin film 1 can be formed not only by vertical vapor deposition but also by oblique vapor deposition, and this metal magnetic thin film is not limited to a single layer, but can have a multilayer structure with the above-mentioned underlayer interposed. It is also possible to do this.
また、上述したト地層(2)は、基体(1)上に直接的
に被着される場合に限られるものではなく、Si。Moreover, the above-mentioned formation layer (2) is not limited to the case where it is directly deposited on the substrate (1).
5302の非晶′R層を介在し°ζ形成することもでき
る。It is also possible to form an amorphous R layer of 5302 with an intervening amorphous R layer.
発明の効果
上述したように本発明製法によれば、凝固時に体積膨張
する下地層を介して金属磁性薄膜模を形成するものであ
り、このようにすることにょっC2この1地層の体積膨
張に因る磁性薄1挨の被着面の表面性によゲにれの上に
形成する磁t!l ”AV、IK+が、特別に斜め蒸着
によらずともほぼ垂直方向がらの蒸着でも微細化され商
い抗磁力Hcを得ることができるが、加えて本発明にお
いては、この1・地層を特にイオンブレーティングにょ
ゲ(行うものであり、この時、抗磁力Hcの向」−のめ
ならず、角型比Rsの向」二をもはかることができたの
である。Effects of the Invention As described above, according to the manufacturing method of the present invention, a metal magnetic thin film pattern is formed through the underlayer that expands in volume during solidification. Due to the surface properties of the surface to which the magnetic thin film is adhered, the magnetic t! 1. The coercive force Hc can be obtained by making the AV, IK+ finer and the coercive force Hc not only by oblique evaporation but also by almost vertical evaporation.In addition, in the present invention, this 1. Brating was carried out, and at this time, it was possible to measure not only the direction of the coercive force Hc, but also the direction of the squareness ratio Rs.
更にまた本発明によるときは、抗磁力及び角型比の向」
このみならず、金属磁性HvI模の被着強度の向上もは
かられた。Furthermore, according to the present invention, the direction of coercive force and squareness ratio
In addition to this, the adhesion strength of the metal magnetic HvI pattern was also improved.
第1図は本発明製法にょっ”ζ得る(0気記録媒体の一
例の路線的断面図、第2図は本発明製法にょらない磁気
記録媒体の一ト地層の厚さと磁気特性の関係をしめず特
性曲線図、第3図は本発明製法に用いるイオンブレーテ
ィング装置の一例の構成図である。
(1)は非磁性基体、(2)は土地層、(3)は金属磁
性薄膜である。Figure 1 is a cross-sectional view of an example of a zero-temperature recording medium obtained by the manufacturing method of the present invention, and Figure 2 shows the relationship between the thickness of the stratum and magnetic properties of a magnetic recording medium that is not produced by the manufacturing method of the present invention. The Shimezu characteristic curve diagram and Figure 3 are configuration diagrams of an example of an ion brating device used in the manufacturing method of the present invention. (1) is a non-magnetic substrate, (2) is a land layer, and (3) is a metal magnetic thin film. be.
Claims (1)
体積膨張する金属の下地層を被着し、その後、これの上
に金属磁性薄膜を形成する磁気記録媒体の製法。A method for manufacturing a magnetic recording medium in which a metal underlayer that expands in volume upon solidification is deposited on a nonmagnetic substrate by ion blating, and then a metal magnetic thin film is formed on this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15180383A JPS6043226A (en) | 1983-08-19 | 1983-08-19 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15180383A JPS6043226A (en) | 1983-08-19 | 1983-08-19 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6043226A true JPS6043226A (en) | 1985-03-07 |
Family
ID=15526639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15180383A Pending JPS6043226A (en) | 1983-08-19 | 1983-08-19 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6043226A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2342178A (en) * | 1998-09-30 | 2000-04-05 | Snap On Equipment Ltd | Battery testing |
-
1983
- 1983-08-19 JP JP15180383A patent/JPS6043226A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2342178A (en) * | 1998-09-30 | 2000-04-05 | Snap On Equipment Ltd | Battery testing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6321254B2 (en) | ||
US4539264A (en) | Magnetic recording medium | |
JPS6043226A (en) | Production of magnetic recording medium | |
US4675224A (en) | Magnetic recording medium | |
JPS6367325B2 (en) | ||
JPS6379968A (en) | Production of magnetic recording medium | |
KR900001141B1 (en) | Mafnetic recording medium and its producing method there of | |
JPS6043221A (en) | Magnetic recording medium | |
JPS6043220A (en) | Magnetic recording medium | |
JPH0475577B2 (en) | ||
US5736263A (en) | Magnetic recording medium comprising successive magnetic metallic films of iron, nickel, and cobalt deposited on a substrate | |
JPS61242321A (en) | Magnetic recording medium | |
JPS60231911A (en) | Magnetic recording medium | |
JPS5918625A (en) | Manufacture of thin film | |
JPH0510732B2 (en) | ||
JPS62270021A (en) | Production of magnetic recording medium | |
JPS61120347A (en) | Manufacture of magnetic recording medium | |
KR920008436B1 (en) | Magnetic medium | |
JPS6043225A (en) | Manufacture of magnetic recording medium | |
JPS62102414A (en) | Magnetic recording medium | |
JPS60201521A (en) | Magnetic recording medium | |
JPS59157829A (en) | Magnetic recording medium | |
JPS61153821A (en) | Magnetic recording medium and its production | |
JPH04117611A (en) | Magnetic recording medium | |
JPS59157826A (en) | Production of magnetic recording medium |