JPH04362066A - Production of ceramic sintered body - Google Patents

Production of ceramic sintered body

Info

Publication number
JPH04362066A
JPH04362066A JP3137549A JP13754991A JPH04362066A JP H04362066 A JPH04362066 A JP H04362066A JP 3137549 A JP3137549 A JP 3137549A JP 13754991 A JP13754991 A JP 13754991A JP H04362066 A JPH04362066 A JP H04362066A
Authority
JP
Japan
Prior art keywords
sintered body
hafnium
ceramic sintered
hafnium oxide
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3137549A
Other languages
Japanese (ja)
Inventor
Tsuneji Kameda
常治 亀田
Masahiro Asayama
雅弘 浅山
Akio Sayano
顕生 佐谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3137549A priority Critical patent/JPH04362066A/en
Priority to US07/764,302 priority patent/US5238885A/en
Priority to DE69107760T priority patent/DE69107760T2/en
Priority to EP91308759A priority patent/EP0479485B1/en
Publication of JPH04362066A publication Critical patent/JPH04362066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To stably impart such characteristics as strength at high temp., fracture toughness and thermal shock resistance to a sialonor silicon nitride-based ceramic sintered body when this sintered body is produced with hafnium oxide. CONSTITUTION:When a silicon nitride-based ceramic sintered body contg. the oxide of a rare earth element, aluminum nitirde and hafnium oxide or a sialon- based ceramic sintered body contg. hafnium oxide is produced, hafnium oxide is added to a starting material mixture in the form of a hafnium-contg. org. compd. which is liq. at ordinary temp. This hafnium-contg. org. compd. is, e.g. hafnium alkoxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、機械的強度、破壊靭性
値、耐熱衝撃性等に優れた窒化ケイ素を主成分とするセ
ラミックス焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic sintered body containing silicon nitride as a main component and having excellent mechanical strength, fracture toughness, thermal shock resistance, etc.

【0002】0002

【従来の技術】Si−Al−O−Nを主構成元素とする
サイアロン系のセラミックス焼結体は、熱膨脹係数が小
さく、耐熱性、耐酸化特性、耐食性等に優れており、S
i3 N 4 系焼結体や SiC系焼結体と共に構造
用材料として使用することが試みられている。このよう
なサイアロン系焼結体は、Si3 N 4 系焼結体に
比べて高温域での強度低下が小さく、かつ耐酸化性に優
れる等の特徴を有する半面、靭性が十分でないという欠
点が存在しているため、構造用材料として使用するには
、信頼性の点で劣っていた。
[Prior Art] Sialon-based ceramic sintered bodies whose main constituent elements are Si-Al-O-N have a small coefficient of thermal expansion and are excellent in heat resistance, oxidation resistance, corrosion resistance, etc.
Attempts have been made to use it as a structural material together with i3N4-based sintered bodies and SiC-based sintered bodies. Although such sialon-based sintered bodies have characteristics such as less strength loss in high temperature ranges and excellent oxidation resistance compared to Si3N4-based sintered bodies, they have the disadvantage of insufficient toughness. Therefore, it was not reliable enough to be used as a structural material.

【0003】そこで、原料混合物中にHfの酸化物を添
加し、液相焼結を促進して焼結体密度を向上させると共
に、焼結体の破壊靭性値を高めることが試みられている
。酸化ハフニウムは、サイアロンの結晶粒中に固溶しな
いため、母相組織中に単独で粒子形態で存在し、分散相
を構成する。これによって、破壊靭性値の向上を図るこ
とができる。また、酸化ハフニウムは、窒化ケイ素系の
セラミックス焼結体を製造する際にも、焼結助剤の一部
として使用されており、窒化ケイ素系焼結体においても
同様な効果が得られている。これらにおいて、酸化ハフ
ニウムは粉末として原料混合物中に添加している。
[0003] Therefore, attempts have been made to add Hf oxide to the raw material mixture to promote liquid phase sintering to improve the density of the sintered body and to increase the fracture toughness value of the sintered body. Since hafnium oxide is not solidly dissolved in the crystal grains of Sialon, it exists alone in the form of particles in the matrix structure and constitutes a dispersed phase. This makes it possible to improve the fracture toughness value. Hafnium oxide is also used as a sintering aid when manufacturing silicon nitride-based ceramic sintered bodies, and similar effects have been obtained with silicon nitride-based sintered bodies. . In these, hafnium oxide is added as a powder to the raw material mixture.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述し
たような酸化ハフニウムを用いたサイアロン系または窒
化ケイ素系焼結体の製造方法では、酸化ハフニウムによ
る焼結体の破壊靭性値の向上等が期待できるものの、製
造ロット間による特性のばらつき、特に高温強度のばら
つきが大きく、製品特性を安定して保障することができ
ないという問題があった。
[Problem to be Solved by the Invention] However, in the method for producing a sialon-based or silicon nitride-based sintered body using hafnium oxide as described above, it is expected that the fracture toughness of the sintered body will be improved by hafnium oxide. However, there was a problem in that there were large variations in properties between production lots, particularly in high-temperature strength, and that product properties could not be stably guaranteed.

【0005】本発明は、このような課題に対処するため
になされたもので、酸化ハフニウムを用いた際に、高温
強度、破壊靭性値、耐熱衝撃性等の特性を安定に付与す
ることを可能にした、サイアロン系または窒化ケイ素系
のセラミックス焼結体の製造方法を提供することを目的
とするものである。
[0005] The present invention was made to address these problems, and it is possible to stably impart properties such as high temperature strength, fracture toughness, and thermal shock resistance when using hafnium oxide. An object of the present invention is to provide a method for manufacturing a sialon-based or silicon nitride-based ceramic sintered body.

【0006】[0006]

【課題を解決するための手段と作用】本発明における第
1のセラミックス焼結体の製造方法は、希土類元素酸化
物、窒化アルミニウムおよび酸化ハフニウムを含有する
窒化ケイ素系のセラミックス焼結体を製造するにあたり
、原料混合物中に前記酸化ハフニウムを、ハフニウムを
含む常温液状の有機化合物として添加することを特徴と
している。
[Means and effects for solving the problems] A first method for manufacturing a ceramic sintered body according to the present invention includes manufacturing a silicon nitride-based ceramic sintered body containing a rare earth element oxide, aluminum nitride, and hafnium oxide. The method is characterized in that the hafnium oxide is added to the raw material mixture as an organic compound containing hafnium that is liquid at room temperature.

【0007】また、第2のセラミックス焼結体の製造方
法は、酸化ハフニウムを含有するサイアロン系のセラミ
ックス焼結体を製造するにあたり、原料混合物中に前記
酸化ハフニウムを、ハフニウムを含む常温液状の有機化
合物として添加することを特徴としている。
[0007] In addition, in the second method for producing a ceramic sintered body, when producing a sialon-based ceramic sintered body containing hafnium oxide, the hafnium oxide is added to a room temperature liquid organic material containing hafnium in a raw material mixture. It is characterized by being added as a compound.

【0008】本発明のセラミックス焼結体の製造方法は
、窒化ケイ素系焼結体の製造方法とサイアロン系焼結体
の製造方法とに大別されるが、基本的には原料混合物中
に酸化ハフニウムを、ハフニウムを含む常温液状の有機
化合物として添加することを特徴とするものである。
The method for producing a ceramic sintered body according to the present invention is roughly divided into a method for producing a silicon nitride-based sintered body and a method for producing a sialon-based sintered body, but basically, oxidation is added to the raw material mixture. This method is characterized in that hafnium is added as an organic compound containing hafnium that is liquid at room temperature.

【0009】上記酸化ハフニウムは、焼結過程で液相を
形成し、焼結を促進して焼結体の高密度化に寄与すると
共に、焼結後は分散粒子として焼結体の機械的強度や破
壊靭性値の向上等に寄与するものである。ここで、本発
明においては酸化ハフニウムを、ハフニウムを含む常温
液状の有機化合物として添加している。これによって、
ハフニウムをより均質に原料混合物中に存在させること
が可能となるため、上記した酸化ハフニウムによる効果
を、有効かつ均一に発現させることが可能となり、製造
ロット間のばらつきを大幅に減少させることが可能とな
る。
[0009] The above hafnium oxide forms a liquid phase during the sintering process, promotes sintering, and contributes to increasing the density of the sintered body, and also improves the mechanical strength of the sintered body as dispersed particles after sintering. This contributes to improvements in fracture toughness and fracture toughness. Here, in the present invention, hafnium oxide is added as an organic compound containing hafnium that is liquid at room temperature. by this,
Since hafnium can be present more homogeneously in the raw material mixture, the effects of hafnium oxide described above can be effectively and uniformly expressed, and variations between production lots can be significantly reduced. becomes.

【0010】上記ハフニウムを含む常温液状の有機化合
物としては、例えばハフニウムテトラメトキシド、ハフ
ニウムテトラエトキシド、ハフニウムテトラブトキシド
等のハフニウムアルコキシドを使用することができる。 これらハフニウムを含む有機化合物は、セラミックス焼
結体の母相形成材料 100重量部に対し、酸化ハフニ
ウムに換算して0.05〜30重量部の範囲で添加する
ことが好ましい。ハフニウムを含む有機化合物の添加量
が酸化ハフニウムに換算して0.05重量部未満では、
緻密化向上効果があまり期待できず、30重量部を超え
ると逆に焼結性を阻害したり、比重の増大を招いてしま
う。
As the organic compound containing hafnium which is liquid at room temperature, for example, hafnium alkoxides such as hafnium tetramethoxide, hafnium tetraethoxide, and hafnium tetrabutoxide can be used. These hafnium-containing organic compounds are preferably added in an amount of 0.05 to 30 parts by weight in terms of hafnium oxide, based on 100 parts by weight of the matrix forming material of the ceramic sintered body. If the amount of the organic compound containing hafnium added is less than 0.05 parts by weight in terms of hafnium oxide,
The effect of improving densification cannot be expected to be significant, and if it exceeds 30 parts by weight, sinterability will be inhibited or the specific gravity will increase.

【0011】本発明の窒化ケイ素系焼結体の製造方法に
おいては、窒化ケイ素そのものが母相形成材料となり、
これに焼結助剤として酸化イットリウムのような希土類
元素酸化物と窒化アルミニウムとを添加混合し、原料混
合物を調整する。これら焼結助剤は、窒化ケイ素 10
0重量部に対して 1〜15重量部の範囲で添加するこ
とが好ましい。
[0011] In the method for producing a silicon nitride-based sintered body of the present invention, silicon nitride itself serves as the matrix forming material;
A rare earth element oxide such as yttrium oxide and aluminum nitride are added and mixed as sintering aids to prepare a raw material mixture. These sintering aids are silicon nitride 10
It is preferable to add in an amount of 1 to 15 parts by weight relative to 0 parts by weight.

【0012】また、サイアロン系焼結体の製造方法にお
いては、窒化ケイ素、酸化アルミニウムおよび窒化ケイ
素等を組み合わせて母相形成材料とする。ここで、本発
明により得ようとするサイアロン系焼結体の母相は、ほ
ぼサイアロン組成を満足するものであればよく、必ずし
も全てサイアロンである必要はない。すなわち、母相の
90%以上がサイアロンであれば、本発明の効果が得ら
れるため、他にガラス相等の粒界相を微量含んでいても
よい。なお、サイアロンにはβ型サイアロン組成とα型
サイアロン組成とが存在するが、本発明のサイアロン系
焼結体の母相は、実質的にはβ型サイアロンである。
[0012] Furthermore, in the method for producing a sialon-based sintered body, silicon nitride, aluminum oxide, silicon nitride, and the like are combined as a matrix forming material. Here, the matrix of the sialon-based sintered body to be obtained by the present invention may be one that substantially satisfies the sialon composition, and does not necessarily need to be entirely sialon. That is, if 90% or more of the parent phase is sialon, the effects of the present invention can be obtained, and therefore a small amount of grain boundary phase such as a glass phase may also be included. Although sialon has a β-sialon composition and an α-sialon composition, the matrix of the sialon-based sintered body of the present invention is substantially β-sialon.

【0013】本発明のセラミックス焼結体の製造方法に
おいては、まず上述したような原料混合物中に、ハフニ
ウムを含む常温液状の有機化合物を添加し、十分に混合
した後、これをプレス成形法等の公知の成形法によって
所要の形状に成形する。また、スリップキャスト成形を
用いることも可能である。この後、上記成形体を不活性
ガス雰囲気中にて、1700℃〜1900℃程度の温度
で焼結させることにより、目的とするサイアロン系また
は窒化ケイ素系のセラミックス焼結体が得られる。本発
明の製造方法によれば、非加圧焼結によってもサイアロ
ン系または窒化ケイ素系焼結体の緻密化を図ることがで
き、かつ破壊靭性値の向上を図ることが可能であるが、
その他の焼成法、例えば雰囲気加圧焼結法、ホットプレ
ス法、熱間静水圧焼結法(HIP)等の適用を妨げるも
のではない。
In the method for producing a ceramic sintered body of the present invention, first, a room temperature liquid organic compound containing hafnium is added to the above-mentioned raw material mixture, and after thorough mixing, this is subjected to press molding or the like. It is molded into the desired shape using a known molding method. It is also possible to use slip cast molding. Thereafter, the molded body is sintered at a temperature of about 1700° C. to 1900° C. in an inert gas atmosphere to obtain the desired sialon-based or silicon nitride-based ceramic sintered body. According to the manufacturing method of the present invention, it is possible to densify the sialon-based or silicon nitride-based sintered body by non-pressure sintering, and it is also possible to improve the fracture toughness value.
This does not preclude the application of other firing methods, such as atmospheric pressure sintering, hot pressing, and hot isostatic pressure sintering (HIP).

【0014】[0014]

【実施例】以下、本発明を実施例によって説明する。[Examples] The present invention will be explained below with reference to Examples.

【0015】実施例1 まず、平均粒径 0.7μm のSi3 N 4 粉末
に対してAl2 0 3 粉末を10重量%添加し、さ
らにこれらの混合物 100重量部に対して Hf(O
C3 H 7 )4 を 4重量部添加し、これらをエ
タノールを分散媒として24時間混合した後、乾燥して
原料混合粉末を調整した。次に、上記原料混合粉末 1
00重量部にバインダを約 5重量部添加して造粒した
後、 1ton/cm2 の成形圧で長さ50mm×幅
50mm×厚さ 5mmの板状成形体を作製した。
Example 1 First, 10% by weight of Al203 powder was added to Si3N4 powder with an average particle size of 0.7 μm, and Hf(O) was added to 100 parts by weight of the mixture.
4 parts by weight of C3H7)4 were added, and these were mixed for 24 hours using ethanol as a dispersion medium, and then dried to prepare a raw material mixed powder. Next, the above raw material mixed powder 1
After adding about 5 parts by weight of a binder to 00 parts by weight and granulating the mixture, a plate-shaped molded body having a length of 50 mm, a width of 50 mm, and a thickness of 5 mm was produced under a molding pressure of 1 ton/cm2.

【0016】この後、上記成形体に対して窒素ガス雰囲
気中で脱脂を施した後、常圧の窒素ガス雰囲気中におい
て1850℃× 2時間の条件で焼結を行い、サイアロ
ンを母相とするセラミックス焼結体を、 100個作製
した。
[0016] After that, the above molded body is degreased in a nitrogen gas atmosphere, and then sintered at 1850°C for 2 hours in a nitrogen gas atmosphere at normal pressure to make Sialon the matrix. 100 ceramic sintered bodies were produced.

【0017】また、本発明との比較として、ハフニウム
アルコキシドに代えて酸化ハフニウム粉末を用いる以外
は、上記実施例と同一条件でサイアロン系焼結体を 1
00個作製した。
In addition, as a comparison with the present invention, a sialon-based sintered body was prepared under the same conditions as in the above example except that hafnium oxide powder was used instead of hafnium alkoxide.
00 pieces were produced.

【0018】このようにして得た実施例および比較例に
よる各サイアロン系焼結体の焼結密度と、 3点曲げ強
度試験による高温強度およびマイクロインデンテ―ショ
ン法による破壊靭性値KICとをそれぞれ測定した。そ
れらの結果を表1に示す。
The sintered densities of the sialon-based sintered bodies obtained in the Examples and Comparative Examples thus obtained, the high-temperature strength determined by the three-point bending strength test, and the fracture toughness value KIC determined by the microindentation method were determined, respectively. It was measured. The results are shown in Table 1.

【0019】[0019]

【表1】[Table 1]

【0020】表1の結果から明らかなように、酸化ハフ
ニウムの出発原料としてハフニウムアルコキシドを用い
ることにより、各特性の向上を図ることができると共に
、それらのバラツキを大幅に低下させることができるこ
とが分る。
[0020] As is clear from the results in Table 1, by using hafnium alkoxide as a starting material for hafnium oxide, it is possible to improve each property and to significantly reduce their dispersion. Ru.

【0021】実施例2 まず、平均粒径 0.7μm のSi3 N 4 粉末
100重量部に対して、 Y2 0 3 を粉末5重量
部、 AlN粉末を 5重量部、 Hf(OC3 H 
7 )4 を 2重量部添加し、これらをエタノールを
分散媒として24時間混合した後、乾燥して原料混合粉
末を調整した。次いで、上記原料混合粉末 100重量
部にバインダを約 5重量部添加して造粒した後、 1
ton/cm2 の成形圧で長さ50mm×幅50mm
×厚さ 5mmの板状成形体を作製した。
Example 2 First, to 100 parts by weight of Si3N4 powder with an average particle size of 0.7 μm, 5 parts by weight of Y203 powder, 5 parts by weight of AlN powder, and Hf(OC3H
7) 2 parts by weight of 4 were added, mixed for 24 hours using ethanol as a dispersion medium, and then dried to prepare a raw material mixed powder. Next, about 5 parts by weight of a binder was added to 100 parts by weight of the raw material mixed powder and granulated, and then 1
Length 50mm x width 50mm with molding pressure of ton/cm2
A plate-shaped molded body having a thickness of 5 mm was produced.

【0022】この後、上記成形体に対して窒素ガス雰囲
気中で脱脂を施した後、常圧の窒素ガス雰囲気中におい
て1850℃× 2時間の条件で焼結を行い、窒化ケイ
素を母相とするセラミックス焼結体を、 100個作製
した。
[0022] After that, the above-mentioned compact was degreased in a nitrogen gas atmosphere, and then sintered at 1850°C for 2 hours in a nitrogen gas atmosphere at normal pressure, thereby converting silicon nitride into a matrix. 100 ceramic sintered bodies were manufactured.

【0023】また、本発明との比較として、ハフニウム
アルコキシドに代えて酸化ハフニウム粉末を用いる以外
は、上記実施例と同一条件でサイアロン系焼結体を 1
00個作製した。
In addition, as a comparison with the present invention, a sialon-based sintered body was prepared under the same conditions as in the above example except that hafnium oxide powder was used instead of hafnium alkoxide.
00 pieces were produced.

【0024】このようにして得た実施例および比較例に
よる各窒化ケイ素系焼結体の焼結密度と、 3点曲げ強
度試験による高温強度およびマイクロインデンテ―ショ
ン法による破壊靭性値KICとをそれぞれ測定した。そ
れらの結果を表2に示す。
[0024] The sintered density of each silicon nitride-based sintered body according to the Examples and Comparative Examples thus obtained, the high-temperature strength by the three-point bending strength test, and the fracture toughness value KIC by the microindentation method were calculated. Each was measured. The results are shown in Table 2.

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【発明の効果】以上説明したように、本発明のセラミッ
クス焼結体の製造方法によれば、高温強度や破壊靭性値
の向上を図ることができると共に、これら特性のばらつ
きを抑制することができ、よって再現性よく優れた特性
を有するサイアロン系焼結体や窒化ケイ素系焼結体を提
供することが可能となる。
[Effects of the Invention] As explained above, according to the method for producing a ceramic sintered body of the present invention, it is possible to improve high-temperature strength and fracture toughness values, and to suppress variations in these properties. Therefore, it is possible to provide a sialon-based sintered body or a silicon nitride-based sintered body having excellent properties with good reproducibility.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  希土類元素酸化物、窒化アルミニウム
および酸化ハフニウムを含有する窒化ケイ素系のセラミ
ックス焼結体を製造するにあたり、原料混合物中に前記
酸化ハフニウムを、ハフニウムを含む常温液状の有機化
合物として添加することを特徴とするセラミックス焼結
体の製造方法。
1. In producing a silicon nitride-based ceramic sintered body containing a rare earth element oxide, aluminum nitride, and hafnium oxide, the hafnium oxide is added to a raw material mixture as a room-temperature liquid organic compound containing hafnium. A method for producing a ceramic sintered body, characterized by:
【請求項2】  酸化ハフニウムを含有するサイアロン
系のセラミックス焼結体を製造するにあたり、原料混合
物中に前記酸化ハフニウムを、ハフニウムを含む常温液
状の有機化合物として添加することを特徴とするセラミ
ックス焼結体の製造方法。
2. Ceramic sintering, characterized in that in producing a sialon-based ceramic sintered body containing hafnium oxide, the hafnium oxide is added to a raw material mixture as a room temperature liquid organic compound containing hafnium. How the body is manufactured.
【請求項3】  請求項1または請求項2記載のセラミ
ックス焼結体の製造方法において、前記ハフニウムを含
む有機化合物は、ハフニウムアルコキシドであることを
特徴とするセラミックス焼結体の製造方法。
3. The method for producing a ceramic sintered body according to claim 1 or 2, wherein the hafnium-containing organic compound is a hafnium alkoxide.
JP3137549A 1990-09-25 1991-06-10 Production of ceramic sintered body Pending JPH04362066A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3137549A JPH04362066A (en) 1991-06-10 1991-06-10 Production of ceramic sintered body
US07/764,302 US5238885A (en) 1990-09-25 1991-09-24 Sialon type sintered bodies and method of producing the same
DE69107760T DE69107760T2 (en) 1990-09-25 1991-09-25 Sialon type sintered body.
EP91308759A EP0479485B1 (en) 1990-09-25 1991-09-25 Sialon type sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137549A JPH04362066A (en) 1991-06-10 1991-06-10 Production of ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH04362066A true JPH04362066A (en) 1992-12-15

Family

ID=15201302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137549A Pending JPH04362066A (en) 1990-09-25 1991-06-10 Production of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH04362066A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251578A (en) * 1985-04-30 1986-11-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS62162673A (en) * 1986-01-09 1987-07-18 三菱マテリアル株式会社 Manufacture of sialon base ceramic tool for cutting cast iron
JPS6416791A (en) * 1987-06-19 1989-01-20 Solvay Guanidine related compound containing substituted tetraphenylborate ion and its production
JPS6469569A (en) * 1987-09-11 1989-03-15 Mitsubishi Heavy Ind Ltd Production of sintered material of silicon nitride
JPH01126276A (en) * 1987-11-11 1989-05-18 Inax Corp Production of ceramic sintered body
JPH02248365A (en) * 1989-02-21 1990-10-04 Hoechst Ag Silicon nitride ceramic composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251578A (en) * 1985-04-30 1986-11-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS62162673A (en) * 1986-01-09 1987-07-18 三菱マテリアル株式会社 Manufacture of sialon base ceramic tool for cutting cast iron
JPS6416791A (en) * 1987-06-19 1989-01-20 Solvay Guanidine related compound containing substituted tetraphenylborate ion and its production
JPS6469569A (en) * 1987-09-11 1989-03-15 Mitsubishi Heavy Ind Ltd Production of sintered material of silicon nitride
JPH01126276A (en) * 1987-11-11 1989-05-18 Inax Corp Production of ceramic sintered body
JPH02248365A (en) * 1989-02-21 1990-10-04 Hoechst Ag Silicon nitride ceramic composition

Similar Documents

Publication Publication Date Title
KR101470322B1 (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
JP4348429B2 (en) Porous silicon nitride and method for producing the same
KR102565344B1 (en) Aluminium nitride ceramics composition and manufacturing method thereof
JPH04362066A (en) Production of ceramic sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3145519B2 (en) Aluminum nitride sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
KR102216429B1 (en) Cordierite based ceramic composition for use of ceramic heater
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JPH06263544A (en) Sialon-based composite sintered compact and its production
JP2980342B2 (en) Ceramic sintered body
JPH04132668A (en) Ceramic sintered compact and production thereof
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH08198664A (en) Alumina-base sintered body and its production
JP2541150B2 (en) Aluminum nitride sintered body
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH05339061A (en) Silicon nitride sintered body and its production
JPH04951B2 (en)
JP2536448B2 (en) Aluminum nitride sintered body
JPH05117041A (en) Production of sialon-based sintered compact
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2001139379A (en) Method of producing highly thermal conductive aluminum nitride sintered compact
JPH06219852A (en) Particle dispersed sialon sintered compact

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950131