JPH04132668A - Ceramic sintered compact and production thereof - Google Patents

Ceramic sintered compact and production thereof

Info

Publication number
JPH04132668A
JPH04132668A JP2254656A JP25465690A JPH04132668A JP H04132668 A JPH04132668 A JP H04132668A JP 2254656 A JP2254656 A JP 2254656A JP 25465690 A JP25465690 A JP 25465690A JP H04132668 A JPH04132668 A JP H04132668A
Authority
JP
Japan
Prior art keywords
weight
parts
ceramic sintered
powder
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2254656A
Other languages
Japanese (ja)
Other versions
JPH0627038B2 (en
Inventor
Masahiro Asayama
雅弘 浅山
Michiyasu Komatsu
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2254656A priority Critical patent/JPH0627038B2/en
Priority to US07/764,302 priority patent/US5238885A/en
Priority to DE69107760T priority patent/DE69107760T2/en
Priority to EP91308759A priority patent/EP0479485B1/en
Publication of JPH04132668A publication Critical patent/JPH04132668A/en
Publication of JPH0627038B2 publication Critical patent/JPH0627038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a ceramic sintered compact excellent in toughness value even by unpressured sintering by providing a structure in which a specific amount of hafnium oxide and silicon carbide are dispersed in a sialon-based sintered compact. CONSTITUTION:A ceramic sintered compact is obtained by dispersing and containing hafnium oxide in an amount within the range of 1-60wt.% based on 100 pts.wt. parent phase of a ceramic sintered compact having the main constituent phase substantially satisfying the sialon composition and silicon carbide in an amount within the range of 5-30 pts.wt. based on 100 pts.wt. aforementioned parent phase therein.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、靭性値を向上させたサイアロンを主成分とす
るセラミックス焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a ceramic sintered body mainly composed of sialon and having an improved toughness value.

(従来の技術) St−AI−0−Nを主構成元素とするサイアロン系焼
結体は、熱膨脹係数が小さく、耐熱性、耐酸化特性、耐
食性等に優れており、513N4系焼結体やSiC系焼
結体と共に構造用材料として使用することが試みられて
いる。
(Prior art) Sialon-based sintered bodies whose main constituent element is St-AI-0-N have a small coefficient of thermal expansion and are excellent in heat resistance, oxidation resistance, corrosion resistance, etc., and are similar to 513N4-based sintered bodies and Attempts have been made to use it as a structural material together with SiC-based sintered bodies.

このようなサイアロン系焼結体は、5j3N4系焼結体
に比べて高温域での強度低下が小さく、かつ耐酸化性に
優れる等の特徴を有する半面、靭性が十分てないという
欠点が存在しているため、構進用材料として使用するに
は、信頼性の点で劣っていた。
Although such sialon-based sintered bodies have characteristics such as less strength loss in high temperature ranges and excellent oxidation resistance compared to 5J3N4-based sintered bodies, they have the disadvantage that they do not have sufficient toughness. Therefore, it was too unreliable to be used as a construction material.

そこで、サイアロン系焼結体中にサイアロンと固溶しな
い粒子、例えばSiC等の粒子を分散させ、分散粒子に
よる複合効果によって、靭性値の向上を図ることが試み
られている。
Therefore, attempts have been made to disperse particles that do not form a solid solution with sialon, such as particles of SiC, in the sialon-based sintered body, and to improve the toughness value through the combined effect of the dispersed particles.

(発明が解決しようとする課題) しかしながら、上述したようにサイアロン系焼結体中に
SiC等の粒子を分散含有させるために、サイアロン組
成を満足する粉末に対してSiC等の異種粒子を添加す
ると、著しく焼結性が低下してしまうという難点があっ
た。
(Problem to be Solved by the Invention) However, as described above, in order to disperse and contain particles such as SiC in a sialon-based sintered body, when dissimilar particles such as SiC are added to powder that satisfies the sialon composition. However, there was a problem in that the sinterability was significantly reduced.

このため、非加圧焼結条件下で緻密化焼結させるために
は、サイアロン粉末100重量部に対して、分散粒子と
なるSiC等を高々 5重量部程度しか添加することが
できず、十分な靭性の向上効果が得られていなかった。
Therefore, in order to perform densification sintering under non-pressure sintering conditions, it is necessary to add only about 5 parts by weight of SiC, etc., which will become dispersed particles, to 100 parts by weight of SiAlON powder, which is sufficient. No significant toughness improvement effect was obtained.

一方、ホットプレス法を利用することによって、サイア
ロン粉末100重量部に対してSIC等を50重二部程
度まで添加することが可能となるものの、ホットプレス
法では形状が単純形状に限定され、また製造コストが高
い等、量産化には適していないという問題かあると共に
、破壊靭性値等の機械的強度が十分でないという問題が
あった。また、HIP等も同様である。
On the other hand, by using the hot press method, it is possible to add up to 50 parts by weight of SIC etc. to 100 parts by weight of Sialon powder, but the hot press method is limited to simple shapes; There are problems such as high manufacturing cost, which makes it unsuitable for mass production, and there is also a problem that mechanical strength such as fracture toughness is insufficient. The same applies to HIP and the like.

そこで、得られる焼結体形状の自由度が高く、また製造
コストも安い、量産化に適した非加圧焼結によって、破
壊靭性値に優れたサイアロン系焼結体を得ることが強く
望まれている。
Therefore, it is strongly desired to obtain a sialon-based sintered body with excellent fracture toughness by non-pressure sintering, which has a high degree of freedom in the shape of the sintered body and is suitable for mass production, and is suitable for mass production. ing.

本発明は、このような課題に対処するためになされたも
ので、緻密質で靭性値に優れ、かつ量産化に適した非加
圧焼結によっても得ることが可能なサイアロンを母相と
するセラミックス焼結体およびその製造方法を提供する
ことを目的とするものである。
The present invention was made to address these issues, and uses SiAlON as a matrix, which is dense, has excellent toughness, and can be obtained by non-pressure sintering, which is suitable for mass production. The object of the present invention is to provide a ceramic sintered body and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段と作用) すなわち本発明のセラミックス焼結体は、主構成相が実
質的にサイアロン組成を満足するセラミックス焼結体を
母相とし、この母相中に該母相100重量部に対して1
〜60重量部の範囲の酸化/%フニウムおよび5〜30
重量部の範囲の炭化ケイ素が分散含有されていることを
特徴としている。さらに、本発明のセラミックス焼結体
は、酸化アルミニウムを2,5〜20重量%の範囲で含
有する窒化ケイ素と、この窒化ケイ素100重量部に対
して1〜60重量部の範囲の酸化ハフニウムおよび5〜
30重量部の範囲の炭化ケイ素との混合物を、成形、焼
結してなることを特徴としている。
[Structure of the Invention] (Means and Effects for Solving the Problems) That is, the ceramic sintered body of the present invention has a ceramic sintered body whose main constituent phase substantially satisfies the SiAlON composition as a matrix, and this matrix 1 per 100 parts by weight of the matrix in
~60 parts by weight of oxide/% funium and 5 to 30 parts by weight
It is characterized by containing dispersed silicon carbide in the range of parts by weight. Furthermore, the ceramic sintered body of the present invention contains silicon nitride containing aluminum oxide in a range of 2.5 to 20% by weight, and hafnium oxide in a range of 1 to 60 parts by weight per 100 parts by weight of the silicon nitride. 5~
It is characterized by being formed by molding and sintering a mixture with 30 parts by weight of silicon carbide.

また、本発明のセラミックス焼結体の製造方法は、酸化
アルミニウム粉末を2.5〜20重量%の範囲で含有す
る窒化ケイ素粉末と、この窒化ケイ素粉末100重量部
に対して1〜60重量部の範囲の酸化ハフニウム粉末お
よび5〜30重量部の範囲の炭化ケイ素粉末とを混合す
る工程と、前記混合粉末を所望の形状に成形し、得られ
る成形体を非加圧雰囲気下で焼結する工程とを有するこ
とを特徴としている。
In addition, the method for producing a ceramic sintered body of the present invention includes silicon nitride powder containing aluminum oxide powder in an amount of 2.5 to 20% by weight, and 1 to 60 parts by weight based on 100 parts by weight of this silicon nitride powder. A step of mixing hafnium oxide powder in the range of 5 to 30 parts by weight of silicon carbide powder, molding the mixed powder into a desired shape, and sintering the resulting molded body in a non-pressurized atmosphere. It is characterized by having a process.

本発明のセラミックス焼結体の母相は、主構成相がサイ
アロン組成を満足するものであればよく、必ずしも全て
サイアロンである必要はない。すなわち、母相の90重
量%以上がサイアロンであれば、本発明の効果が得られ
るため、他にガラス相等の粒界相を含んでいてもよい。
The parent phase of the ceramic sintered body of the present invention may be one in which the main constituent phase satisfies the sialon composition, and does not necessarily need to be entirely sialon. That is, if 90% by weight or more of the parent phase is sialon, the effects of the present invention can be obtained, and therefore a grain boundary phase such as a glass phase may also be included.

したがって、母相を得るための原料粉末は、必ずしもサ
イアロン組成を厳密に満足させなければならないもので
はない。
Therefore, the raw material powder for obtaining the matrix does not necessarily have to strictly satisfy the sialon composition.

なお、サイアロンにはβ型サイアロン組成とα型サイア
ロン組成とが存在するが、本発明のセラミックス焼結体
の母相は、実質的にはβ型サイアロンである。ただし、
α型サイアロンを用いることも可能である。
Although sialon has a β-sialon composition and an α-sialon composition, the matrix of the ceramic sintered body of the present invention is substantially β-sialon. however,
It is also possible to use α-type sialon.

また、本発明のセラミックス焼結体は、前述したように
上記母相中に酸化ハフニウムおよび炭化ケイ素が分散含
有されているものである。これら酸化ハフニウムおよび
炭化ケイ素は、サイアロンの結晶粒中に固溶しないため
、母相組織中に粒子形態で存在し、分散相を構成するも
のである。
Furthermore, as described above, the ceramic sintered body of the present invention contains hafnium oxide and silicon carbide dispersed in the parent phase. These hafnium oxide and silicon carbide do not dissolve solidly in the crystal grains of Sialon, so they exist in the form of particles in the matrix structure and constitute a dispersed phase.

上記酸化ハフニウムは、炭化ケイ素を含みサイアロン組
成を実質的に満足するセラミックス粉末の焼結助剤とし
ての機能を有すると共に、焼結後は分散粒子として焼結
体の機械的強度の向上等に寄与するものである。すなわ
ち、炭化ケイ素を添加した系においても、酸化ハフニウ
ムの存在によって緻密化焼結が容易となり、多量の炭化
ケイ素の添加が可能となる。酸化ハフニウムの添加量は
、上記した母相100重二二部対して1〜60重量部の
範囲、好ましくは5〜50重量部の範囲、さらに好まし
くは10〜30重量部の範囲とする。酸化ハフニウムの
添加量が1重量部未満では、十分に緻密化を図ることが
できず、60重量部を超えると、逆に焼結性を阻害した
り、比重の増大を招いてしまう。
The above hafnium oxide has a function as a sintering aid for ceramic powder that contains silicon carbide and substantially satisfies the SiAlON composition, and also contributes to improving the mechanical strength of the sintered body as dispersed particles after sintering. It is something to do. That is, even in a system to which silicon carbide is added, the presence of hafnium oxide facilitates densification and sintering, making it possible to add a large amount of silicon carbide. The amount of hafnium oxide added is in the range of 1 to 60 parts by weight, preferably in the range of 5 to 50 parts by weight, and more preferably in the range of 10 to 30 parts by weight, based on 100 parts by weight of the above-mentioned matrix. If the amount of hafnium oxide added is less than 1 part by weight, sufficient densification cannot be achieved, and if it exceeds 60 parts by weight, sinterability may be inhibited or the specific gravity may increase.

また炭化ケイ素は、上記サイアロン組成を実質的に満足
する母相の靭性向上を図る成分であり、上記酸化ハフニ
ウムとの併用によって、母相100重量部に対して5〜
30重量部と多量添加することが可能となる。炭化ケイ
素による靭性向上効果は、5i1L部程度から顕著とな
るが、30重量部を超えると酸化ハフニウムと併用して
も十分に緻密化することが困難となる。
In addition, silicon carbide is a component that aims to improve the toughness of the matrix that substantially satisfies the above-mentioned sialon composition, and when used in combination with the above-mentioned hafnium oxide, silicon carbide can be
It becomes possible to add as much as 30 parts by weight. The toughness-improving effect of silicon carbide becomes noticeable from about 5i1L part, but if it exceeds 30 parts by weight, it becomes difficult to achieve sufficient densification even when used in combination with hafnium oxide.

本発明のサイアロンを母相とするセラミックス焼結体は
、例えば以下のようにして製造される。
The ceramic sintered body of the present invention having sialon as a parent phase is manufactured, for example, as follows.

まず、Si3 N 4粉末に2.5〜20重量%程度の
Al203粉末を加え、おおよそβ型サイアロン組成を
満足する母相用粉末を調整する。A1□03は9i、 
N 4中に固溶してサイアロンを形成するが、その添加
量が20重量%を超えると強度が低下し、かつ粒界層等
の副次的に形成される第2相の量が増大し、また2、5
重量%未満では緻密化が困難となる。上記AI203の
配合量としては、10重二部が最適である。
First, approximately 2.5 to 20% by weight of Al203 powder is added to Si3N4 powder to prepare a matrix powder that approximately satisfies the β-type sialon composition. A1□03 is 9i,
It dissolves in N4 to form sialon, but if the amount added exceeds 20% by weight, the strength decreases and the amount of secondary phases such as grain boundary layers increases. , also 2, 5
If it is less than % by weight, densification becomes difficult. The optimal blending amount of AI203 is 10 parts by weight.

ここで、母相用粉末としては上記粉末に限らず、Si3
N 4  Al2 03  AIN系、Si3N 4 
  AlN5in2系等や、市販の合成β型サイアロン
粉末のみを用いることも可能であるが、上記Si3N 
4AI203系によれば、結晶粒の微細化等の効果が得
られるため、合成β型サイアロン粉末や通常のβ型サイ
アロン組成を満足する混合粉末より、特性の改善効果が
高い。また、β型すイアロン相の形成をA1□0.のみ
によって行っているため、水を分散媒として使用するこ
とも可能である。
Here, the matrix powder is not limited to the above-mentioned powder, but also Si3
N 4 Al2 03 AIN system, Si3N 4
Although it is possible to use only AlN5in2 type powder or commercially available synthetic β-type sialon powder, the above-mentioned Si3N
According to the 4AI203 series, since effects such as grain refinement can be obtained, the effect of improving properties is higher than that of a synthetic β-sialon powder or a mixed powder that satisfies the usual β-sialon composition. In addition, the formation of the β-type iron phase was suppressed by A1□0. It is also possible to use water as a dispersion medium.

次いで、上記母相用粉末に、Hf’02およびSiCを
所定量添加し、十分に混合して本発明のセラミックス焼
結体の原料粉末を調整する。
Next, a predetermined amount of Hf'02 and SiC are added to the above matrix powder and thoroughly mixed to prepare a raw material powder for the ceramic sintered body of the present invention.

ここで、11fO□の出発原料としては、平均粒径が2
μm以下、好ましくは1μm以下の微粉末が適している
。また、SiCの出発原料としては、粒子形状のものや
ウィスカーのような繊維形状のものを使用することがで
きる。ただし、粒子形状のSjCを使用する場合、あま
り粒子が大きいと逆に欠陥となり、機械的強度が低下す
る恐れがあるため、平均粒径が50μ■以下で最大粒径
が100μm以下のものを使用することが好ましい。
Here, the starting material of 11fO□ has an average particle size of 2
Fine powder with a particle size of 1 μm or less, preferably 1 μm or less, is suitable. Further, as the starting material for SiC, a particle-shaped material or a fiber-shaped material such as a whisker can be used. However, when using particle-shaped SjC, if the particles are too large, they may cause defects and reduce mechanical strength, so use particles with an average particle size of 50 μm or less and a maximum particle size of 100 μm or less. It is preferable to do so.

次に、上記セラミックス焼結体の原料粉末をプレス成形
法等の公知の成形法によって所要の形状に成形する。こ
の後、上記成形体を不活性ガスの非加圧雰囲気中にて、
1700℃〜1900℃程度の温度で焼結させることに
より、本発明のセラミックス焼結体が得られる。
Next, the raw material powder for the ceramic sintered body is molded into a desired shape by a known molding method such as a press molding method. After this, the above molded body is placed in a non-pressurized atmosphere of inert gas,
The ceramic sintered body of the present invention can be obtained by sintering at a temperature of about 1700°C to 1900°C.

本発明のセラミックス焼結体は、上記非加圧焼結によっ
ても緻密化が達成され、かつ破壊靭性値の向上が図れる
。ただし、その他の焼成法例えば雰囲気加圧焼結法、ホ
ットプレス法、熱間静水圧焼結法(HI P)等の適用
を妨げるものではない。
The ceramic sintered body of the present invention can be densified by the above-mentioned non-pressure sintering, and the fracture toughness value can be improved. However, this does not preclude the application of other firing methods such as atmosphere pressure sintering method, hot press method, hot isostatic pressure sintering method (HIP), etc.

(実施例) 以下、本発明を実施例によって説明する。(Example) Hereinafter, the present invention will be explained by examples.

実施例1〜12 まず、平均粒径0.7μmのSi3N4粉末と平均粒径
0.9μmのAl2O3粉末とを用い、第1表に示す各
配合比で複数の母相用粉末を調整した。
Examples 1 to 12 First, a plurality of matrix powders were prepared using Si3N4 powder with an average particle size of 0.7 μm and Al2O3 powder with an average particle size of 0.9 μm at each blending ratio shown in Table 1.

次いで、上記各母相用粉末loo重量部に対して、平均
粒径0.9μmの1lro、粉末と平均粒径0.5μm
のSiC粉末もしくはアスペクト比が1:2oのSiC
ウィスカーを第1表に示す組成比(重量部)でそれぞれ
添加し、これらをエタノールを分散媒として、それぞれ
ボールミルで48時間置屋した後に乾燥させて、それぞ
れセラミックス焼結体用原料粉末とした。
Next, for each part by weight of the above powder for matrix, 1 lro with an average particle size of 0.9 μm, powder and an average particle size of 0.5 μm
SiC powder or SiC with an aspect ratio of 1:2o
Whiskers were added in the composition ratios (parts by weight) shown in Table 1, and each was placed in a ball mill for 48 hours using ethanol as a dispersion medium, and then dried to obtain raw material powder for ceramic sintered bodies.

次に、上記各焼結体用原料粉末100重量部にバインダ
約5重量部を添加し、約1000kg/cm2の成形圧
て長さ50mmX幅50mm X厚さ5ml11の板状
成形体をそれぞれ作製した。この後、これら各成形体に
対して窒素ガス雰囲気中で脱脂を施した後、常圧の窒素
ガス雰囲気中において1850℃× 2時間の条件で焼
結を行い、サイアロンを母相とするセラミックス焼結体
を作製した。
Next, approximately 5 parts by weight of a binder was added to 100 parts by weight of the raw material powder for each of the above sintered bodies, and a molded plate having a length of 50 mm, a width of 50 mm, and a thickness of 5 ml was produced using a molding pressure of approximately 1000 kg/cm2. . After that, each of these molded bodies was degreased in a nitrogen gas atmosphere, and then sintered at 1850°C for 2 hours in a nitrogen gas atmosphere at normal pressure to form a ceramic sintered body with Sialon as the matrix. A concretion was produced.

このようにして得た各セラミックス焼結体の焼結密度と
マイクロインデンテーション法による破壊靭性値KIC
とをそれぞれ測定した。その結果を併せて第1表に示す
Sintered density of each ceramic sintered body thus obtained and fracture toughness value KIC determined by microindentation method
and were measured respectively. The results are also shown in Table 1.

なお、表中の比較例1は本発明との比較のために掲げた
ものであり、上記実施例における)Lf02粉末の使用
量を本発明の範囲外としたものである。
Comparative Example 1 in the table is provided for comparison with the present invention, and the amount of Lf02 powder used in the above example was outside the scope of the present invention.

また、比較例2は、上記実施例においてlII’02を
使用せずに原料粉末を調整し、かつ窒素ガス雰囲気中に
おいて、1850℃× 1時間の条件下でホットプレス
焼結を行ったものである。
In Comparative Example 2, the raw material powder was prepared without using III'02 in the above example, and hot press sintering was performed at 1850°C for 1 hour in a nitrogen gas atmosphere. be.

(以下余白) [発明の効果〕 以上の実施例からも明らかなように、本発明のサイアロ
ンを母相とするセラミックス焼結体は、酸化ハフニウム
の添加によって、炭化ケイ素の添加量を増大させた上で
、非加圧焼結によっても緻密化焼結ができる。さらに、
酸化ハフニウムを添加せずホットプレスにより緻密化し
た焼結体と比較しても、優れた破壊靭性値を有している
。よって、破壊靭性値に優れ、信頼性の高いサイアロン
系焼結体を、量産性に優れた非加圧焼結によって得るこ
とが可能となる。
(The following is a blank space) [Effect of the invention] As is clear from the above examples, the ceramic sintered body of the present invention having sialon as a matrix has an increased amount of silicon carbide by adding hafnium oxide. Densification sintering can also be achieved by non-pressure sintering. moreover,
Even when compared with a sintered body densified by hot pressing without adding hafnium oxide, it has an excellent fracture toughness value. Therefore, it becomes possible to obtain a highly reliable sialon-based sintered body with excellent fracture toughness by non-pressure sintering, which is excellent in mass production.

出願人      株式会社 東芝Applicant: Toshiba Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)主構成相が実質的にサイアロン組成を満足するセ
ラミックス焼結体を母相とし、この母相中に該母相10
0重量部に対して1〜60重量部の範囲の酸化ハフニウ
ムおよび5〜30重量部の範囲の炭化ケイ素が分散含有
されていることを特徴とするセラミックス焼結体。
(1) A ceramic sintered body whose main constituent phase substantially satisfies the SiAlON composition is used as a matrix, and the matrix contains 10% of the matrix.
A ceramic sintered body characterized in that hafnium oxide in the range of 1 to 60 parts by weight and silicon carbide in the range of 5 to 30 parts by weight are dispersed and contained relative to 0 parts by weight.
(2)酸化アルミニウムを2.5〜20重量%の範囲で
含有する窒化ケイ素と、この窒化ケイ素100重量部に
対して1〜60重量部の範囲の酸化ハフニウムおよび5
〜30重量部の範囲の炭化ケイ素との混合物を、成形、
焼結してなることを特徴とするセラミックス焼結体。
(2) silicon nitride containing aluminum oxide in a range of 2.5 to 20% by weight, and hafnium oxide in a range of 1 to 60 parts by weight per 100 parts by weight of this silicon nitride;
The mixture with silicon carbide in the range of ~30 parts by weight is molded,
A ceramic sintered body characterized by being made by sintering.
(3)酸化アルミニウム粉末を2.5〜20重量%の範
囲で含有する窒化ケイ素粉末と、この窒化ケイ素粉末1
00重量部に対して1〜60重量部の範囲の酸化ハフニ
ウム粉末および5〜30重量部の範囲の炭化ケイ素粉末
とを混合する工程と、 前記混合粉末を所望の形状に成形し、得られた成形体を
非加圧雰囲気下で焼結する工程とを有することを特徴と
するセラミックス焼結体の製造方法。
(3) Silicon nitride powder containing aluminum oxide powder in a range of 2.5 to 20% by weight, and this silicon nitride powder 1
00 parts by weight of hafnium oxide powder in the range of 1 to 60 parts by weight and silicon carbide powder in the range of 5 to 30 parts by weight; 1. A method for producing a ceramic sintered body, comprising the step of sintering the molded body in a non-pressurized atmosphere.
JP2254656A 1990-09-25 1990-09-25 Ceramics sintered body and manufacturing method thereof Expired - Lifetime JPH0627038B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2254656A JPH0627038B2 (en) 1990-09-25 1990-09-25 Ceramics sintered body and manufacturing method thereof
US07/764,302 US5238885A (en) 1990-09-25 1991-09-24 Sialon type sintered bodies and method of producing the same
DE69107760T DE69107760T2 (en) 1990-09-25 1991-09-25 Sialon type sintered body.
EP91308759A EP0479485B1 (en) 1990-09-25 1991-09-25 Sialon type sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254656A JPH0627038B2 (en) 1990-09-25 1990-09-25 Ceramics sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04132668A true JPH04132668A (en) 1992-05-06
JPH0627038B2 JPH0627038B2 (en) 1994-04-13

Family

ID=17268041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254656A Expired - Lifetime JPH0627038B2 (en) 1990-09-25 1990-09-25 Ceramics sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0627038B2 (en)

Also Published As

Publication number Publication date
JPH0627038B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JP3100871B2 (en) Aluminum nitride sintered body
JPS638071B2 (en)
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPS6077174A (en) Manufacture of silicon nitride sintered body
US5302329A (en) Process for producing β-sialon based sintered bodies
JPH04132668A (en) Ceramic sintered compact and production thereof
JP2980342B2 (en) Ceramic sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2508511B2 (en) Alumina composite
JPS60246266A (en) Silicon carbide base normal-temperature sintered body
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JPH04362066A (en) Production of ceramic sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPS6344713B2 (en)
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH05339061A (en) Silicon nitride sintered body and its production
JP2001322874A (en) Aluminum nitride sintered body and method for manufacturing the same
JPH05330916A (en) Heat-resistant mechanical part for gas turbine
JPS5935867B2 (en) Manufacturing method of silicon nitride sintered body
JPH09157031A (en) Silicon nitride ceramic and its production
JPH05117041A (en) Production of sialon-based sintered compact
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material