JPH02249133A - Production of perpendicular magnetic recording medium - Google Patents

Production of perpendicular magnetic recording medium

Info

Publication number
JPH02249133A
JPH02249133A JP6972289A JP6972289A JPH02249133A JP H02249133 A JPH02249133 A JP H02249133A JP 6972289 A JP6972289 A JP 6972289A JP 6972289 A JP6972289 A JP 6972289A JP H02249133 A JPH02249133 A JP H02249133A
Authority
JP
Japan
Prior art keywords
film
perpendicular magnetic
substrate
accelerated
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6972289A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Kazuyoshi Honda
和義 本田
Yasuhiro Kawabun
康博 川分
Tatsuro Ishida
達朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6972289A priority Critical patent/JPH02249133A/en
Publication of JPH02249133A publication Critical patent/JPH02249133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain not only high productivity but also the excellent perpendicular magnetic anisotropic performance of Co-Cr in terms of performance by a vacuum deposition method by forming a film while irradiating the surface of a high-polymer substrate with the electrons accelerated by >=3kV acceleration voltage in the direction approximately parallel with the substrate surface. CONSTITUTION:The film is formed on the high-polymer substrate 2 while the surface thereof is irradiated with the electrons 7 accelerated by >=3kV acceleration voltage in the direction approximately parallel with the substrate surface. The momentum of the vapor deposited atoms 5 on the substrate 2 is increased by the accelerated electrons 7 from an electron gun 6 and, therefore, the crystal orientability is improved and the intercrystalline segregation of Cr is accelerated. The perpendicular magnetic recording medium having the perpendicular magnetic anisotropic film which is high in the perpendicular anisotropic magnetic field Hk and the coercive force Hc in the direction perpendicular to the film plane is obtd. in this way with the high productivity by the vacuum deposition method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度記録特性の優れた垂直磁気記録媒体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a perpendicular magnetic recording medium with excellent high-density recording characteristics.

従来の技術 短波長記録特性の優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては垂直磁気異方性を
有する垂直磁気記録媒体が必要となる。このような媒体
に信号を記録すると磁化は媒体の膜面に垂直な方向を向
く。従って信号が短波長になるほど、媒体内反磁界が減
少し、高い再生出力が得られる。
2. Description of the Related Art A perpendicular magnetic recording system is known as a magnetic recording system with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium having perpendicular magnetic anisotropy. When a signal is recorded on such a medium, the magnetization is directed perpendicular to the film surface of the medium. Therefore, as the wavelength of the signal becomes shorter, the demagnetizing field within the medium decreases, and a higher reproduction output can be obtained.

現在一般的に用いられている垂直磁気記録媒体は、高分
子フィルム等の非磁性基板上に直接に、あるいはTI、
Ge1S1、Cod、A Q 20a等の下地層を介し
て、Co基・の垂直磁気異方性を有する合金磁性層をス
パッタ法により形成したものである。特にC。
Perpendicular magnetic recording media that are currently commonly used are directly on a non-magnetic substrate such as a polymer film, or on a TI,
A Co-based alloy magnetic layer having perpendicular magnetic anisotropy is formed by sputtering via a base layer of Ge1S1, Cod, AQ20a, etc. Especially C.

とCrを含有するスパッタ膜は、Crの量が30重量%
以下の範囲では結晶系が、稠密六方構造であり、そのC
軸を膜面に対して垂直方向に配向させることが可能であ
るので、容易に垂直磁気異方性膜を実現出来る。
In the sputtered film containing Cr, the amount of Cr is 30% by weight.
In the following range, the crystal system has a close-packed hexagonal structure, and its C
Since the axis can be oriented in a direction perpendicular to the film surface, a perpendicular magnetic anisotropic film can be easily realized.

しかし、スパッタ法は磁性薄膜の形成速度が遅いので、
低コストで垂直磁気記録媒体を生産することが困難であ
る。スパッタ法に対し、真空蒸着法によれば数1000
A/秒という速い膜堆積速度でCO基合金垂直磁気異方
性膜が得られる。
However, since the sputtering method has a slow rate of forming magnetic thin films,
It is difficult to produce perpendicular magnetic recording media at low cost. In contrast to the sputtering method, the vacuum evaporation method
A CO-based alloy perpendicular magnetic anisotropy film can be obtained at a fast film deposition rate of A/sec.

発明が解決しようとする課題 垂直磁気異方性膜が優れた短波長記録再生特性を有する
ためには、垂直異方性磁界Hk及び膜面に垂直方向の保
磁力Heが大きい方が好ましい。しかし、従来はGo基
合金垂直磁気異方性膜の中で最も特性が優れていると考
えられているCo−Cr、垂直磁気異方性膜を真空蒸着
法によって作製すると、膜のHkは2〜3KOe1He
は高々7000e程度であり、スパッタ法により作製さ
れたCo−Cr垂直磁気異方性膜に及ばなかった。この
ように真空蒸着法により得られるCo−Cr垂直磁気異
方性膜はスパッタ法により得られるものに比べて性能が
劣っていた。したがって真空蒸着法により高い生産性の
みならず、性能面においても優れたCo−0r垂直磁気
異方性能を有する垂直磁気記録媒体の製造法の開発が要
望されている。
Problems to be Solved by the Invention In order for a perpendicular magnetic anisotropic film to have excellent short wavelength recording and reproducing characteristics, it is preferable that the perpendicular anisotropic magnetic field Hk and the coercive force He in the direction perpendicular to the film surface be large. However, when a Co-Cr perpendicular magnetic anisotropic film, which is conventionally considered to have the best properties among the Go-based alloy perpendicular magnetic anisotropic films, is produced by vacuum evaporation, the Hk of the film is 2. ~3KOe1He
was about 7000e at most, which was lower than that of a Co--Cr perpendicular magnetic anisotropy film fabricated by sputtering. As described above, the performance of the Co--Cr perpendicular magnetic anisotropic film obtained by the vacuum evaporation method was inferior to that obtained by the sputtering method. Therefore, there is a need for the development of a method for producing a perpendicular magnetic recording medium having Co-Orr perpendicular magnetic anisotropy, which has not only high productivity but also excellent performance in terms of performance, using a vacuum evaporation method.

課題を解決するための手段 本発明は上記要望を実現したものであって、真空蒸着法
により高分子基板上にCoとCrを含有する合金から成
る垂直磁気異方性膜を形成する垂直磁気記録媒体の製造
方法において、前記高分子基板面に対して略平行方向に
3KV以上の加速電圧で加速された電子を照射しつつ成
膜を行うことを特徴とする。
Means for Solving the Problems The present invention realizes the above-mentioned needs, and provides perpendicular magnetic recording in which a perpendicular magnetic anisotropic film made of an alloy containing Co and Cr is formed on a polymer substrate by a vacuum evaporation method. The method for manufacturing a medium is characterized in that film formation is performed while irradiating electrons accelerated at an acceleration voltage of 3 KV or more in a direction substantially parallel to the surface of the polymer substrate.

作   用 本発明の構成によれば、3kV以上の加速電圧で加速さ
れた電子を、基板面に対して略平行方向に照射すると、
基板上における蒸着原子の運動量が高くなるために、基
板上に形成される垂直磁気異方性膜の結晶配向性が改善
される。その結果、高いHkを有する垂直磁気異方性膜
を有する垂直磁気記録媒体が得られる。さらに、coと
Crを含有する垂直磁気異方性膜であるのでHeも増加
する。なぜ゛ならば、COとCrを含有する垂直磁気異
方性膜のHcの主な起因は結晶粒界へのCrの偏析にあ
り、基板上における蒸着原子の運動量の増加は、Crの
偏析を促進するからである。
Effect According to the configuration of the present invention, when electrons accelerated with an acceleration voltage of 3 kV or more are irradiated in a direction substantially parallel to the substrate surface,
Since the momentum of the vapor-deposited atoms on the substrate increases, the crystal orientation of the perpendicular magnetic anisotropic film formed on the substrate is improved. As a result, a perpendicular magnetic recording medium having a perpendicular magnetic anisotropic film having a high Hk can be obtained. Furthermore, since it is a perpendicular magnetic anisotropic film containing Co and Cr, He also increases. This is because the main cause of Hc in a perpendicular magnetic anisotropic film containing CO and Cr is the segregation of Cr to the grain boundaries, and the increase in the momentum of the deposited atoms on the substrate causes the segregation of Cr to increase. This is because it promotes

実施例 次に、本発明の一実施例を第1図に基づいて説明する。Example Next, one embodiment of the present invention will be described based on FIG.

第1図は本実施における真空蒸着装置内部の構成の一例
を示す。1はステンレス鋼製の基板ホルダーであり昇温
可能である。実験においては基板ホルダー1の温度を2
50′C一定とした。高分子基板2としてはポリイミド
フィルムを用いた。3は電子ビーム蒸発源であり、この
中に蒸発物質4としてのC’o = Cr合金を充填し
た。なお、蒸発源として電子ビーム蒸発源3を用いるの
は、co等の高融点金属を高い蒸発速度で蒸発させるた
めである。
FIG. 1 shows an example of the internal configuration of the vacuum evaporation apparatus in this embodiment. Reference numeral 1 denotes a substrate holder made of stainless steel, which can be heated. In the experiment, the temperature of substrate holder 1 was set to 2.
The temperature was kept constant at 50'C. As the polymer substrate 2, a polyimide film was used. 3 is an electron beam evaporation source, into which a C'o=Cr alloy as an evaporation substance 4 is filled. Note that the reason why the electron beam evaporation source 3 is used as the evaporation source is to evaporate high melting point metal such as co at a high evaporation rate.

5は蒸発したCo10r等の蒸発原子である。6は加速
電圧3kV以上の電子銃である。電子銃6からは3kV
以上に加速された電子7が高分子基板2に向かって、基
板面に略平行な方向に放射される。比較のために電子銃
を破線で示す6′の位置に配置して、高分子基板に向か
って電子を放射しつつ成膜する実験も行った。
5 is an evaporated atom such as evaporated Co10r. 6 is an electron gun with an accelerating voltage of 3 kV or more. 3kV from electron gun 6
The electrons 7 accelerated as described above are emitted toward the polymer substrate 2 in a direction substantially parallel to the substrate surface. For comparison, an experiment was also conducted in which the electron gun was placed at the 6' position indicated by the broken line and a film was formed while emitting electrons toward the polymer substrate.

第1図に示される真空蒸着装置にて、膜厚0.25μm
のCo−0r垂直磁気異方性膜を形成した場合の実験結
果を表に示す。なお電子銃の加速電圧は10kV、  
電流は0.5A1  膜堆積速度は0.4μm/秒とし
た。
The film thickness was 0.25 μm using the vacuum evaporation equipment shown in Figure 1.
The experimental results when a Co-0r perpendicular magnetic anisotropic film was formed are shown in the table. The acceleration voltage of the electron gun is 10kV,
The current was 0.5 A1 and the film deposition rate was 0.4 μm/sec.

表から、電子を照射しない従来の方法の場合には、ll
k  2.5kOe、  Hc  13000eである
が、本実施例の方法によると、Hk  4.5kOe1
Hc  8000eと大幅に磁気特性が改善されている
ことがわかる。この改善は、電子銃からの加速された電
子により、基板上における蒸着原子の運動量が高くなる
ために、結晶配向性が改善され、Crの粒界偏析が促進
されるためと考えられる。
From the table, in the case of the conventional method that does not irradiate electrons, ll
k 2.5 kOe, Hc 13000e, but according to the method of this example, Hk 4.5 kOe1
It can be seen that the magnetic properties are significantly improved compared to Hc 8000e. This improvement is thought to be because accelerated electrons from the electron gun increase the momentum of the deposited atoms on the substrate, improving crystal orientation and promoting grain boundary segregation of Cr.

ただし、たとえ電子銃からの加速された電子を照射して
も、その方法が適切でない(電子銃の位置が第1図の6
′である場合)と効果がないことが表かられかる。すな
わち、電子の照射方向が基板面に略平行な方向ではなく
、第1図の6′の位置に配置した電子銃からの電子の様
に、基板面に対して垂直成分も有する照射方向の場合に
は、Hkはわずかに減少しHcが大幅に低下してしまう
。このような膜では高いS/Nは得られない。膜面に垂
直方向の成分を持つ方向から電子を照射した場合にHk
lHcの改善がみられない原因は次の様に考えられる。
However, even if you irradiate accelerated electrons from an electron gun, the method is not appropriate (the position of the electron gun is 6 in Figure 1).
’), it can be seen from the table that there is no effect. In other words, when the electron irradiation direction is not approximately parallel to the substrate surface, but has an irradiation direction that also has a component perpendicular to the substrate surface, as in the case of electrons from an electron gun placed at position 6' in Figure 1. In this case, Hk decreases slightly and Hc decreases significantly. A high S/N ratio cannot be obtained with such a film. When electrons are irradiated from a direction with a component perpendicular to the film surface, Hk
The reason for the lack of improvement in lHc is thought to be as follows.

この様な電子照射の場合には、高分子基板が電子により
直接衝撃を受けて、ガスを発生する。このガスが悪影響
を及ぼしGo−Cr膜の特性が改善されないものと思わ
れる。
In the case of such electron irradiation, the polymer substrate is directly bombarded with electrons and gas is generated. It is thought that this gas has an adverse effect and the characteristics of the Go-Cr film are not improved.

従って、電子の照射方向は膜面に対して略水平方向にす
る必要がある。上記では電子銃の加速電圧を10 kV
l  電流を0.5Aとした例について述べたが、3k
V以上の加速電圧であれば特性改善効果がみられた。3
kV未満では殆ど効果はなかった。また基板としてはポ
リイミドフィルムではなく、ポリアミドフィルム、ポリ
エーテルイミドフィルム、ポリエチレンテレフタレート
フィルム、ポリエチレンナフタレートフィルム等の高分
子基板を用いても上記と同様の結果が得られた。なお、
本発明の磁性層はCo−0r膜に限ったものではない。
Therefore, the direction of electron irradiation must be approximately horizontal to the film surface. In the above example, the acceleration voltage of the electron gun is set to 10 kV.
I mentioned the example where the current was 0.5A, but 3k
When the acceleration voltage was V or more, the effect of improving characteristics was observed. 3
There was almost no effect below kV. Furthermore, results similar to those described above were obtained even when a polymer substrate such as a polyamide film, polyetherimide film, polyethylene terephthalate film, or polyethylene naphthalate film was used instead of a polyimide film as the substrate. In addition,
The magnetic layer of the present invention is not limited to a Co-0r film.

Co−Cr−N1、Co−Cr−W、  Co−0r−
Nb1Co−Cr−Ta1Co−Cr−Nl−CutC
o−Cr−Ni−AI等の合金膜でも上記と全く同様に
本発明の効果が現われる。
Co-Cr-N1, Co-Cr-W, Co-0r-
Nb1Co-Cr-Ta1Co-Cr-Nl-CutC
Even with alloy films such as o-Cr-Ni-AI, the effects of the present invention appear in exactly the same way as above.

次に本発明の他の実施例を第2図に基づいて説明する。Next, another embodiment of the present invention will be described based on FIG.

真空蒸着法においては高分子基板を円筒状キャンの周面
に沿って走行させつつ薄膜の形成を行うとテープ状の垂
直磁気記録媒体が非常に生産性よく得られる。第2図は
このような真空蒸着装置の内部構造の概略図である。高
分子基板8が円筒状キャン9の周面に沿って矢印13の
方向へ走行する。蒸発源3と円筒状キャン9との間には
遮へい板12が配置されており、この遮へい板の開口部
を通って蒸発原子5は基板8に付着する。
In the vacuum evaporation method, a tape-shaped perpendicular magnetic recording medium can be obtained with high productivity by forming a thin film while running a polymer substrate along the circumferential surface of a cylindrical can. FIG. 2 is a schematic diagram of the internal structure of such a vacuum evaporation apparatus. The polymer substrate 8 runs along the circumferential surface of the cylindrical can 9 in the direction of the arrow 13. A shielding plate 12 is arranged between the evaporation source 3 and the cylindrical can 9, and the evaporated atoms 5 adhere to the substrate 8 through the opening of this shielding plate.

10.11はそれぞれ基板8の供給ロール及び巻き取り
ロールである。この様な真空蒸着装置よりCOとCrを
含有する垂直磁気異方性膜を作製する際にも、第2図に
示す如く電子銃6を設置し、基板8面に略平行な方向に
電子7を照射することにより、I(k及びHcの改善が
見られる。
10 and 11 are a supply roll and a take-up roll for the substrate 8, respectively. When producing a perpendicular magnetic anisotropic film containing CO and Cr using such a vacuum evaporation apparatus, an electron gun 6 is installed as shown in FIG. Improvements in I(k and Hc) can be seen by irradiating with .

発明の効果 本発明によれば、垂直異方性磁界Hk及び膜面に垂直方
向の保磁力Heの高い垂直磁気異方性膜を有する垂直磁
気記録媒体が、真空蒸着法により非常に優れた生産性で
得られる。
Effects of the Invention According to the present invention, a perpendicular magnetic recording medium having a perpendicular magnetic anisotropic film having a high perpendicular anisotropic magnetic field Hk and a high coercive force He perpendicular to the film surface can be produced using a vacuum evaporation method with excellent performance. Obtained through sex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における真空蒸着装置内部の
概略構成図、第2図は本発明の他の実施例における真空
蒸着装置内部の概略構成図である。 2.8・・・・高分子基板、3・・・・蒸発源、4・・
・・蒸発物質、5・・・・蒸発原子、6・・・・電子銃
、7・・電子。
FIG. 1 is a schematic diagram of the inside of a vacuum evaporation apparatus in one embodiment of the present invention, and FIG. 2 is a schematic diagram of the interior of a vacuum evaporation apparatus in another embodiment of the invention. 2.8...polymer substrate, 3...evaporation source, 4...
...Evaporation substance, 5..Evaporation atom, 6..Electron gun, 7..Electron.

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着法により高分子基板上にCoとCrを含有する
合金から成る垂直磁気異方性膜を形成する垂直磁気記録
媒体の製造方法において、前記高分子基板面に対して略
平行方向に3kV以上の加速電圧で加速された電子を照
射しつつ成膜を行うことを特徴とする垂直磁気記録媒体
の製造方法。
In a method of manufacturing a perpendicular magnetic recording medium in which a perpendicular magnetic anisotropic film made of an alloy containing Co and Cr is formed on a polymer substrate by a vacuum evaporation method, a voltage of 3 kV or more in a direction substantially parallel to the surface of the polymer substrate is applied. 1. A method for manufacturing a perpendicular magnetic recording medium, comprising forming a film while irradiating electrons accelerated at an accelerating voltage.
JP6972289A 1989-03-22 1989-03-22 Production of perpendicular magnetic recording medium Pending JPH02249133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6972289A JPH02249133A (en) 1989-03-22 1989-03-22 Production of perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6972289A JPH02249133A (en) 1989-03-22 1989-03-22 Production of perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH02249133A true JPH02249133A (en) 1990-10-04

Family

ID=13411014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6972289A Pending JPH02249133A (en) 1989-03-22 1989-03-22 Production of perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH02249133A (en)

Similar Documents

Publication Publication Date Title
US4407894A (en) Method for producing a perpendicular magnetic recording medium
JPS6134723A (en) Magnetic recording medium and its manufacture
JPH0721560A (en) Production of magnetic recording medium
JPH02249133A (en) Production of perpendicular magnetic recording medium
JPH02168427A (en) Manufacture of perpendicular magnetic recording medium
US4588636A (en) Magnetic recording medium
JPH103638A (en) Magnetic recording medium
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPS5925975A (en) Production of thin alloy film
CA1184881A (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JPS60214426A (en) Manufacture of magnetic recording medium
JPH0334614B2 (en)
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPH01208730A (en) Production of magnetic recording medium
JPS61237230A (en) Production of vertical magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS62234239A (en) Production of magnetic recording medium
JPS62275322A (en) Production of vertical magnetic recording medium
JPS58161137A (en) Manufacture of magnetic recording medium
JPS6174142A (en) Production of magnetic recording medium
JPH04259204A (en) Manufacture of magnetic recording medium
JPS6052930A (en) Production of vertical magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPH08194944A (en) Method and system for producing magnetic recording medium