JPH0238368A - Production of sintered material of aluminum nitride - Google Patents

Production of sintered material of aluminum nitride

Info

Publication number
JPH0238368A
JPH0238368A JP63186816A JP18681688A JPH0238368A JP H0238368 A JPH0238368 A JP H0238368A JP 63186816 A JP63186816 A JP 63186816A JP 18681688 A JP18681688 A JP 18681688A JP H0238368 A JPH0238368 A JP H0238368A
Authority
JP
Japan
Prior art keywords
earth element
compound
rare earth
alkaline earth
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63186816A
Other languages
Japanese (ja)
Other versions
JP2735227B2 (en
Inventor
Mitsuo Kasori
加曽利 光男
Yoshiko Sato
佳子 佐藤
Fumio Ueno
文雄 上野
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63186816A priority Critical patent/JP2735227B2/en
Publication of JPH0238368A publication Critical patent/JPH0238368A/en
Application granted granted Critical
Publication of JP2735227B2 publication Critical patent/JP2735227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a sintered material of AlN having denseness and high thermal conductivity at low sintering temperature in a short time by blending AlN as a main component with AlF3 and a compound metallic compound and burning. CONSTITUTION:AlN powder (preferably one having 0.1-2.5mum average particle diameter and 0.1-3wt.% oxygen content) as a main component is blended with (A) AlF3 and (B) 0.1-20wt.%, preferably 0.2-15wt.% calculated as cation of an additive comprising at least one selected from (b1) alkaline earth element compound, (b2) rare earth element compound, (b3) alkaline earth element-rare earth element compound, (b4) alkaline earth element compound-aluminum compound, (b5) rare earth element-aluminum compound and (b6) alkaline earth element-rare earth element-aluminum compound as an essential component, ground, incorporated, molded and then burnt at 1,400-1,850 deg.C to give a sintered material of aluminum nitride.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a method for producing an aluminum nitride sintered body.

(従来の技術) 窒化アルミニウム(l N)は常温から高温まで高強度
性を保持し、かつ溶融金属に濡れず、更に電気絶縁性が
高く、高熱伝導性である等、多くの優れた特性を有する
ことから新素材として注目されている。特に、近年、A
47N焼結体の半導体基板への応用研究が盛んに行われ
、量産可能なAfiN焼結体の熱伝導率は数年前までは
40〜60W/m−にであったものが、特殊な焼結方法
の採用により〜200W/m−kまで改良されるに到っ
ている。
(Prior technology) Aluminum nitride (lN) maintains high strength from room temperature to high temperature, does not get wet with molten metal, and has many excellent properties such as high electrical insulation and high thermal conductivity. It is attracting attention as a new material because of its properties. In particular, in recent years, A
Research into the application of 47N sintered bodies to semiconductor substrates has been actively conducted, and until a few years ago, the thermal conductivity of AfiN sintered bodies that could be mass-produced was 40 to 60 W/m. By adopting this method, the power consumption has been improved to ~200 W/m-k.

このようなAj7N焼結体の高熱伝導率化は、高純度A
ΩN原料、特に酸素含有量の少ないAΩN粉末の量産が
可能になったことが第1の要因である。酸素含有量の少
ないA11N粉末を主成分とし、焼結助剤の最適化によ
り高熱伝導性のAΩN焼結体が得られるようになったが
、一方、酸素含有量が少なくなるに伴って焼結性が低下
する傾向があり、緻密な焼結体を得るためには従来に比
べてより高温、長時間での焼結が必要となってきた。即
ち、酸素含有量の多いAIN粉末を原料して得られた焼
結体は熱伝導率が低いものの、焼結性に優れ、緻密化が
可能となる。
The high thermal conductivity of such Aj7N sintered body is achieved by high purity A
The first factor is that it has become possible to mass produce ΩN raw materials, especially AΩN powder with low oxygen content. The main component is A11N powder with low oxygen content, and by optimizing the sintering aid, it has become possible to obtain AΩN sintered bodies with high thermal conductivity.However, as the oxygen content decreases, sintering There is a tendency for the properties to decrease, and in order to obtain a dense sintered body, it has become necessary to sinter at a higher temperature and for a longer time than in the past. That is, although a sintered body obtained using AIN powder with a high oxygen content as a raw material has a low thermal conductivity, it has excellent sinterability and can be densified.

半導体装基板への応、用を考える時、現在広く使用され
ているアルミナ基板との代替が考えられるが、上述した
状況では徹底的な低コスト化が必要であり、焼結温度の
上昇、長時間化は製造コストの増加となり、好ましくな
いものである。
When considering its application to semiconductor substrates, it is possible to consider replacing it with alumina substrates, which are currently widely used. Extending the time increases manufacturing costs, which is undesirable.

ところで、A、IIIN焼結体をホットプレス以外の方
法で得ようとする場合、焼結体の緻密化及びAgN原料
粉末の不純物酸素のAΩN粒内への固溶を防止するため
には、従来より焼結助剤として希土類元素酸化物、アル
カリ土類元素酸化物等を添加することが行われている(
特開昭60−127267号、特開昭61−10071
号、特開昭60−71575号等)。
By the way, when attempting to obtain an A,IIIN sintered body by a method other than hot pressing, conventional methods are required to prevent densification of the sintered body and solid solution of the impurity oxygen of the AgN raw powder into the AΩN grains. Rare earth element oxides, alkaline earth element oxides, etc. are being added as sintering aids (
JP-A-60-127267, JP-A-61-10071
No., JP-A-60-71575, etc.).

これらの焼結助剤はAgN原料粉末の不純物酸素と反応
し、液相を生成して焼結体の緻密化を達成すると共に、
この不純物酸素を粒界相として固定(酸素トラップ)し
、高熱伝導率化を達成すると考えられている。
These sintering aids react with the impurity oxygen in the AgN raw material powder to generate a liquid phase and achieve densification of the sintered body.
It is believed that high thermal conductivity is achieved by fixing this impurity oxygen as a grain boundary phase (oxygen trap).

このように焼結助剤をAΩN粉末原料に添加することに
より確かにAIN焼結体の緻密化、高熱伝導率化を達成
することが可能となるが、上記焼結助剤ではいずれも1
700〜1900℃の高温で、長時間の焼結が必要であ
るため、A、17N焼結体の低コストの障害となってい
た。
By adding a sintering aid to the AΩN powder raw material in this way, it is certainly possible to achieve densification and high thermal conductivity of the AIN sintered body, but the above sintering aid does not
Since sintering is required at a high temperature of 700 to 1900° C. for a long time, it has been an obstacle to the low cost of A, 17N sintered bodies.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、高熱伝導性を損うことなく焼結温度の低下、焼結
時間の短縮化を達成したAJN焼結体の製造方法を提供
しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has achieved lowering of sintering temperature and shortening of sintering time without impairing high thermal conductivity. The present invention aims to provide a method for manufacturing an AJN sintered body.

[発明の構成] (課題を解決するための手段) 本発明は、窒化アルミニウムを主成分とし、これに(A
)フッ化アルミニウムと、(B)アルカリ土類元素化合
物、希土類元素化合物、アルカリ土類元素希土類元素化
合物、アルカリ土類元素アルミニウム化合物、希土類元
素アルミニウム化合物及びアルカリ土類元素希土類元素
アルミニウム化合物から選ばれる少なくとも1種とを必
須成分とする添加物を陽イオン種の元素換算でo、1〜
20重量%加えて焼結することを特徴とする窒化アルミ
ニウム焼結体の製造方法である。
[Structure of the invention] (Means for solving the problem) The present invention has aluminum nitride as a main component, and (A
) aluminum fluoride; and (B) selected from alkaline earth element compounds, rare earth element compounds, alkaline earth element rare earth element compounds, alkaline earth element aluminum compounds, rare earth element aluminum compounds, and alkaline earth element rare earth element aluminum compounds. Additives containing at least one kind as an essential component are o, 1 to
This is a method for producing an aluminum nitride sintered body, characterized in that 20% by weight of the aluminum nitride sintered body is added and sintered.

上記AgNとしては、酸素が0.1〜3重量%含み、遠
心沈降法による平均粒径が0.1〜2.5μmのものを
用いることが望ましい。
It is desirable to use AgN that contains 0.1 to 3% by weight of oxygen and has an average particle size of 0.1 to 2.5 μm as determined by centrifugal sedimentation.

上記添加物としては、次のような形態のものを挙げるこ
とができる。
Examples of the above-mentioned additives include the following types.

■、上記(A)成分及び(B)成分のみからなる添加物
(2) An additive consisting only of the above components (A) and (B).

■、上記(A)成分、(B)成分及び遷移金属化合物か
らなる添加物。
(2) An additive comprising the above-mentioned component (A), component (B), and a transition metal compound.

■、上記(A)成分、(B)成分及びアルミニウム酸化
物からなる添加物。
(2) An additive consisting of component (A), component (B), and aluminum oxide.

■、上記(A)成分、(B)成分、遷移金属化合物及び
アルミニウム酸化物からなる添加物。
(2) An additive consisting of the above component (A), component (B), a transition metal compound, and an aluminum oxide.

上記(B)成分中のアルカリ土類元素化合物としては、
例えばMg、Ca、5rSBaの酸化物、フッ化物、窒
化物又は炭化物を挙げることができ、特にCa5Srの
化合物が好ましい。
As the alkaline earth element compound in the above component (B),
For example, oxides, fluorides, nitrides, or carbides of Mg, Ca, and 5rSBa can be used, and compounds of Ca5Sr are particularly preferred.

上記(B)成分中の希土類元素化合物としては、例えば
Sas YSLas Ce、301% Eu5TIl1
%Tbs Dy5Nds Gd、Pr5HoSErsY
bの酸化物、フッ化物、窒化物又は炭化物を挙げること
ができ、特にY SL a SCeの化合物が好ましい
Examples of the rare earth element compound in the component (B) include Sas YSLas Ce, 301% Eu5TIl1
%Tbs Dy5Nds Gd, Pr5HoSErsY
Examples include oxides, fluorides, nitrides, and carbides of b, and compounds of Y SL a SCe are particularly preferred.

上記(B)成分中のアルカリ土類元素希土類元素化合物
としては、例えばアルカリ土類元素をR1希土類元素を
Lnとした時、RL n  O%R−Ln−FSR−L
n−C,R−Ln −Nで表わされる化合物を挙げるこ
とができ、特にRLn 407 、RLn 204 、
RLn 4 F+4が望ましい。
As the alkaline earth element rare earth element compound in the above component (B), for example, when the alkaline earth element is R1 and the rare earth element is Ln, RL n O% R-Ln-FSR-L
Examples include compounds represented by n-C, R-Ln-N, particularly RLn 407 , RLn 204 ,
RLn 4 F+4 is desirable.

上記(B)成分中のアルカリ土類元素アルミニウム化合
物としては、例えばアルカリ土類元素をRとした時、R
2AX)205  RAΩ20.1、R1□AR+40
3i、R3AΩ206で表わされる酸化物等を挙げるこ
とができる。
As the alkaline earth element aluminum compound in the above component (B), for example, when the alkaline earth element is R, R
2AX) 205 RAΩ20.1, R1□AR+40
Examples include oxides represented by 3i, R3AΩ206, and the like.

上記(B)成分中の希土類元素アルミニウム化合物とし
ては、例えば希土類元素をLnとした時、Ln 3A、
Q 50.。、LnAΩ03、Ln4AΩ209で表わ
される酸化物等を挙げることができる。
As the rare earth element aluminum compound in the component (B), for example, when the rare earth element is Ln, Ln 3A,
Q50. . , LnAΩ03, and Ln4AΩ209.

上記(B)成分中のアルカリ土類元素希土類元素アルミ
ニウム化合物としては、アルカリ土類元素をR1希土類
元素をLnとした時、R−Ln−Ag−0系の複合酸化
物で表わされるものであり、特にRLn AN 04 
、RLn A、Q 307が望ましい。
The alkaline earth element rare earth element aluminum compound in the above component (B) is represented by a composite oxide of the R-Ln-Ag-0 system, where the alkaline earth element is R1 and the rare earth element is Ln. , especially RLn AN 04
, RLn A, Q 307 is desirable.

上記添加物中に含まれる遷移金属化合物としては、例え
ばTI   Zr、HrSNiSCrSMt+。
Examples of the transition metal compound contained in the additive include TI Zr and HrSNiSCrSMt+.

Fe、Co5Vの酸化物、フッ化物、窒化物又は炭化物
を挙げることができ、特にTi 、Zr 。
Mention may be made of oxides, fluorides, nitrides or carbides of Fe, Co5V, in particular Ti, Zr.

Hrの化合物が好ましい。Compounds of Hr are preferred.

上記添加物中に含まれるアルミニウム酸化物としては、
例えばα−A、l) 203 、γ−AN203を挙げ
ることができる。
The aluminum oxide contained in the above additives is:
Examples include α-A, l) 203 and γ-AN203.

上記添加物のAgN粉末に対する量は、陽イオン換算で
0.1〜20重量%、より好ましくは0.2〜15重量
%の範囲することが望ましい。この理由は、添加物の量
を0.1重量%未満にすると焼結体の特性改善の効果が
充分ではなく、一方その量が20重量%をを越えると熱
伝導率、高温強度等の特性劣化が無視できなくなる恐れ
があるからである。また、添加物中のフッ化アルミニウ
ムの量は0.05〜5重量%とするこが望ましく、0.
05重量%未満にすると特性改善効果を充分に達成し難
く、かといって5重量%を越えると焼結体中に気泡が残
留する場合があり、緻密な焼結体が得難くなるからであ
る。更に、添加物中に遷移金属化合物及びアルミニウム
酸化物を含ませる場合、各成分は夫々0.01〜3重量
%添加することが望ましい。この理由は、遷移金属化合
物の添加量を0.01重量%未満にすると焼結体の高強
度化や着色化を充分に達成できず、かといって3重量%
を越えると焼結体の熱伝導率を低下させる恐れがあるか
らである。アルミニウム酸化物の添加量を0.01重量
%未満にすると該酸化物の添加効果である焼結性の向上
化を充分に達成できず、かといって3重量%を越えると
焼結体の熱伝導率を低下させる恐れがあるからである。
The amount of the above-mentioned additive relative to the AgN powder is desirably in the range of 0.1 to 20% by weight, more preferably 0.2 to 15% by weight in terms of cations. The reason for this is that when the amount of additives is less than 0.1% by weight, the effect of improving the properties of the sintered body is not sufficient, whereas when the amount exceeds 20% by weight, the properties such as thermal conductivity and high temperature strength are This is because the deterioration may become impossible to ignore. Further, the amount of aluminum fluoride in the additive is preferably 0.05 to 5% by weight, and 0.05 to 5% by weight.
If it is less than 0.05% by weight, it will be difficult to achieve a sufficient property improvement effect, but if it exceeds 5% by weight, air bubbles may remain in the sintered body, making it difficult to obtain a dense sintered body. . Furthermore, when a transition metal compound and an aluminum oxide are included in the additives, it is desirable to add each component in an amount of 0.01 to 3% by weight. The reason for this is that if the amount of the transition metal compound added is less than 0.01% by weight, it is not possible to sufficiently increase the strength and coloration of the sintered body;
This is because if it exceeds this, the thermal conductivity of the sintered body may be reduced. If the amount of aluminum oxide added is less than 0.01% by weight, it will not be possible to sufficiently improve the sinterability, which is the effect of adding the oxide, but if it exceeds 3% by weight, the heat of the sintered body will increase. This is because there is a possibility that the conductivity will be lowered.

上記各添加物は、遠心沈降法による平均粒径が0.3〜
2.0μmの粉末又は液相としてA、QN原料粉末に加
えることが望ましい。液相として加える例としては、陽
イオン種元素の硝酸塩をアルコールに溶解してA、QN
原料粉末に加える方法、又は同陽イオン種元素のアルコ
キシドをAIN原f4 粉末に加えた後、加水分解させ
る方法等を採用し得る。
Each of the above additives has an average particle size of 0.3 to 0.3 by centrifugal sedimentation.
It is desirable to add it to the A, QN raw material powder as a 2.0 μm powder or liquid phase. An example of adding it as a liquid phase is to dissolve nitrate of a cationic species element in alcohol and add A, QN.
A method of adding it to the raw material powder, or a method of adding an alkoxide of the same cationic element to the raw AIN f4 powder and then hydrolyzing it can be adopted.

次に、本発明の製造方法をより具体的に説明する。Next, the manufacturing method of the present invention will be explained in more detail.

ます、ApN粉末に添加物を加え、ボールミル等を用い
て粉砕、混合して原料を調製する。但し、常圧焼結の場
合は前記ボールミル等で粉砕、混合したものに更にバイ
ンダを加え、混練、造粒を行なって原料を調製する。つ
づいて、バインダを含む原料を金型、静水圧又はシート
成形等の手段により成形した後、成形体をN2ガス気流
中にて加熱してバインダを除去する。次いで、成形体を
黒鉛、窒化硼素又は窒化アルミニウムからなる容器にセ
ットし、N2ガス雰囲気中にて1400〜1850℃で
常圧焼結を行なう。一方、ホットプレス焼結の場合は前
記ボールミルで粉砕、混合して調製した原料を1400
〜1800℃の温度でホットプレスを行なつO (作用) 本発明によれば、窒化アルミニウムを主成分とし、これ
に(A)フッ化アルミニウムと、(B)アルカリ土類元
素化合物、希土類元素化合物、アルカリ土類元素希土類
元素化合物、アルカリ土類元素アルミニウム化合物、希
土類元素アルミニウム化合物及びアルカリ土類元素希土
類元素アルミニウム化合物から選ばれる少なくとも1種
とを必須成分とする添加物を陽イオン種の元素換算で0
.1〜20重量%加えて焼結することによって、低い焼
結温度、短時間で緻密かつ高熱伝導率のAgN焼結体を
製造できる。こうした作用については、明らかではない
が、次のようなメカニズムによるものと推定される。
First, additives are added to ApN powder, and a raw material is prepared by grinding and mixing using a ball mill or the like. However, in the case of pressureless sintering, a binder is further added to the pulverized and mixed material using the ball mill, kneading, and granulation to prepare the raw material. Subsequently, after molding the raw material containing the binder using a mold, hydrostatic pressure, sheet molding, or other means, the molded body is heated in a N2 gas stream to remove the binder. Next, the molded body is set in a container made of graphite, boron nitride, or aluminum nitride, and pressureless sintering is performed at 1400 to 1850° C. in an N2 gas atmosphere. On the other hand, in the case of hot press sintering, the raw materials prepared by crushing and mixing in the ball mill are
Hot pressing is carried out at a temperature of ~1800° C. (Operation) According to the present invention, aluminum nitride is the main component, and (A) aluminum fluoride and (B) an alkaline earth element compound and a rare earth element compound are added to the aluminum nitride as a main component. , an alkaline earth element rare earth element compound, an alkaline earth element aluminum compound, a rare earth element aluminum compound, and an alkaline earth element rare earth element aluminum compound. 0 at
.. By adding 1 to 20% by weight and sintering, a dense AgN sintered body with high thermal conductivity can be produced at a low sintering temperature and in a short time. Although this effect is not clear, it is presumed that it is due to the following mechanism.

即ち、添加物の主要成分であるフッ化アルミニラム(A
N F3 )による反応促進効果が挙げられる。AgF
3は、通常の雰囲気下では融点を持たず、加熱すれば分
解しないで昇華する。そして、蒸気圧は1300℃付近
で1気圧に達する。AgN原料粉末の焼結に際しては、
AgN原料粉末中に不可避的に混入する不純物酸素と添
加物との反応により液相を生成し、液相焼結により緻密
化が進行するものと考えられる。A、9F3は、この反
応をより低温、短時間で進行させる効果があるものと考
えられる。例えば、添加物としてY2O3をAΩN原料
に加えた系を考えると、焼結後の粒界付近にはY−Ag
−0系の複合酸化物が生成しており、これらの生成物が
焼結温度で液相となる。
That is, aluminum fluoride (A
One example is the reaction promoting effect of N F3 ). AgF
No. 3 has no melting point in a normal atmosphere, and sublimates without decomposing when heated. The vapor pressure reaches 1 atm near 1300°C. When sintering AgN raw material powder,
It is thought that a liquid phase is generated by the reaction between impurity oxygen, which is inevitably mixed in the AgN raw material powder, and the additive, and densification progresses by liquid phase sintering. A, 9F3 is considered to have the effect of allowing this reaction to proceed at a lower temperature and in a shorter time. For example, considering a system in which Y2O3 is added as an additive to the AΩN raw material, Y-Ag exists near the grain boundaries after sintering.
A -0-based composite oxide is produced, and these products become a liquid phase at the sintering temperature.

この場合、生成相がY3AΩ501□とするとその液相
温度は1760℃と考えられており、緻密なAgN焼結
体を得るためにはこれ以上の温度(約1800℃)で焼
結する必要がある。これは、−見Y2O3とAg2O3
の二成分系の反応と類似しており、事実、酸素を含むA
gN原料粉末を非酸化性雰囲気で加熱しても1300℃
付近からαAD203の生成が確認される。
In this case, if the generated phase is Y3AΩ501□, its liquidus temperature is thought to be 1760°C, and in order to obtain a dense AgN sintered body, it is necessary to sinter at a temperature higher than this (approximately 1800°C). . This is −Y2O3 and Ag2O3
is similar to the binary system reaction of A
gN raw material powder heated to 1300℃ in a non-oxidizing atmosphere
Generation of αAD203 is confirmed from nearby.

本発明者らは、Y2O3とAI)203粉末を3Y20
35AΩ203又は2Y203A!1203などの定地
組成となるように混合し、空気中で1500℃まで加熱
すると、定地組成物の他に未反応のY2O3とAg2O
3が多く存在するが、AgF3を微量(例えば0.5重
量%程度)加えると、同一条件下で全て定地組成物に変
換されており、未反応物は残っていないことを確認した
The present inventors used Y2O3 and AI)203 powder as 3Y20
35AΩ203 or 2Y203A! 1203, etc., and heated to 1500°C in air, unreacted Y2O3 and Ag2O are added in addition to the fixed composition.
Although a large amount of AgF3 was present, it was confirmed that when a small amount (for example, about 0.5% by weight) of AgF3 was added, it was all converted into a solid composition under the same conditions, and that no unreacted substances remained.

また、添加物のもう一つの(B)成分であるアルカリ土
類元素化合物、希土類元素化合物等は従来の技術で説明
したように焼結性を向上してAgN焼結体の緻密化及び
高熱伝導率化に寄与するものである。
In addition, the other (B) component of the additive, such as an alkaline earth element compound or a rare earth element compound, improves sinterability as explained in the conventional technology, resulting in densification of the AgN sintered body and high thermal conductivity. This contributes to increasing efficiency.

更に、前述した遷移金属化合物を含む■、■の添加物を
使用することによってAIIN焼結体の高強度化及び着
色化を達成できる。即ち、遷移金属化合物を含む系の添
加物はAΩN原料の焼結及び粒成長を阻害することなく
焼結体内に均一に分布し、ピンニング効果による焼結体
の強度増加を達成できる。しかも、焼結体を着色し、ま
た他の成分との組合わせにより各種の色調が得られ、焼
結体の色むらを隠蔽して美観を高め、更に半導体メモリ
の放熱基板として用いた場合に該メモリの誤動作の原因
となる光を遮蔽することができる。また、前述したアル
ミニウム酸化物を含ム■、■の添加物を使用することに
よって、AgN焼結体の焼結性の改善化を達成できる。
Further, by using the additives (1) and (4) containing the transition metal compound described above, it is possible to increase the strength and color of the AIIN sintered body. That is, the additive containing the transition metal compound is uniformly distributed within the sintered body without inhibiting the sintering and grain growth of the AΩN raw material, and the strength of the sintered body can be increased by the pinning effect. Moreover, various color tones can be obtained by coloring the sintered body or by combining it with other components, concealing color irregularities in the sintered body and enhancing its aesthetic appearance, and furthermore, when used as a heat dissipation substrate for semiconductor memory. Light that causes malfunction of the memory can be blocked. Furthermore, by using the additives (1) and (3) containing aluminum oxide, the sinterability of the AgN sintered body can be improved.

とりわけ、不純物酸素量が少なく、かっ粒径の大きいA
、1llN粉末の焼結や成形後の脱バインダが不十分で
残留炭素量の多い成形体の焼結性を効果的に改善できる
In particular, A with a small amount of impurity oxygen and a large grain size
, 111N powder and in which binder removal after sintering or molding is insufficient and the sinterability of a molded body with a large amount of residual carbon can be effectively improved.

(発明の実施例) 以下、本発明の実施例を詳細に説明する。(Example of the invention) Examples of the present invention will be described in detail below.

実施例1 まず、不純物酸素を0.7重量%含有し、平均粒径が1
,2μmのAj;IN粉末に添加物として平均粒径1.
0μmのY2O33重量%(Y換算、 2.36重量%
)及び平均粒径1.3μmのAfi F2O,3重量%
(l換算、 0.094重量%)を加え、ボールミルを
用いて解砕、混合して原料を調製した。つづいて、この
原料にアクリル系バインダを7重量%添加して造粒した
後、500 Kg/ ciの圧力でプレス成形して50
n X 50CmX 8 crttの寸法の圧粉体とし
た。
Example 1 First, a sample containing 0.7% by weight of impurity oxygen and an average particle size of 1
, 2 μm Aj; average particle size 1.0 μm as an additive to IN powder.
0 μm Y2O3 3% by weight (Y conversion, 2.36% by weight
) and 3% by weight of Afi F2O with an average particle size of 1.3 μm.
(0.094% by weight in terms of l) was added, crushed and mixed using a ball mill to prepare a raw material. Next, 7% by weight of an acrylic binder was added to this raw material and granulated, followed by press molding at a pressure of 500 kg/ci to give 50 kg/cm.
The compact was made into a compact with dimensions of n x 50 cm x 8 crtt.

ひきつづき、この圧粉体を窒素ガス雰囲気で700℃ま
で加熱してアクリル系バインダを除去した。
Subsequently, this green compact was heated to 700° C. in a nitrogen gas atmosphere to remove the acrylic binder.

次いで、この圧粉体をカーボン製容器中にセットし、窒
素ガス雰囲気下にて1700℃で30分間常圧焼結して
AgN焼結体を製造した。
Next, this green compact was set in a carbon container and sintered under normal pressure at 1700° C. for 30 minutes in a nitrogen gas atmosphere to produce an AgN sintered body.

実施例2〜11、比較例1〜3 原料として後掲する第1表に示すAJ7N粉末、添加物
である混合粉末からなるものを用いた以外、実施例1と
同様な方法により13種のAgN焼結体を製造した。但
し、CaOはCaCO3を重量換算して添加し、平均粒
径はn−ブタノールを分散媒とした時の遠心沈降径を示
す。
Examples 2 to 11, Comparative Examples 1 to 3 Thirteen types of AgN were produced in the same manner as in Example 1, except that AJ7N powder shown in Table 1 listed below and a mixed powder as an additive were used as raw materials. A sintered body was manufactured. However, CaO is added in terms of CaCO3 by weight, and the average particle size indicates the centrifugal sedimentation diameter when n-butanol is used as a dispersion medium.

しかして、本実施例1〜11及び比較例1〜3で得られ
た各A[N焼結体の密度を測定した。また、各AgN焼
結体を研削して直径10M1厚さ2.5mmの円板を作
製し、これらを試験片としてレーザフラッシュ法によっ
て熱伝導率を、4Pj定した。なお、測定に際しての温
度は21℃±2℃とした。これらの結果を後掲する第1
表に示す。
Thus, the density of each A[N sintered body obtained in Examples 1 to 11 and Comparative Examples 1 to 3 was measured. Further, each AgN sintered body was ground to produce a disk with a diameter of 10M and a thickness of 2.5 mm, and these were used as test pieces to determine the thermal conductivity of 4Pj by a laser flash method. Note that the temperature during the measurement was 21°C±2°C. These results are listed below in Part 1.
Shown in the table.

後掲する第1表から明らかなように本実施例1〜11の
AgN焼結体は、比較例1〜3のAj7N焼結体に比べ
て緻密性及び熱伝導率のいずれの特性についても優れて
いることがわかる。
As is clear from Table 1 below, the AgN sintered bodies of Examples 1 to 11 are superior to the Aj7N sintered bodies of Comparative Examples 1 to 3 in terms of both compactness and thermal conductivity. It can be seen that

実施例12 まず、不純物酸素を0.9重】%含有し、平均粒径が1
.5μmのAΩN粉末に添加物として平均粒径0.8μ
mのCa CO3をCaO換算で1.0重量%(Ca換
算、 0.714重量%)及び平均粒径1.3μmのA
gF30.5重量%(i換算、 0.161重量%)を
加え、ボールミルを用いて解砕、混合して原料を調製し
た。つづいて、この原料にアクリル系バインダを7重量
%添加して造粒した後、500に’j/cdの圧力でプ
レス成形して30cmX 30cm Xg cmの寸法
の圧粉体とした。ひきつづき、圧粉体を窒素ガス雰囲気
で700℃まで加熱してアクリル系バインダを除去した
。次いで、この圧粉体をカーボン製容器中にセットし、
窒素ガス雰囲気下にて1600℃で夫々10分間、30
分間、60分間、1.80分間、300分間及び720
分間常圧焼結して6種のAgN焼結体を製造した。
Example 12 First, a sample containing impurity oxygen of 0.9% by weight and an average particle size of 1
.. Additive to 5μm AΩN powder with average particle size of 0.8μ
1.0% by weight of Ca CO3 in terms of CaO (0.714% by weight in terms of Ca) and A with an average particle size of 1.3 μm.
A raw material was prepared by adding 30.5% by weight of gF (0.161% by weight in i terms), crushing and mixing using a ball mill. Subsequently, 7% by weight of an acrylic binder was added to this raw material and granulated, followed by press molding at a pressure of 500 cm/cd to obtain a green compact with dimensions of 30 cm x 30 cm x g cm. Subsequently, the compact was heated to 700° C. in a nitrogen gas atmosphere to remove the acrylic binder. Next, this green compact is set in a carbon container,
30 minutes each at 1600℃ under nitrogen gas atmosphere.
minutes, 60 minutes, 1.80 minutes, 300 minutes and 720 minutes
Six types of AgN sintered bodies were manufactured by atmospheric pressure sintering for a minute.

比較例4 まず、不純物酸素を0.9重量%含有し、平均粒径が1
.5μmのAΩN粉末に添加物として平均粒径0.8μ
mのCaCO3をCaO換算で1.0重量%を加え、ボ
ールミルを用いて解砕、混合して原料を調製した。つづ
いて、この原料を用いて実施例12と同様な方法により
常圧焼結して6種のAJ7N焼結体を製造した。
Comparative Example 4 First, a sample containing 0.9% by weight of impurity oxygen and an average particle size of 1
.. Additive to 5μm AΩN powder with average particle size of 0.8μ
A raw material was prepared by adding 1.0% by weight of CaCO3 (calculated as CaO) and crushing and mixing using a ball mill. Subsequently, six types of AJ7N sintered bodies were manufactured by pressureless sintering using this raw material in the same manner as in Example 12.

しかして、本実施例12及び比較例4で得られた各Ag
N焼結体について密度及び室温での熱伝導率を測定した
。これらの結果を後掲する第2表に示す。
Therefore, each Ag obtained in Example 12 and Comparative Example 4
The density and thermal conductivity at room temperature of the N sintered body were measured. These results are shown in Table 2 below.

後掲する第2表から明らかなように本実施例12では6
0分間という短時間の焼結においても高密度で高熱伝導
率のA47N焼結体を得ることができることがわかる。
As is clear from Table 2 below, in Example 12, 6
It can be seen that an A47N sintered body with high density and high thermal conductivity can be obtained even during sintering for a short time of 0 minutes.

実施例13〜21、比較例5.6 原料として後掲する第3表に示すAIN粉末、添加物で
ある混合粉末からなるものを用い、これらを同第3表に
示す条件で焼結した以外、実施例1と同様な方法により
11種のAgN焼結体を製造した。但し、CaOはCa
 CO3を重量換算して添加し、平均粒径はn−ブタノ
ールを分散媒とした時の遠心沈降径を示す。
Examples 13 to 21, Comparative Example 5.6 Other than using the AIN powder shown in Table 3 listed below as the raw material and the mixed powder as an additive, and sintering these under the conditions shown in Table 3. Eleven types of AgN sintered bodies were manufactured by the same method as in Example 1. However, CaO is Ca
CO3 was added in terms of weight, and the average particle diameter indicates the centrifugal sedimentation diameter when n-butanol was used as a dispersion medium.

しかして、本実施例13〜21及び比較例5.6のA、
QN焼結体について実施例1と同様に方法により密度及
び室温での熱伝導率を測定した。また、各AgN焼結体
を研削して幅4 mm、厚さ3M、長さ40Mの6棒を
夫々G本作製し、これらを抗折強度測定用試験片として
、支点間圧i!+f20 Elm sクロスヘツド速度
0.5 my/ minの条件で3点曲げ強度を測定し
た。更に、各A47N焼結体の色を観察した。
Therefore, A of Examples 13 to 21 and Comparative Example 5.6,
The density and thermal conductivity at room temperature of the QN sintered body were measured in the same manner as in Example 1. In addition, each AgN sintered body was ground to produce 6 rods each with a width of 4 mm, a thickness of 3M, and a length of 40M, and these were used as specimens for measuring bending strength, and the inter-fulcrum pressure i! The three-point bending strength was measured under the conditions of +f20 Elms and a crosshead speed of 0.5 my/min. Furthermore, the color of each A47N sintered body was observed.

これらの結果を後掲する第3表に併記した。These results are also listed in Table 3 below.

後掲する第3表から明らかなように、本実施例13〜2
1のAgN焼結体は比較例5.6の焼結体に比べて密度
、熱伝導率及び3点曲げ強度のいずれも優れていること
かわかる。
As is clear from Table 3 below, Examples 13 to 2
It can be seen that the AgN sintered body of No. 1 is superior to the sintered body of Comparative Example 5.6 in terms of density, thermal conductivity, and three-point bending strength.

[発明の効果コ 以上詳述した如く、本発明によれば高熱伝導性を損うこ
となく、焼結温度の低下、焼結時間の短縮化を達成でき
、ひいては緻密かつ高熱伝導率を有する回路基板等に好
適なA、QN焼結体を高歩留りでかつ低コストで製造し
得る方法を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to lower the sintering temperature and shorten the sintering time without impairing high thermal conductivity, and as a result, it is possible to achieve a circuit that is dense and has high thermal conductivity. It is possible to provide a method for manufacturing A, QN sintered bodies suitable for substrates and the like with high yield and at low cost.

Claims (1)

【特許請求の範囲】  窒化アルミニウムを主成分とし、これに (A)フッ化アルミニウムと、 (B)アルカリ土類元素化合物、希土類元素化合物、ア
ルカリ土類元素希土類元素化合物、アルカリ土類元素ア
ルミニウム酸化物、希土類元素アルミニウム酸化物及び
アルカリ土類元素希土類元素アルミニウム化合物から選
ばれる少なくとも1種と を必須成分とする添加物を陽イオン種の元素換算で0.
1〜20重量%加えて焼結することを特徴とする窒化ア
ルミニウム焼結体の製造方法。
[Scope of Claims] Aluminum nitride is the main component, and (A) aluminum fluoride, (B) alkaline earth element compound, rare earth element compound, alkaline earth element rare earth element compound, alkaline earth element aluminum oxide. Additives containing at least one selected from the group consisting of rare earth element aluminum oxides, rare earth element aluminum oxides, and alkaline earth element rare earth element aluminum compounds are 0.0.
A method for producing an aluminum nitride sintered body, which comprises adding 1 to 20% by weight and sintering it.
JP63186816A 1988-07-28 1988-07-28 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2735227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186816A JP2735227B2 (en) 1988-07-28 1988-07-28 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186816A JP2735227B2 (en) 1988-07-28 1988-07-28 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH0238368A true JPH0238368A (en) 1990-02-07
JP2735227B2 JP2735227B2 (en) 1998-04-02

Family

ID=16195098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186816A Expired - Fee Related JP2735227B2 (en) 1988-07-28 1988-07-28 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2735227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
CN113200747A (en) * 2021-05-12 2021-08-03 深圳市丁鼎陶瓷科技有限公司 Low-temperature sintered aluminum nitride ceramic material, aluminum nitride casting slurry and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195175A (en) * 1987-02-09 1988-08-12 川崎製鉄株式会社 Composition for sintering aluminum nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195175A (en) * 1987-02-09 1988-08-12 川崎製鉄株式会社 Composition for sintering aluminum nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953761B2 (en) 2002-12-27 2005-10-11 Hitachi, Ltd. Aluminum nitride sintered body and substrate for electronic devices
CN113200747A (en) * 2021-05-12 2021-08-03 深圳市丁鼎陶瓷科技有限公司 Low-temperature sintered aluminum nitride ceramic material, aluminum nitride casting slurry and application

Also Published As

Publication number Publication date
JP2735227B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JPH0359027B2 (en)
JPH06211573A (en) Production of transparent y2o3 sintered compact
JP5369444B2 (en) GZO sintered body manufacturing method
JPH0238368A (en) Production of sintered material of aluminum nitride
KR20190023485A (en) Aluminum nitride sintered body and method for manufacturing the same
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JPH07206525A (en) Aluminum nitride body and its formation
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JPS6217076A (en) Aluminum nitride powder composition
JPH11335823A (en) Sputtering target
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JPH01183469A (en) Sintered aluminum nitride
JPS6317210A (en) Production of aluminum nitride powder
JPS61227967A (en) High heat conductivity ceramics and manufacture
EP4310051A1 (en) Method for preparing silicon nitride powder for manufacturing substrate and silicon nitride powder prepared thereby
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JPS6110072A (en) Aluminum nitride sintered body
KR960006249B1 (en) Process for producing an aluminium sintered product
JPH0566339B2 (en)
JP2901135B2 (en) Semiconductor device
JPH0686332B2 (en) Manufacturing method of sialon-based ceramic tool for cutting cast iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees