JPS58126981A - Thin film manufacturing device - Google Patents

Thin film manufacturing device

Info

Publication number
JPS58126981A
JPS58126981A JP834482A JP834482A JPS58126981A JP S58126981 A JPS58126981 A JP S58126981A JP 834482 A JP834482 A JP 834482A JP 834482 A JP834482 A JP 834482A JP S58126981 A JPS58126981 A JP S58126981A
Authority
JP
Japan
Prior art keywords
film
cylindrical
adhesion preventing
opening
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP834482A
Other languages
Japanese (ja)
Other versions
JPH0240740B2 (en
Inventor
Hiroshi Miyama
博 深山
Yasuhiko Nakayama
中山 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP834482A priority Critical patent/JPS58126981A/en
Publication of JPS58126981A publication Critical patent/JPS58126981A/en
Publication of JPH0240740B2 publication Critical patent/JPH0240740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To attempt the high crystallization of a magnetic metallic film formed by a titled device, by providing an adhesion preventing plate having an opening between a cylindrical can and an evaporation source, and further providing adhesion preventing rollers between the can and the vicinity of the opening of the adhesion preventing plate. CONSTITUTION:A cylindrical can 11 is rotated and a high molecular film 9 is sent out from a feeding roll 10. The film is run along the surface of the can 11 and taken up on a take-up roll 12. Magnetic metallic material 19 is sputtered by a sputtering electrode 13, and vapor-deposited on the film through the opening of an adhesion preventing plate 14. At this time, vapor deposition or adhesion of sputtered material coming around is prevented by adhesion preventing rollers 15, 16 which are provided at incoming part and outgoing part of the film 9 at the opening of the adhesion preventing plate 14, and which are rotated in contact with the film 9. Consequently, the crystallinity of the vapor-deposited metallic material on the film 9 is improved. Installation of incoming side roller 15 only is also effective.

Description

【発明の詳細な説明】 本発明は薄膜製造装置に関し、磁性体金属薄膜を記録層
とする磁気記録媒体、特に長尺の磁気テープ等の磁気記
録媒体等の薄膜の製造に有用な薄膜製造装置に関し、薄
膜の結晶性の向上を図ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film manufacturing apparatus, and a thin film manufacturing apparatus useful for manufacturing thin films of magnetic recording media having a magnetic metal thin film as a recording layer, particularly magnetic recording media such as long magnetic tapes. The purpose of this study is to improve the crystallinity of thin films.

以下磁性体金属薄膜の場合を中心に述べる。近年、磁気
記録装置の高密度記録化にともない従来から使用されて
いるγ−Fe2O3の針状結晶をバインダーと共に基体
に接着した塗布型記録媒体に対し、金属薄膜型の磁気記
録媒体の研究開発が行なわれている。これらの磁気記録
媒体は、非磁性の基板上に、真空蒸着、スパッタリング
、イオンブレーティング法等の手段により、磁性金属材
料を薄膜で形成するものであり、塗布型に比べて記録層
を薄くできることから高密度化の点で有利となっている
。また、従来の長手記録に対し、同じく、真空蒸着法、
スバッタリ/グ法等の手段を用いて、垂直磁化記録層を
形成することも提案されており、この方式によれば、従
来の磁気記録方式の10倍程度の高密度記録が可能にな
る。
The case of a magnetic metal thin film will be mainly described below. In recent years, with the trend toward higher recording density in magnetic recording devices, research and development has been focused on metal thin film type magnetic recording media, in contrast to the conventionally used coating type recording media in which acicular crystals of γ-Fe2O3 are adhered to a substrate together with a binder. It is being done. These magnetic recording media are made by forming a thin film of magnetic metal material on a non-magnetic substrate by means such as vacuum evaporation, sputtering, or ion blating, and the recording layer can be made thinner than in coating-type media. This makes it advantageous in terms of high density. In addition, compared to conventional longitudinal recording, vacuum evaporation method,
It has also been proposed to form a perpendicularly magnetized recording layer using means such as the scattering/regulating method, and this method enables high-density recording about 10 times that of conventional magnetic recording methods.

ここで、これらの磁性金属材料を形成する手段としては
メッキ等湿式法以外に真空蒸着、スパンタリング、イオ
ングレーティング法等の真空技術を利用した方法が採用
されているが、これらの方31゛−二 法で単純に磁性金属材料を薄膜化すれば、所望の特性の
ものが得られる訳ではない。特に磁気記録材料として要
求される点は、高飽和磁気、高抗磁力等であり、そのた
めには、磁性金属膜として高い結晶性が要求されること
が多い。例えば、垂直磁化記録用CoCr膜においては
、その膜のC軸配向塵の角度半値幅(回折X線強度が竹
になる角度幅)が100以内で、垂直磁化記録用磁性体
として最適と報告されているn(昭52年電気関係学会
東北支部連合大会−I B 15 「CoCr垂直磁化
膜の結晶配向」) 従って高い結晶性を有する磁性金属膜を、基体上にいか
に効率良く形成するかが課題となっている。
Here, as means for forming these magnetic metal materials, in addition to wet methods such as plating, methods using vacuum technology such as vacuum evaporation, sputtering, and ion grating methods are adopted, but these methods are 31゛- Simply thinning a magnetic metal material using the two methods does not necessarily provide the desired characteristics. In particular, magnetic recording materials are required to have high saturation magnetism, high coercive force, etc., and for this purpose, high crystallinity is often required as a magnetic metal film. For example, in a CoCr film for perpendicular magnetization recording, it has been reported that the angular half-width of the C-axis oriented dust (the angular width at which the diffraction (1972 Tohoku Branch Federation Conference of Electrical Related Societies - IB 15 "Crystal Orientation of CoCr Perpendicular Magnetization Film") Therefore, the challenge is how to efficiently form a magnetic metal film with high crystallinity on a substrate. It becomes.

従来の磁気記録媒体等の形成に用いられる薄膜製造装置
を第1図に示す。ペルジャー内部の構造としては、高分
子フィルム1を送り出す供給ロール2と、フィルム1の
加熱もしくは、冷却を行なう円筒状のキャン3およびフ
ィルム1を巻取る巻取りロール4からフィルム走行系が
構成される。また、円筒状キャン3と対向する位置には
、磁性金属材料の蒸発源5が設置され、本装置では、ス
パッタリング法としてスパッタ用電極を設置した。
FIG. 1 shows a conventional thin film manufacturing apparatus used for forming magnetic recording media and the like. As for the internal structure of the Pelger, a film running system is composed of a supply roll 2 that sends out the polymer film 1, a cylindrical can 3 that heats or cools the film 1, and a take-up roll 4 that winds the film 1. . Further, an evaporation source 5 of a magnetic metal material was installed at a position facing the cylindrical can 3, and in this apparatus, a sputtering electrode was installed for sputtering.

円筒状キャン3とスパッタリング電極6との間には、ペ
ルジャー内の不必要な部分にスパッタリングされた磁性
金属材料が付着するのを防ぐため、スパッタリング電極
に対応して開口部をもつ防着板6が設置されている。こ
の防着板6は円筒状キャン3上を走行するフィルム1に
接触してしまうと、フィルム1にキズを発生させること
が考えられることがら、円筒状キャン3とは、3〜6J
IB程度離して設置しである。ペルジャー内部は、1X
10−’torr程度の真空に排気ロアより排気され、
1×10〜I X 10  torr程度のガス圧でス
パッタリングが行なえるよう各種ガスをペルジャー内部
に導入するガス導入口8が設置されている。次に、この
ような装置を用いて、以下に示す条件により磁性金属膜
を高分子フィルム上に形成した。      1以下余
白 6・ =; 以上の条件により、高分子フィルム上にCoCr合金膜
を0.5μmの膜厚で連続形成し、これらの膜につき、
X線デフラクトメータを用いて膜のC軸結晶配向度を評
価した0第2図は、その測定データで、グラフ中横軸は
X線の反射角2θであり、縦軸はX線反射強度を示す。
Between the cylindrical can 3 and the sputtering electrode 6, there is a deposition prevention plate 6 having an opening corresponding to the sputtering electrode in order to prevent the sputtered magnetic metal material from adhering to unnecessary parts inside the Pelger. is installed. If this adhesion prevention plate 6 comes into contact with the film 1 running on the cylindrical can 3, it may cause scratches on the film 1, so the cylindrical can 3 is
It is installed about IB apart. Inside the Pelger is 1X
It is evacuated from the exhaust lower to a vacuum of about 10-'torr,
A gas inlet 8 is installed to introduce various gases into the Pelger so that sputtering can be performed at a gas pressure of about 1×10 to I×10 torr. Next, using such an apparatus, a magnetic metal film was formed on the polymer film under the conditions shown below. 1 or less margin 6 =; Under the above conditions, CoCr alloy films were continuously formed with a thickness of 0.5 μm on the polymer film, and for these films,
The degree of C-axis crystal orientation of the film was evaluated using an X-ray defractometer. Figure 2 shows the measured data. The horizontal axis in the graph is the X-ray reflection angle 2θ, and the vertical axis is the X-ray reflection intensity. shows.

この結果より前記した従来の製造装置を用いて製作した
Co Cr合金膜のC軸配向塵は角度分布の半値幅で1
6(l#後と、かなり結晶性の点で劣り、磁気記録媒体
の製造装置としては充分とは云えない。
From this result, the C-axis oriented dust of the CoCr alloy film manufactured using the conventional manufacturing equipment described above has a half-width of angular distribution of 1.
6 (after 1#), the crystallinity was considerably inferior, and it could not be said to be sufficient as a manufacturing apparatus for magnetic recording media.

本発明は上記問題点を改善し、高分子フィルム上に連続
して磁性金属等の薄膜を形成する真空蒸着装置、スパッ
タリング装置、イオンブレーティング装置等の薄膜製造
装置において、形成された磁性金属膜の高結晶化を図る
ことを目的とするものである。
The present invention improves the above-mentioned problems and uses a thin film manufacturing apparatus such as a vacuum evaporation apparatus, a sputtering apparatus, and an ion blating apparatus that continuously forms a thin film of magnetic metal or the like on a polymer film. The purpose of this is to achieve high crystallization.

本発明の実施例として、実験に用いた薄膜製造装置のペ
ルジャー内部の構造を第3図に示す。各部の構成は第1
図の従来例で示した装置と基本的には同じであり、高分
子フィルム9を送り出す供給ロール10とフィルム9の
加熱もしくは冷却を行なう円筒状のキャン11及びフィ
ルム9を巻取る巻取りロール12からフィルム走行系が
構成される。また、円筒状キャン11と対向する位置に
は、磁性金属材料の蒸発源13が設置され本装置では、
スパッタリング法としてスパッタ用電極を設置した。ま
た、円筒状キャン11とスノくツタ電極13との間には
、ペルジャー内部の不必要な部分にスパッタリングされ
た磁性金属材料が付着するのを防ぐため、スパッタリン
グ電極13に対応した開口部をもつ防着板14が設置さ
れている。
As an example of the present invention, FIG. 3 shows the internal structure of a Pelger in a thin film manufacturing apparatus used in experiments. The configuration of each part is the first
The device is basically the same as the conventional example shown in the figure, and includes a supply roll 10 for feeding out the polymer film 9, a cylindrical can 11 for heating or cooling the film 9, and a take-up roll 12 for winding the film 9. A film running system is constructed from the following. Furthermore, in this device, an evaporation source 13 of magnetic metal material is installed at a position facing the cylindrical can 11.
A sputtering electrode was installed for the sputtering method. In addition, an opening corresponding to the sputtering electrode 13 is provided between the cylindrical can 11 and the snow vine electrode 13 in order to prevent the sputtered magnetic metal material from adhering to unnecessary parts inside the Pelger. An anti-adhesion plate 14 is installed.

また、防着板14端とキャン11との間の空隙からスパ
ッタリングされた磁性金属材料が、まわり7、、−; 込んで不必要に高分子フィルム9に付着するのを防ぐ□
ため、防着板14の開口部のフィルムの入射部と送り出
し部とに、円筒状キャン11上の高分子フィルム9と接
触して回転する防着ローラ15゜16が設置されている
0 以上のような本発明の薄膜製造装置を用いて、まずペル
ジャー内部をI X 10−6torr程度の真空に排
気口17より真空排気した後、ガス導入口18よりI 
X 10−5−I X 10−2torr程度までガス
を導入して、スパッタリング電極13上の磁性金属材料
19をスパッタリングし、円筒キャン11上の高分子フ
ィルム9面に連続的に磁性金属膜を形成した。なお、ス
パッタリング条件は、比較例と同じとして実験を行なっ
た0 以上の方法により、高分子フィルム上に形成したCo 
Cr合金膜のC軸結晶配向度は、X線デフラクトメータ
を用いて測定した結果、第4図に示すように、グラフ横
軸をX線の反射角2θとし、縦軸をX線反射強度とする
と、反較例で得たデータ(第2図)と比較して、X線反
射強度で約6倍の値が得られ、また、C軸配向度の角度
分布の半値幅でも1o0以内と結晶性の点で改善されて
いるデータが得られた。
In addition, it prevents the magnetic metal material sputtered from the gap between the end of the adhesion prevention plate 14 and the can 11 from getting into the surrounding areas 7, -; and unnecessarily adhering to the polymer film 9.
For this reason, anti-adhesive rollers 15 and 16 are installed at the film entrance and delivery parts of the opening of the anti-adhesive plate 14 to rotate in contact with the polymer film 9 on the cylindrical can 11. Using the thin film manufacturing apparatus of the present invention, first, the inside of the Pelger was evacuated to a vacuum of about I x 10-6 torr through the exhaust port 17, and then I was evacuated through the gas inlet port 18.
Gas is introduced to about X 10-5-I did. The sputtering conditions were the same as those in the comparative example.
The degree of C-axis crystal orientation of the Cr alloy film was measured using an X-ray defractometer, and as shown in Figure 4, the horizontal axis of the graph is the X-ray reflection angle 2θ, and the vertical axis is the X-ray reflection intensity. Compared to the data obtained in the comparative example (Figure 2), the X-ray reflection intensity is about 6 times higher, and the half-width of the angular distribution of the C-axis orientation is within 1o0. Data showing improved crystallinity was obtained.

また防着ローラ16及び16が、円筒状キャン11上の
高分子フィルム9に接触して回転するため高分子フィル
ム9面にキズ等を発生させることもなく、高品質の磁気
記録媒体が得られた。
Furthermore, since the adhesion prevention rollers 16 and 16 rotate in contact with the polymer film 9 on the cylindrical can 11, no scratches or the like occur on the surface of the polymer film 9, and a high-quality magnetic recording medium can be obtained. Ta.

上記実施例で防着ローラは、円筒状キャンと同期して回
転するものとして説明したが、円筒状キャンと0.6〜
1M程度離して設置しても本発明は有効であり、完全に
防着板と円筒状キャンとのスキ間を無くして設置する必
然性はない。しかし、この場合でも、万が一高分子フイ
ルムが防着ローラに接触しても、防着ローラが同期して
回転することから、高分子フィルム面にキズを発生させ
ることがなく、磁気媒体として品質が維持される。
In the above embodiment, the anti-stick roller was explained as rotating in synchronization with the cylindrical can.
The present invention is effective even if they are installed at a distance of about 1M, and there is no necessity to completely eliminate the gap between the adhesion prevention plate and the cylindrical can. However, even in this case, even if the polymer film were to come into contact with the anti-adhesive roller, the anti-adhesive roller rotates in synchronization with the anti-adhesive roller, which prevents scratches from occurring on the surface of the polymer film and maintains its quality as a magnetic medium. maintained.

また、防着ローラとしては、防着板の開口部の両側に設
置される必要はなく、形成される膜のス     !タ
ート部に少なくとも設置されれば本発明は有効である。
In addition, the anti-adhesive rollers do not need to be installed on both sides of the opening of the anti-adhesive plate, and can be used to prevent the formation of a film. The present invention is effective as long as it is installed at least in the tart section.

9/、−。9/, -.

さらに本発明は磁気記録媒体を製作する場合を中心に述
べたが、これに限定されるものではなく結晶性が要求さ
れる薄膜の製造装置として、他のものにも適用できるも
のである。
Furthermore, although the present invention has been described mainly in the case of producing a magnetic recording medium, it is not limited thereto, and can be applied to other apparatuses for producing thin films that require crystallinity.

以上のように本発明は、磁性金属材料等を高分子フィル
ム等の表面に真空技術を利用して連続薄膜形成する薄膜
製造装置においてベルジャー内部テ蒸着モしくはスパッ
タリングされた蒸着材料が不必要に付着するのを防ぐ防
着板と、円筒状キャンとの間に、それらのすき間に蒸着
もしくはスパッタリングされた材料がまわり込んで付着
するのを防、ぐための防着ローラを、防着板の開口部に
装着したものであり、高分子フィルム上に形成された磁
性金属材料の結晶性を向上させる利点を有する。
As described above, the present invention eliminates the need for vapor-deposited or sputtered vapor-deposited materials inside a bell jar in a thin-film manufacturing apparatus that forms a continuous thin film of a magnetic metal material or the like on the surface of a polymer film using vacuum technology. Between the deposition prevention plate and the cylindrical can, a deposition prevention roller is installed between the deposition prevention plate and the cylindrical can to prevent vapor-deposited or sputtered material from getting around and adhering to the gap between them. It is attached to the opening and has the advantage of improving the crystallinity of the magnetic metal material formed on the polymer film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は 従来の薄膜製造装置の概略構成図、第2図は
従来の装置を用いて得られた磁性金属膜の結晶配向度を
示す図、第3図は本発明の一実施例における薄膜製造装
置概略構成図、第4図はそ0 の装置を用いて得られた磁性金属膜の結晶配向度を示す
図である。 9・・・・・・高分子フィルム、1o・・・・・・供給
ロール、12・・・・・・巻取りロール、13・・・・
・・蒸発源、14・・・・・・防着板、11・・・・・
・円筒状キャン、l!;、 /≦・・・・・・防着ロー
ラ、19・・・・・・磁性金属材料。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第2図 桑射角2〜・す 寸 第3図 第4図 々対局?θ(°)
FIG. 1 is a schematic diagram of a conventional thin film manufacturing apparatus, FIG. 2 is a diagram showing the degree of crystal orientation of a magnetic metal film obtained using the conventional apparatus, and FIG. 3 is a diagram of a thin film according to an embodiment of the present invention. FIG. 4 is a schematic block diagram of the manufacturing apparatus, and is a diagram showing the degree of crystal orientation of a magnetic metal film obtained using the apparatus described above. 9... Polymer film, 1o... Supply roll, 12... Winding roll, 13...
... Evaporation source, 14... Deposition prevention plate, 11...
・Cylindrical can, l! ;, /≦...Adhesion prevention roller, 19...Magnetic metal material. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 4 Fig. 2 Mulberry angle 2~・Size Fig. 3 Fig. 4 Game? θ (°)

Claims (1)

【特許請求の範囲】[Claims] 第1および第2のロールと、前記第1および第2のロー
ルの中間に設けられ、前記第1のロールにより供給され
第2のロールにより巻取られるフィルム状基板を円筒状
表面に沿わせるごとく配された円筒状キャンと、前記円
筒状キャンに対向して設けられた蒸発源とを少なくとも
有し、前記円筒状キャンと蒸発源との間に、蒸発源に対
向する部分に開口部を有する防着板を設け、さらに前記
防着板と円筒状キャンとの間に位置し、前記開口部の、
少なくとも第1のロール側の近傍に防着ローラを装置し
たことを特徴とする薄膜製造装置。
First and second rolls are provided between the first and second rolls, and the film-like substrate, which is supplied by the first roll and wound by the second roll, is placed along the cylindrical surface. the cylindrical can, and an evaporation source provided opposite the cylindrical can, and an opening between the cylindrical can and the evaporation source in a portion facing the evaporation source. An anti-adhesive plate is provided, and the opening is located between the anti-adhesive plate and the cylindrical can.
A thin film manufacturing apparatus characterized in that an anti-adhesive roller is installed at least in the vicinity of the first roll.
JP834482A 1982-01-21 1982-01-21 Thin film manufacturing device Granted JPS58126981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP834482A JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP834482A JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Publications (2)

Publication Number Publication Date
JPS58126981A true JPS58126981A (en) 1983-07-28
JPH0240740B2 JPH0240740B2 (en) 1990-09-13

Family

ID=11690592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP834482A Granted JPS58126981A (en) 1982-01-21 1982-01-21 Thin film manufacturing device

Country Status (1)

Country Link
JP (1) JPS58126981A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501708A (en) * 1973-05-04 1975-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501708A (en) * 1973-05-04 1975-01-09

Also Published As

Publication number Publication date
JPH0240740B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
US4474832A (en) Magnetic recording media
JPS58126981A (en) Thin film manufacturing device
JPH06150289A (en) Magnetic recording medium and its manufacture
JPH0721560A (en) Production of magnetic recording medium
US4913933A (en) Method for preparing magnetic recording medium
JPS6192431A (en) Manufacture of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH0479065B2 (en)
JPH0132174Y2 (en)
JPS59172163A (en) Production of vertical magnetic recording medium
JPS62230976A (en) Continuous sputtering device
JPS58199440A (en) Manufacture of magnetic recording medium
JPS63308728A (en) Production of perpendicular magnetic recording medium
JPH0451889B2 (en)
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPH0528487A (en) Production of magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPS6052930A (en) Production of vertical magnetic recording medium
JPH0555930B2 (en)
JPS62102421A (en) Film for substrate and formation of thin film
JPH10251843A (en) Vacuum evaporation apparatus
JPH02240831A (en) Production of magnetic recording medium
JPS6093640A (en) Producing device of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPS5972655A (en) Device for manufacturing magnetic recording medium