JPS62275322A - Production of vertical magnetic recording medium - Google Patents

Production of vertical magnetic recording medium

Info

Publication number
JPS62275322A
JPS62275322A JP31140186A JP31140186A JPS62275322A JP S62275322 A JPS62275322 A JP S62275322A JP 31140186 A JP31140186 A JP 31140186A JP 31140186 A JP31140186 A JP 31140186A JP S62275322 A JPS62275322 A JP S62275322A
Authority
JP
Japan
Prior art keywords
film
ion gun
substrate
anisotropic magnetic
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31140186A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS62275322A publication Critical patent/JPS62275322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a vertically anisotropic magnetic film having high coercive force in the direction perpendicular to the vertically anisotropic magnetic field and film plane by treating the surface of a Ti film, which is formed by a vacuum deposition method on a substrate, by the particles from an ion gun, then forming a vertically anisotropic magnetic film essentially consisting of Co and Cr on the Ti film by a vacuum deposition method. CONSTITUTION:A polyimide film is run in the direction opposite from an arrow 7 and the Ti film is formed to 200Angstrom film thickness thereon. The evaporating material in a vapor source 6 is then changed to a Co-Cr alloy and the polyimide film deposited with the Ti film by evaporation is run in the direction of the arrow 7 and the vertically anisotropic magnetic Co-Cr film is formed to 25000Angstrom thickness thereon. A Kaufman type ion gun is used and the acceleration voltage of the ion gun is specified to -KV and the ion current density to 0.8mA/cm<2>. Ar is used for the gas to be introduced into the ion gun. The traveling speed of the substrate is specified to 15m/min, the deposition rate of the film to 9000Angstrom /sec and the temp. Tcan on the peripheral face of a cylindrical can to 200 deg.C and 270 deg.C.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は高密度記録特性の優れた垂直磁気記録媒体の製
造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method of manufacturing a perpendicular magnetic recording medium having excellent high-density recording characteristics.

従来の技術 短波長記録特性の優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては垂直磁気異方性を
有する垂直磁気記録媒体が必要となる。このような媒体
に信号を記録すると、残留磁化は媒体の膜面に垂直な方
向を向き、従って信号が短波長になるほど、媒体内反磁
界が減少し、高い再生出力が得られる。
2. Description of the Related Art A perpendicular magnetic recording system is known as a magnetic recording system with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium having perpendicular magnetic anisotropy. When a signal is recorded on such a medium, the residual magnetization is oriented in a direction perpendicular to the film surface of the medium, and therefore, the shorter the signal wavelength, the smaller the demagnetizing field within the medium, and the higher the reproduction output.

現在一般的に用いられている垂直磁気記録媒体は、高分
子フィルム等の非磁性基板上に直接に、あるいはパーマ
ロイ等の軟磁性薄膜を介して、COとOrを主成分とし
た垂直磁気異方性を有する磁性層をスパッタリング法に
より形成したものである。GoとOrを主成分としたス
パッタ膜は、Orの量が30重量%以下の範囲では結晶
系が、稠密六方構造であり、そのC軸を膜面に対して垂
直方向に配向させることが可能であり、垂直磁気異方性
膜を実現出来る。
Perpendicular magnetic recording media commonly used today are perpendicular magnetic anisotropic recording media mainly composed of CO and Or. A magnetic layer having a magnetic property is formed by a sputtering method. Sputtered films containing Go and Or as main components have a crystalline system with a close-packed hexagonal structure when the amount of Or is 30% by weight or less, and the C axis can be oriented perpendicular to the film surface. Therefore, a perpendicular magnetic anisotropic film can be realized.

しかし、スパッタリング法は磁性薄膜の形成速度が遅い
ので、低コストで垂直磁化膜を生産することが困難であ
る。スパッタリング法に対し、真空蒸着法(イオンブレ
ーティング法のように蒸発原子の一部をイオン化する方
法も含む)によれば、数1000人/秒という速い膜堆
積速度でCo −Gr垂直磁気異方性膜が得られる。真
空蒸着法においては基板を円筒状キャンの周面に沿って
走行させつつ、薄膜の形成を行なうとテープ状の垂直磁
気記録媒体が非常に生産性よく得られる。図にこのよう
な真空蒸着装置の内部構造の概略を示す。
However, since the sputtering method is slow in forming a magnetic thin film, it is difficult to produce a perpendicularly magnetized film at low cost. In contrast to the sputtering method, the vacuum evaporation method (including methods that ionize some of the evaporated atoms, such as the ion blating method) can achieve Co-Gr perpendicular magnetic anisotropy at a high film deposition rate of several thousand people/second. A sexual membrane is obtained. In the vacuum evaporation method, a tape-shaped perpendicular magnetic recording medium can be obtained with high productivity by forming a thin film while moving the substrate along the circumferential surface of a cylindrical can. The figure schematically shows the internal structure of such a vacuum evaporation device.

高分子材料より成る基板1が円筒状キャン2の周面に沿
って矢印7の方向へ走行する。蒸発源6と円筒状キャン
2との間にはマスク5が配置されており、このマスクの
開口部12を通って、蒸発原子は基板1に付着する。3
.4はそれぞれ基板1の供給ロール及び巻取りロールで
ある。8,9は本発明に係わる記号であるので、後で説
明する。
A substrate 1 made of a polymeric material runs along the circumferential surface of a cylindrical can 2 in the direction of an arrow 7. A mask 5 is arranged between the evaporation source 6 and the cylindrical can 2, and the evaporated atoms adhere to the substrate 1 through the opening 12 of this mask. 3
.. 4 are a supply roll and a take-up roll for the substrate 1, respectively. Since 8 and 9 are symbols related to the present invention, they will be explained later.

また、10.11についても後述する。なお、8はイオ
ン銃であり、従来の装置には設置されていない。
10.11 will also be described later. Note that 8 is an ion gun, which is not installed in conventional equipment.

発明が解決しようとする問題点 Go −Cr垂直磁気異方性膜が優れた短波長記録再生
特性を有するためには、垂直異方性磁界H1が大きい方
が好ましい。しかし従来、Go−Cr垂直磁気異方性膜
を、図の様な真空蒸着装置を用いて高分子材料より成る
基板上に直接作製すると、膜のH,は高々4 KOf5
であり、スパッタリング法により作成されたCo−0r
垂直磁気異方性膜の6〜e KOeに及ばない。H,を
大きくするために、高分子材料より成る基板上にTi蒸
着膜を介してCo−Cr膜を蒸着すると効果のあること
が知られている。しかしTi膜は、表面がきわめて酸化
され易い。酸化の進んでいないで1膜上にGo −Cr
膜を蒸着すると大きなH,が得られるが、酸化されたT
i膜上のCo−Cr膜はHにが小さい。また高い再生出
力を得るためには、Co−0r膜の膜面に垂直方向の保
磁力Hc上を大きくする必要がある。Hc土は蒸着時の
基板温度が高い程大きくなる。
Problems to be Solved by the Invention In order for the Go-Cr perpendicular magnetic anisotropic film to have excellent short wavelength recording and reproducing characteristics, it is preferable that the perpendicular anisotropic magnetic field H1 is large. However, conventionally, when a Go-Cr perpendicular magnetic anisotropy film is directly fabricated on a substrate made of a polymer material using a vacuum evaporation apparatus as shown in the figure, the H, of the film is at most 4 KOf5.
and Co-0r prepared by sputtering method.
This is lower than the 6-e KOe of the perpendicular magnetic anisotropic film. In order to increase H, it is known that it is effective to deposit a Co--Cr film on a substrate made of a polymer material via a Ti deposited film. However, the surface of the Ti film is extremely easily oxidized. Go-Cr on one film without progressing to oxidation
Although large H, can be obtained by depositing the film, oxidized T
The Co—Cr film on the i film has a small H content. Furthermore, in order to obtain a high reproduction output, it is necessary to increase the coercive force Hc in the direction perpendicular to the film surface of the Co-0r film. The higher the substrate temperature during vapor deposition, the larger the Hc soil becomes.

ところが、Ti蒸着膜の形成された基板上KHclの大
きなGo−Cr膜を形成するために、図に示される様な
真空蒸着装置において円筒状キャンの局面温度を高くす
ると、真空槽内部を10Torr程度の真空度に保って
おいても、Co−0r膜が付着する前にてi膜が残留ガ
ス中の酸素により酸化されてしまい、Co−0r膜のH
!を大きくすることが困難である。すなわち、従来、真
空蒸着法でJ+Hc上ともに大きなGo −Cr膜を作
製することが困難であった。
However, in order to form a Go-Cr film with a large amount of KHcl on a substrate on which a Ti evaporated film has been formed, when the temperature of the cylindrical can is increased in a vacuum evaporation apparatus as shown in the figure, the inside of the vacuum chamber is heated to about 10 Torr. Even if the vacuum level is maintained at a vacuum level of
! It is difficult to increase the That is, conventionally, it has been difficult to fabricate a large Go-Cr film on both J+Hc using a vacuum evaporation method.

問題点を解決するための手段 真空蒸着法により基板上に形成されたTi膜の表面をイ
オン銃からの粒子により処理した後に、前記Ti膜上に
CoとOrを主成分とする垂直磁気異方性膜を真空蒸着
法により形成する。
Means for Solving the Problem After the surface of a Ti film formed on a substrate by vacuum evaporation is treated with particles from an ion gun, perpendicular magnetic anisotropy mainly composed of Co and Or is deposited on the Ti film. A transparent film is formed by a vacuum evaporation method.

作用 イオン銃からの粒子により、Ti蒸着膜表面を処理する
と、表面の酸化層が取り除かれ、高いH,及びH,土を
有する垂直磁気異方性膜が得られる。
When the Ti deposited film surface is treated with particles from a working ion gun, the oxide layer on the surface is removed and a perpendicular magnetic anisotropic film with high H and H, soil is obtained.

実施例 具体的な例により本発明一ついて説明する。図は本発明
を実施するための真空蒸着装置内部の構成の1例を示す
。図において8〜11以外については、従来の技術の項
で既に説明したとおりである。なお高分子材料より成る
基板10表面、すなわちGo−Cr膜が蒸着される面に
はTi蒸着膜が形成されている。8はイオンビームスパ
ッタリングやイオンミリング等で使用されているものと
同様のイオン銃である。イオン銃8から放射された粒子
は矢印9の方向に飛び、表面にTi膜の形成された、高
分子材料より成る基板1に衝突する。
EXAMPLE The present invention will be explained by way of a specific example. The figure shows an example of the internal configuration of a vacuum evaporation apparatus for carrying out the present invention. In the figure, the parts other than 8 to 11 are as already explained in the section of the prior art. Note that a Ti vapor deposited film is formed on the surface of the substrate 10 made of a polymeric material, that is, the surface on which the Go-Cr film is deposited. 8 is an ion gun similar to those used in ion beam sputtering, ion milling, etc. Particles emitted from the ion gun 8 fly in the direction of the arrow 9 and collide with the substrate 1 made of a polymeric material and having a Ti film formed on its surface.

この様にして表面が処理された基板上に、蒸発源6から
蒸発した原子が付着し、Go−Cr膜が形成される。
Atoms evaporated from the evaporation source 6 adhere to the substrate whose surface has been treated in this manner, forming a Go--Cr film.

図に示される真空蒸着装置にて、まず蒸発源θ中の蒸発
材料をTiとして、膜厚12μmのポリイミドフィルム
を図中の矢印7と反対方向に走行させて膜厚200人の
Ti膜を形成する。次に蒸発源e中の蒸発材料をGo−
Or金合金変更し、Ti膜が蒸着されたポリイミドフィ
ルムを図中の矢印7の方向に走行させて、膜厚250o
人のCo −Cr垂直磁気異方性膜を形成した場合の本
発明の効果を表に示す。なおイオン銃はカウフマン型を
使用し、イオン銃の加速電圧は一1KV、イオン電流密
度は0.8mム/crl 、イオン銃への導入ガスはム
r。
Using the vacuum evaporation apparatus shown in the figure, first, using Ti as the evaporation material in the evaporation source θ, a polyimide film with a thickness of 12 μm is run in the direction opposite to the arrow 7 in the figure to form a Ti film with a thickness of 200 μm. do. Next, the evaporation material in the evaporation source e is
A polyimide film on which the Or gold alloy was changed and a Ti film was vapor-deposited was run in the direction of arrow 7 in the figure to obtain a film thickness of 250°.
The effects of the present invention when a Co--Cr perpendicular magnetic anisotropy film was formed are shown in the table. The ion gun used was a Kaufmann type, the accelerating voltage of the ion gun was -1 KV, the ion current density was 0.8 mm/crl, and the gas introduced into the ion gun was mr.

基板の走行速度は15m/分、膜堆積速度9000人/
秒9円筒状キヤ7周面の温度’raanは200 ’C
及び270’Cである。
The running speed of the substrate is 15 m/min, and the film deposition rate is 9000 people/min.
Second 9 Temperature 'raan' of the circumferential surface of the cylindrical gear 7 is 200'C
and 270'C.

表からT02Ln”200’Cとして、イオン銃による
処理をせずにGo−Cr膜を蒸着すると、H,、H吐が
それぞれ4 KOe及び4000sであるが、イオン銃
により処理を施すとH牡は変化ないが、HKが5KOe
に改善されていることがわかる。高い再生出力を得るた
めには、’rcanを高くしてHC上を大きくすること
が考えられるが、従来の様に単純に’rcanを高くし
たのでは、表のTC&n=27Q′Cの欄かられかるよ
うに、Hc上は70006程度になるが、HKは2.5
 KOeと低くなってしまう。
From the table, when T02Ln"200'C is used and a Go-Cr film is deposited without treatment with an ion gun, H, H, and H discharges are 4 KOe and 4000 s, respectively, but when treated with an ion gun, H No change, but HK is 5KOe
It can be seen that this has been improved. In order to obtain a high playback output, it is possible to increase the HC by increasing the 'rcan, but if you simply increase the 'rcan as in the past, the TC&n=27Q'C column of the table As you can see, the Hc is about 70006, but the HK is 2.5.
The KOe will be low.

HKが低いと短波長領域で高い再生出力が得られない。If HK is low, high reproduction output cannot be obtained in the short wavelength region.

これに対し、イオン銃によりT1蒸着膜の表面を処理し
た後にGo −Cr膜を形成すると、TQ&n=270
’Cにおいてl(、= s、7xoe 、 Ha上=8
5006という、非常に優れた特性の垂直磁気異方性膜
が得られる。この様に、特に’I’canが高い場合に
本発明の効果が顕著に現われる理由として、次のことが
考えられる。図に示される様な装置で、従来の様にイオ
ン銃による処理をせずに[有]−cr膜を蒸着すると、
特に円筒状キャン局面の温度TO&nが高い場合には、
フィルムがキャンに接し始める部分1oと蒸着部11と
の間で、真空槽内に残っている残留ガス中の酸素により
、T1膜表面の酸化が進み、その結果Go−Or膜のH
On the other hand, if a Go-Cr film is formed after treating the surface of the T1 deposited film with an ion gun, TQ&n=270
'In C l(, = s, 7xoe, on Ha = 8
5006, a perpendicular magnetic anisotropy film with very excellent characteristics can be obtained. The following is considered to be the reason why the effect of the present invention is particularly noticeable when 'I'can is high. When a -Cr film is deposited using an apparatus like the one shown in the figure, without the conventional ion gun treatment,
Especially when the temperature TO&n of the cylindrical can phase is high,
Oxidation of the T1 film surface progresses between the part 1o where the film starts to come into contact with the can and the vapor deposition part 11 due to the oxygen in the residual gas remaining in the vacuum chamber, and as a result, the H of the Go-Or film is
.

が低下してしまう。これに対し、イオン銃によりTi膜
表面を処理すると、表面の酸化層がエツチングされるた
めにHKが向上するものと考えられる。なお、このよう
な理由でH【が向上するのであるから、イオン銃による
処理は蒸着部11の近傍で行なうことが望ましい。
will decrease. On the other hand, it is thought that when the Ti film surface is treated with an ion gun, the oxidized layer on the surface is etched, thereby improving the HK. Incidentally, since H[ is improved for this reason, it is desirable that the treatment with the ion gun be performed in the vicinity of the vapor deposition section 11.

以上ではイオン銃の加速電圧を一1KV、イオン電流密
度を0.8mム/dとした例について述べたが、加速電
圧、イオン電流密度をそれぞれ一100v〜−3Kv及
び0.1mム77〜s、amム/citD範囲で変化さ
せても、上記と同様の結果が得られた。
In the above example, the acceleration voltage of the ion gun was -1 KV and the ion current density was 0.8 mm/d. , ammu/citD range, the same results as above were obtained.

また、イオン銃に付属しているニュートラライザ−の動
作の有無は、効果に影響を及ぼさなかった。
Furthermore, whether or not the neutralizer attached to the ion gun was in operation did not affect the effectiveness.

基板としてはポリイミドフィルムではなく、ポリアミド
フィルム、ポリエーテルイミドフィルム。
The substrate is not polyimide film, but polyamide film or polyetherimide film.

ポリエチレンナフタレートフィルム等を用いても上記と
同様の結果が得られた。
The same results as above were obtained even when polyethylene naphthalate film or the like was used.

また、以上ではCOとCrを主成分とする垂直磁気異方
性膜の例について説明したが、coとCrとNiを主成
分とする垂直磁気異方性膜についても、全く同様の、イ
オン銃による処理効果が見られた。
In addition, although an example of a perpendicular magnetic anisotropic film containing CO and Cr as main components has been described above, a completely similar ion gun A treatment effect was seen.

発明の効果 本発明によれば、垂直異方性磁界Hに及び膜面に垂直方
向の保磁力Hc上の高い垂直磁気異方性膜が、真空蒸着
法により非常に優れた生産性で得られる。
Effects of the Invention According to the present invention, a film with high perpendicular magnetic anisotropy in the perpendicular anisotropic magnetic field H and in the coercive force Hc in the direction perpendicular to the film surface can be obtained with extremely excellent productivity by a vacuum evaporation method. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例において用いる真空蒸着装置内部
の概略を示す図である。 1・・・・・・高分子材料より成る基板、2・・・・・
・円筒状キャン、3・・・・・・供給ロール、4・・曲
巻取すロール、5・・・・・・マスク、6・・・・・・
蒸発源、8・・・・・・イオン銃。
The figure is a diagram schematically showing the inside of a vacuum evaporation apparatus used in an embodiment of the present invention. 1...Substrate made of polymeric material, 2...
・Cylindrical can, 3... Supply roll, 4... Curved winding roll, 5... Mask, 6...
Evaporation source, 8...Ion gun.

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着法により基板上に形成されたTi膜の表面をイ
オン銃からの粒子により処理した後に、前記Ti膜上に
CoとCrあるいはCoとCrとNiを主成分とする垂
直磁気異方性膜を真空蒸着法により形成することを特徴
とする垂直磁気記録媒体の製造方法。
After treating the surface of a Ti film formed on a substrate by a vacuum evaporation method with particles from an ion gun, a perpendicular magnetic anisotropic film containing Co and Cr or Co, Cr and Ni as main components is formed on the Ti film. 1. A method for manufacturing a perpendicular magnetic recording medium, the method comprising: forming a perpendicular magnetic recording medium by a vacuum evaporation method.
JP31140186A 1986-02-26 1986-12-25 Production of vertical magnetic recording medium Pending JPS62275322A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4122286 1986-02-26
JP61-41222 1986-02-26

Publications (1)

Publication Number Publication Date
JPS62275322A true JPS62275322A (en) 1987-11-30

Family

ID=12602371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31140186A Pending JPS62275322A (en) 1986-02-26 1986-12-25 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62275322A (en)

Similar Documents

Publication Publication Date Title
JPS62275322A (en) Production of vertical magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPH0581967B2 (en)
JPS62234239A (en) Production of magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH01208730A (en) Production of magnetic recording medium
JPS61276124A (en) Production of vertical magnetic recording medium
JPS6174142A (en) Production of magnetic recording medium
JPS60214426A (en) Manufacture of magnetic recording medium
JPH0334614B2 (en)
JPS58125236A (en) Manufacture of magnetic recording medium
JPH0518179B2 (en)
JPS59148126A (en) Magnetic recording medium for vertical recording
JPS5814326A (en) Production for magnetic recording medium
JPH02249133A (en) Production of perpendicular magnetic recording medium
JPS58137134A (en) Manufacture of magnetic recording medium
JPH06103552A (en) Magnetic recording medium and its production
JPS5922235A (en) Production of vertical magnetic recording medium
JPS6052930A (en) Production of vertical magnetic recording medium
JPH04248126A (en) Production of magnetic recording medium
JPH06104115A (en) Magnetic recording medium and its production
JPH02168427A (en) Manufacture of perpendicular magnetic recording medium
JPH06104119A (en) Magnetic recording medium and its production
JPH0528487A (en) Production of magnetic recording medium
JPS58125235A (en) Manufacture of magnetic recording medium