JPH0686332B2 - Manufacturing method of sialon-based ceramic tool for cutting cast iron - Google Patents

Manufacturing method of sialon-based ceramic tool for cutting cast iron

Info

Publication number
JPH0686332B2
JPH0686332B2 JP61002390A JP239086A JPH0686332B2 JP H0686332 B2 JPH0686332 B2 JP H0686332B2 JP 61002390 A JP61002390 A JP 61002390A JP 239086 A JP239086 A JP 239086A JP H0686332 B2 JPH0686332 B2 JP H0686332B2
Authority
JP
Japan
Prior art keywords
powder
sialon
cast iron
cutting
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61002390A
Other languages
Japanese (ja)
Other versions
JPS62162673A (en
Inventor
昭雄 西山
二郎 小谷
辰郎 安島
孝 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61002390A priority Critical patent/JPH0686332B2/en
Publication of JPS62162673A publication Critical patent/JPS62162673A/en
Publication of JPH0686332B2 publication Critical patent/JPH0686332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高強度および高靭性を有し、さらに耐摩耗
性にもすぐれ、特に鋳鉄の切削に切削工具として用いる
のに適したサイアロン基セラミツク工具の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has high strength and high toughness, and also has excellent wear resistance, and is particularly suitable for use as a cutting tool for cutting cast iron. The present invention relates to a method for manufacturing a ceramic tool.

〔従来の技術〕[Conventional technology]

従来、鋳鉄の切削に、切削工具としてサイアロン基セラ
ミツク工具が用いられ、このサイアロン基セラミツク工
具が、原料粉末として用意した平均粒径:0.7〜1.5μm
を有する窒化けい素(以下、Si3N4で示す)粉末に、同
じくいずれも平均粒径:2μm以下を有する、粒成長抑制
成分としての窒化チタン(以下TiNで示す)粉末:5〜30
重量%(以下%は重量%を示す)と、サイアロン形成成
分としての酸化アルミニウム(以下Al2O3で示す)粉
末、またはAl2O3粉末と窒化アルミニウム(以下AlNで示
す)粉末、あるいはAl2O3粉末と第1図のSi3N4−Al2O3
−SiO2−AlN4元系状態図における21R粉末や8H粉末など
のサイアロン中間体粉末:1〜20%と、結合相形成成分と
しての酸化イツトリウム(Y2O3で示す)粉末、酸化マグ
ネシウム(以下MgOで示す)粉末、および希土類元素の
酸化物粉末のうちの1種または2種以上:0.5〜15%を配
合し、混合し、圧粉体にプレス成形した後、1気圧以上
の窒素雰囲気中、1700〜1800℃の温度で焼結することに
よつて製造されている。
Conventionally, a sialon-based ceramic tool has been used as a cutting tool for cutting cast iron, and this sialon-based ceramic tool has an average particle size of 0.7 to 1.5 μm prepared as raw material powder.
With a silicon nitride (hereinafter, referred to as Si 3 N 4 ) powder having a mean particle size of 2 μm or less, and titanium nitride (hereinafter, referred to as TiN) powder as a grain growth suppressing component: 5 to 30
% By weight (hereinafter% means% by weight) and aluminum oxide (hereinafter referred to as Al 2 O 3 ) powder as a sialon forming component, or Al 2 O 3 powder and aluminum nitride (hereinafter referred to as AlN) powder, or Al 2 O 3 powder and Si 3 N 4 -Al 2 O 3 in Fig. 1
Sialon intermediate powder such as 21R powder or 8H powder in -SiO 2 -AlN4 ternary phase diagram: a 1-20%, (indicated by Y 2 O 3) oxide yttrium as binder phase forming component powder, magnesium oxide (hereinafter (Indicated by MgO) and one or more of rare earth element oxide powders: 0.5 to 15% are mixed, mixed and pressed into a green compact, and then in a nitrogen atmosphere at 1 atm or more. , Manufactured by sintering at a temperature of 1700-1800 ° C.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の従来サイアロン基セラミツク工具におい
ては、サイアロン結晶の粒成長を抑制する目的で、TiN
を含有するものの、その効果は未だ不十分で、満足する
高強度および高靭性は得られておらず、この結果鋳鉄切
削に際しても、連続切削では比較的短時間で使用寿命に
到り、また断続切削では切刃の送りを比較的小さくして
切削を行なつているのが現状である。
However, in the above conventional sialon-based ceramic tool, TiN is used for the purpose of suppressing grain growth of sialon crystals.
However, its effect is still insufficient and satisfactory high strength and high toughness have not been obtained.As a result, even in continuous cutting of cast iron, in continuous cutting, the service life is reached in a relatively short time, and there are intermittent interruptions. The current situation is that the cutting blade feed is relatively small in cutting.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、上記の
従来サイアロン基セラミツク工具のもつ強度および靭性
の改善をはかるべく研究を行なつた結果、平均粒径:1μ
m以下を有するSi3N4粉末に、オルトチタン酸イソプロ
ピル{Ti〔(CH3・CHO〕}、チタンエトキシド
{Ti(OC2H5}、あるいはチタンオクタデシルオキ
サイド{Ti〔CH3(CH217O〕などのTi−アルコキシ
ドをTiNに換算して3〜15%の割合で配合し、ついで前
記Si3N4粉末の凝集(2次粒子)をほぐし、微粉末の状
態で分布するようにするために粉砕作用を伴う混合を行
ない、これを1気圧以上の窒素雰囲気中、1000〜1250℃
の温度で加熱処理して製造された、表面がTiN層で被覆
されたSi3N4粉末を、原料粉末として用いると、前記TiN
被覆層がサイアロン結晶の粒成長を著しく抑制し、平均
粒径:1μm以下の微細な前記Si3N4粉末と合まつて工具
は微細組織をもつようになり、この結果高強度と高靭性
をもつようになり、さらに耐摩耗性にもすぐれたものと
なり、鋳鉄の切削工具として用いた場合にすぐれた切削
性能を発揮するようになるという知見を得たのである。
Therefore, the present inventors, from the above viewpoints, as a result of conducting research to improve the strength and toughness of the conventional sialon-based ceramic tool, the average particle size: 1μ
the Si 3 N 4 powder having the following m, isopropyl orthotitanate {Ti [(CH 3) 2 · CHO] 4}, titanium ethoxide {Ti (OC 2 H 5) 4}, or titanium octadecyl oxide {Ti [ A Ti-alkoxide such as CH 3 (CH 2 ) 17 O] 4 is mixed in a proportion of 3 to 15% in terms of TiN, and then agglomerates (secondary particles) of the Si 3 N 4 powder are loosened to obtain a fine powder. In order to distribute in the state of, mix with crushing action is carried out, and this is 1000 to 1250 ℃ in a nitrogen atmosphere of 1 atm or more.
When Si 3 N 4 powder having a surface coated with a TiN layer, which is produced by heat treatment at a temperature of
The coating layer significantly suppresses the grain growth of sialon crystals, and the tool has a fine structure in combination with the fine Si 3 N 4 powder having an average grain size of 1 μm or less, which results in high strength and high toughness. We have obtained the knowledge that it will have excellent wear resistance, and that it will exhibit excellent cutting performance when used as a cutting tool for cast iron.

この発明は、上記知見にもとづいてなされたものであつ
て、原料粉末として用意した平均粒径:1μm以下のSi3N
4粉末に、Ti−アルコキシドをTiNに換算した割合で3〜
15%配合し、混合した後、1気圧以上の窒素雰囲気中、
1000〜1250℃の温度で加熱処理して、表面がTiNで被覆
されたSi3N4粉末を形成し、 ついで、この表面被覆Si3N4粉末に、サイアロン形成成
分としてのAl2O3粉末、またはAl2O3粉末とAlN粉末、あ
るいはAl2O3粉末とサイアロン中間体粉末:1〜20%、結
合相形成成分としてのY2O3粉末、MgO粉末、および希土
類元素の酸化物粉末のうちの1種または2種以上:0.5〜
15%を配合し、混合し、圧粉体にプレス成形した後、1
気圧以上の窒素雰囲気中、1700〜1800℃の温度で焼結
(この場合、ホツトプレス法やHIP法を用いて低い温度
での焼結を行なつてもよい)することによつて、高強度
および高靭性を有し、かつ耐摩耗性にもすぐれた鋳鉄切
削用サイアロン基セラミツク工具を製造する方法に特徴
を有するものである。
The present invention has been made based on the above findings, and the Si 3 N having an average particle diameter of 1 μm or less prepared as a raw material powder is used.
3 to 4 powders with Ti-alkoxide converted to TiN
After blending and mixing 15%, in a nitrogen atmosphere of 1 atm or more,
Heat treatment is performed at a temperature of 1000 to 1250 ° C to form Si 3 N 4 powder whose surface is coated with TiN. Then, this surface-coated Si 3 N 4 powder is mixed with Al 2 O 3 powder as a sialon forming component. , Or Al 2 O 3 powder and AlN powder, or Al 2 O 3 powder and sialon intermediate powder: 1 to 20%, Y 2 O 3 powder as a binder phase forming component, MgO powder, and oxide powder of rare earth element One or more of the above: 0.5-
After blending and mixing 15%, press-molding into green compact, 1
Sintering at a temperature of 1700 to 1800 ° C in a nitrogen atmosphere at atmospheric pressure or higher (in this case, it is possible to carry out sintering at a low temperature using the hot press method or HIP method), It is characterized by a method of producing a sialon-based ceramic tool for cutting cast iron which has high toughness and excellent wear resistance.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described.

(a) Si3N4粉末の平均粒径 セラミツクのサイアロン結晶の粒径に与えるSi3N4粉末
の粒径の影響は大きく、Si3N4粉末の平均粒径が1μm
を越えると、焼結後のセラミツクに微細組織を確保する
ことができないことから、その平均粒径を1μm以下と
定めた。
(A) Si 3 N 4 gives the particle size of the average particle size ceramic sialon crystal powder Si 3 N 4 Effect of particle size of the powder is large, the average particle size the Si 3 N 4 powder is 1μm
If it exceeds, it is not possible to secure a fine structure in the ceramic after sintering, so the average grain size was defined as 1 μm or less.

(b) Ti−アルコキシドの配合量 その配合量が3%未満では、TiN被覆層の形成が不十分
で所望の粒成長抑制効果が得られず、一方その配合量が
15%を越えると、セラミツク工具中のTiN含有量が相対
的に多くなりすぎて、強度および靭性の低下を招くよう
になることから、その配合量を3〜15%と定めた。
(B) Ti-alkoxide compounding amount If the compounding amount is less than 3%, the TiN coating layer is not sufficiently formed and the desired grain growth suppressing effect cannot be obtained.
If it exceeds 15%, the TiN content in the ceramic tool becomes too large, resulting in a decrease in strength and toughness. Therefore, the content was determined to be 3 to 15%.

(c) 加熱処理条件 加熱処理は、微細なSi3N4粉末の表面に、TiN被覆層をで
きるだけ均一に形成するためには、比較的低温で、長時
間かけてゆつくり行なう方が望ましいが、その雰囲気圧
力が1気圧未満でも、その温度が1000℃未満でも、反応
が遅すぎて実用的でなく、一方その温度が1250℃を越え
ると、反応が速く進みすぎて、TiNが凝集し易くなるば
かりでなく、粒成長も起り易くなることから、その条件
を、窒素雰囲気圧力:1気圧以上、温度:1000〜1250℃と
定めた。
(C) Heat treatment conditions In order to form the TiN coating layer on the surface of the fine Si 3 N 4 powder as uniformly as possible, it is preferable that the heat treatment is performed at a relatively low temperature for a long period of time. If the atmospheric pressure is less than 1 atm or the temperature is less than 1000 ° C, the reaction is too slow to be practical, while if the temperature exceeds 1250 ° C, the reaction proceeds too fast and TiN easily aggregates. Not only this, but also grain growth is likely to occur, so the conditions were set to a nitrogen atmosphere pressure of 1 atm or higher and a temperature of 1000 to 1250 ° C.

(d) その他の条件 Si3N4粉末以外の原料粉末の平均粒径を2μm以下とし
たのは、その平均粒径が2μmを越えると、微細組織の
セラミツクを製造するのが困難となるからであり、また
サイアロン形成成分の含有量を1〜20%と限定したの
は、その含有量が1%未満ではサイアロンの形成が不十
分であり、一方その含有量が20%を越えると、これらの
成分が多量に残留するようになつてセラミツク特性が低
下するようになるという理由によるものであり、さらに
結合相形成成分の含有量を0.5〜15%と限定したのは、
その含有量が0.5%未満では、焼結中の液相の量が少な
すぎて焼結が進行せず、一方その含有量が15%を越える
と、焼結時に形成されるガラス相が多くなりすぎて、軟
質となり、強度が低下するようになるという理由による
ものである。
(D) Other conditions The average particle size of the raw material powders other than the Si 3 N 4 powder is set to 2 μm or less, because if the average particle size exceeds 2 μm, it becomes difficult to manufacture a ceramic having a fine structure. The content of the sialon-forming component was limited to 1 to 20% because the formation of sialon was insufficient if the content was less than 1%, while if the content exceeded 20%, The reason for this is that the ceramic component will be left in a large amount and the ceramic characteristics will deteriorate, and the content of the binder phase forming component was further limited to 0.5 to 15%.
If the content is less than 0.5%, the amount of liquid phase during sintering is too small and the sintering does not proceed, while if it exceeds 15%, the glass phase formed during sintering increases. This is because it becomes too soft and the strength is lowered.

なお、焼結条件は通常の条件であつて、これらの条件を
満足することによつて所望のセラミツク工具を製造する
ことができるのである。
The sintering conditions are ordinary conditions, and by satisfying these conditions, a desired ceramic tool can be manufactured.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically described by way of Examples.

まず、平均粒径:0.7μmを有するSi3N4粉末を用い、こ
れよりそれぞれ第1表に示される条件で表面被覆Si3N4
粉末を製造し、ついで、この表面被覆Si3N4粉末と、い
ずれも0.6〜1μmの範囲内の平均粒径を有し、かつ第
1表に示される種類のサイアロン形成成分および結合相
形成粉末を、原料粉末として用い、これらを同じく第1
表に示される配合組成に配合し、ボールミルにて72時間
湿式混合し乾燥した後、通常の条件で圧粉体にプレス成
形し、ついで同じく第1表に示される条件で焼結するこ
とによつて本発明セラミツク工具1〜10をそれぞれ製造
した。
First, Si 3 N 4 powder having an average particle size of 0.7 μm was used, and from this, the surface-coated Si 3 N 4 powder was used under the conditions shown in Table 1.
A powder is produced, which is then combined with this surface-coated Si 3 N 4 powder, both having a mean particle size in the range from 0.6 to 1 μm and of the sialon-forming components and binder phase-forming powders of the type shown in Table 1. As the raw material powder, and
By blending to the blending composition shown in the table, wet mixing for 72 hours in a ball mill and drying, press-molding into a green compact under normal conditions, and then sintering under the same conditions as shown in Table 1. Then, the ceramic tools 1 to 10 of the present invention were manufactured.

また、比較の目的で、表面被覆Si3N4粉末に代つて、平
均粒径:0.7μmを有するSi3N4粉末、および同2μmのT
iN粉末を用い、さらに上記のサイアロン形成粉末と結合
相形成粉末を用い、これらをそれぞれ第2表に示される
配合組成に配合し、ボールミルにて72時間湿式混合し、
乾燥した後、通常の条件で圧粉体にプレス成形し、つい
で同じく第2表に示される条件にて焼結することによつ
て従来セラミツク工具1〜3をそれぞれ製 造した。
For the purpose of comparison, Daitsute the surface coating Si 3 N 4 powder, average particle diameter: Si 3 N 4 powder having a 0.7 [mu] m, and the 2μm of T
Using iN powder, and further using the above-mentioned sialon forming powder and binder phase forming powder, these were compounded to the compounding compositions shown in Table 2 and wet-mixed for 72 hours in a ball mill,
After drying, the conventional ceramic tools 1 to 3 were respectively manufactured by press-molding into a green compact under normal conditions and then sintering under the conditions shown in Table 2. I made it.

つぎに、この結果得られた本発明セラミツク工具1〜10
および従来セラミツク工具1〜3について、強度および
靭性を評価する目的で、JIS規格の3点曲げによる抵抗
力を測定すると共に、 被削材:FC25の丸棒、 切削速度:350m/min、 送り:0.45mm/rev.、 切込み:2mm、 の条件での鋳鉄連続高速切削試験、並びに、 被削材:FC25の角材、 切削速度:150m/min、 送り:変化、 切込み:2mm、 の条件での鋳鉄断続切削試験を行ない、前者の試験では
切刃の逃げ面摩耗幅が0.3mmに至るまでの切削時間を測
定し、また後者の試験では切刃に欠損が発生する送り量
を測定した。これらの結果を第3表に示した。
Next, the present invention ceramic tools 1 to 10 obtained as a result
For the purpose of evaluating the strength and toughness of the conventional ceramic tools 1 to 3, the JIS standard three-point bending resistance was measured, and the work material: FC25 round bar, cutting speed: 350 m / min, feed: 0.45 mm / rev., Cast iron continuous high-speed cutting test under conditions of depth: 2 mm, Work material: FC25 square bar, Cutting speed: 150 m / min, Feed: change, depth of cut: Cast iron under conditions of 2 mm An intermittent cutting test was performed. In the former test, the cutting time until the flank wear width of the cutting edge reaches 0.3 mm was measured, and in the latter test, the feed amount at which the cutting edge was broken was measured. The results are shown in Table 3.

〔発明の効果〕〔The invention's effect〕

第3表に示される結果から、本発明セラミツク工具1〜
10は、いずれも従来セラミツク工具1〜3に比して一段
と高い強度および靭性を示し、さらに鋳鉄の切削でもす
ぐれた切削性能を示すことが明らかである。
From the results shown in Table 3, the ceramic tools of the present invention 1 to
It is clear that all of 10 show higher strength and toughness than the conventional ceramic tools 1 to 3, and further show excellent cutting performance even when cutting cast iron.

上述のように、この発明の方法によれば、Ti−アルコキ
シドを用い、表面をTiNで被覆したSi3N4粉末を原料粉末
として使用することによつて、高強度および高靭性を有
し、かつ耐摩耗性にもすぐれたサイアロン基セラミツク
工具を製造することができ、特にこれを鋳鉄の切削に切
削工具として用いた場合にはすぐれた切削性能を長期に
亘つて発揮するなど工業上有用な効果がもたらされるの
である。
As described above, according to the method of the present invention, using Ti-alkoxide, by using the Si 3 N 4 powder whose surface is coated with TiN as a raw material powder, it has high strength and high toughness, In addition, it is possible to manufacture sialon-based ceramic tools with excellent wear resistance, and especially when it is used as a cutting tool for cutting cast iron, it is industrially useful, such as exhibiting excellent cutting performance over a long period of time. The effect is brought about.

【図面の簡単な説明】[Brief description of drawings]

第1図は、Si3N4−Al2O3−SiO2−AlNの4元系状態図で
ある。
FIG. 1 is a quaternary phase diagram of Si 3 N 4 —Al 2 O 3 —SiO 2 —AlN.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 孝 埼玉県大宮市北袋町1丁目297 三菱金属 株式会社中央研究所内 (56)参考文献 特開 昭59−3073(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Koyama 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Central Research Laboratory, Mitsubishi Metals Co., Ltd. (56) Reference JP-A-59-3073 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料粉末として用意した平均粒径:1μm以
下の窒化けい素粉末に、Ti−アルコキシドを窒化チタン
に換算した割合で3〜15重量%配合し、混合した後、1
気圧以上の窒素雰囲気中、1000〜1250℃の温度で加熱処
理して、表面が窒化チタンで被覆された窒化けい素粉末
を形成し、 ついで、この表面被覆窒化けい素粉末に、いずれも平均
粒径:2μm以下を有する、サイアロン形成成分としての
酸化アルミニウム粉末、または酸化アルミニウム粉末と
窒化アルミニウム粉末、あるいは酸化アルミニウム粉末
とサイアロン中間体粉末:1〜20重量%と、結合相形成成
分としての酸化イツトリウム粉末、酸化マグネシウム粉
末、および希土類元素の酸化物粉末のうちの1種または
2種以上:0.5〜15重量%を配合し、混合し、圧粉体にプ
レス成形した後、1気圧以上の窒素雰囲気中、1700〜18
00℃の温度で焼結することを特徴とする高強度および高
靭性を有する鋳鉄切削用サイアロン基セラミツク工具の
製造法。
1. A silicon nitride powder having an average particle size of 1 μm or less prepared as a raw material powder is mixed with 3 to 15% by weight in a ratio of Ti-alkoxide converted to titanium nitride, and after mixing, 1
In a nitrogen atmosphere at atmospheric pressure or higher, heat treatment is performed at a temperature of 1000 to 1250 ° C. to form a silicon nitride powder whose surface is coated with titanium nitride. Then, the surface-coated silicon nitride powder has an average particle size of Diameter: 2 μm or less, aluminum oxide powder as a sialon forming component, aluminum oxide powder and aluminum nitride powder, or aluminum oxide powder and sialon intermediate powder: 1 to 20 wt% and yttrium oxide as a binder phase forming component Powder, magnesium oxide powder, and rare earth element oxide powder, one or more kinds: 0.5 to 15% by weight are mixed, mixed and pressed into a green compact, and then a nitrogen atmosphere of 1 atm or more Medium, 1700-18
A method for producing a sialon-based ceramic tool for cutting cast iron having high strength and high toughness, characterized by sintering at a temperature of 00 ° C.
JP61002390A 1986-01-09 1986-01-09 Manufacturing method of sialon-based ceramic tool for cutting cast iron Expired - Lifetime JPH0686332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002390A JPH0686332B2 (en) 1986-01-09 1986-01-09 Manufacturing method of sialon-based ceramic tool for cutting cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002390A JPH0686332B2 (en) 1986-01-09 1986-01-09 Manufacturing method of sialon-based ceramic tool for cutting cast iron

Publications (2)

Publication Number Publication Date
JPS62162673A JPS62162673A (en) 1987-07-18
JPH0686332B2 true JPH0686332B2 (en) 1994-11-02

Family

ID=11527905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002390A Expired - Lifetime JPH0686332B2 (en) 1986-01-09 1986-01-09 Manufacturing method of sialon-based ceramic tool for cutting cast iron

Country Status (1)

Country Link
JP (1) JPH0686332B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770673A (en) * 1987-10-09 1988-09-13 Corning Glass Works Ceramic cutting tool inserts
JPH04362066A (en) * 1991-06-10 1992-12-15 Toshiba Corp Production of ceramic sintered body
JP2680938B2 (en) * 1991-02-13 1997-11-19 住友電気工業株式会社 Method for producing silicon nitride based composite sintered body

Also Published As

Publication number Publication date
JPS62162673A (en) 1987-07-18

Similar Documents

Publication Publication Date Title
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JPS59199581A (en) Abrasion resistant sialon base ceramics
JPH0686332B2 (en) Manufacturing method of sialon-based ceramic tool for cutting cast iron
JPH05301762A (en) Production of cutting tool with high toughness made of aluminum oxide-based ceramic
JPH06122563A (en) Ceramic composite material and its production
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JP2568494B2 (en) Manufacturing method of surface coated β 'sialon-based ceramics for cutting tools
JPS6257597B2 (en)
JPS621348B2 (en)
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JPH0687649A (en) Plate crystal alumina containing organic sintered body and production thereof
JP2005298239A (en) Tool made from coated silicon nitride based sintered compact
JP2647347B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JP2964830B2 (en) Aluminum oxide based ceramics with excellent toughness
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool
JPH0465367A (en) Production of aluminum nitride sintered compact
JPH01119558A (en) Alumina-based sintered compact for cutting tool and its production
JP2778189B2 (en) Fracture resistant silicon nitride based sintered material with high toughness and high strength
JP2647346B2 (en) Manufacturing method of aluminum nitride sintered body heat sink
JPS61291464A (en) Beta' sialon base ceramic for cutting tool and manufacture
JPS6366796B2 (en)
JPS6257598B2 (en)