JPH0237764A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPH0237764A
JPH0237764A JP63188717A JP18871788A JPH0237764A JP H0237764 A JPH0237764 A JP H0237764A JP 63188717 A JP63188717 A JP 63188717A JP 18871788 A JP18871788 A JP 18871788A JP H0237764 A JPH0237764 A JP H0237764A
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
chip
measuring
lead extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63188717A
Other languages
Japanese (ja)
Inventor
Junji Yamazaki
山崎 純治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63188717A priority Critical patent/JPH0237764A/en
Publication of JPH0237764A publication Critical patent/JPH0237764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To automate and simplify a measuring operation and to enhance its efficiency by a method wherein a measuring terminal used to check the dielectric breakdown strength of a gate oxide film is installed in the same arrangement region as an external-lead extraction terminal. CONSTITUTION:Many pieces of external-lead extraction terminals 12 are arranged in a peripheral part of a chip 11 ; a peripheral circuit 13 connected to the external-lead extraction terminals is arranged and installed at their inside; in addition, an internal circuit 14 is arranged and installed at its inside. A measuring terminal 15 used to check the dielectric breakdown strength of a gate oxide film is arranged and installed in one part of a peripheral region, of the chip 11, where the external-lead extraction terminals 12 are arranged. During an inspection process of a semiconductor wafer, a probe of a multiprobe characteristic measuring apparatus is arranged so as to come into contact with the measuring terminal 15 formed in advance on the chip 11; a program for dielectric breakdown strength measuring use is prepared before an inspection operation; the dielectric breakdown strength of the gate oxide film can be measured. Thereby, a measuring operation can be automated and simplified while its efficiency can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS型半導体装置に関し、特にケート酸化膜
絶縁耐圧測定端子を有するMO3型半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS type semiconductor device, and more particularly to an MO3 type semiconductor device having a gate oxide dielectric strength measurement terminal.

〔従来の技術〕[Conventional technology]

MO3型半導体装置の製造工程の一つにゲート酸化膜を
形成する工程があるが、その後のイオン注入工程やエツ
チング工程での電荷蓄積によりしばしばゲート酸化膜の
静電破壊が起き、半導体装置が不良になっている。
One of the manufacturing processes for MO3 type semiconductor devices is the step of forming a gate oxide film, but due to charge accumulation during the subsequent ion implantation and etching steps, electrostatic breakdown of the gate oxide film often occurs, resulting in defective semiconductor devices. It has become.

そのなめ−殻内に電荷蓄積によるゲート酸化膜静電破壊
評価のための半導体素子が作られており、その一つの実
施例を第5図に示す。
A semiconductor device for evaluating electrostatic breakdown of the gate oxide film due to charge accumulation is fabricated in the slit shell, and one example thereof is shown in FIG.

半導体基板10上にフィールド酸化膜20とゲート酸1
ヒ膜30を形成し、その後ゲート酸化膜30上に導電性
多結晶シリコン層40からなる電極を形成し、さらに絶
縁膜50を設けてパターニングすることにより形成して
いる。この導電性多結晶シリコン層40からなる電極と
半導体基板51の間に電圧を印加してゲート酸化膜53
の絶縁耐圧を測定し、静電破壊評価を行っている。
A field oxide film 20 and a gate acid 1 are formed on a semiconductor substrate 10.
It is formed by forming a filler film 30, then forming an electrode made of a conductive polycrystalline silicon layer 40 on the gate oxide film 30, and further providing an insulating film 50 and patterning it. A voltage is applied between the electrode made of the conductive polycrystalline silicon layer 40 and the semiconductor substrate 51 to form a gate oxide film 53.
We measure the dielectric strength of the product and evaluate electrostatic damage.

一般のMO3型半導体装置では従来、前述したゲート酸
化膜静電破壊評価のためのダミーの素子を第3図に示す
ように装置内の本来の素子とは別個に形成しておき、必
要時にこのダミー素子を用いて静電破壊評価を行なって
いる。もしくは第4図に示すように半導体ウェーハ47
上にダミー素子45をMOS型半導体素子(チップ)4
1とは別の箇所に形成する場合もある。
Conventionally, in a general MO3 type semiconductor device, a dummy element for evaluating the gate oxide film electrostatic damage described above is formed separately from the original element in the device, as shown in Figure 3, and the dummy element is formed separately from the original element in the device when necessary. Electrostatic damage evaluation is performed using dummy elements. Or as shown in FIG. 4, a semiconductor wafer 47
A dummy element 45 is placed on top of the MOS type semiconductor element (chip) 4.
It may be formed at a location different from 1.

近年、MOS型半導体装置の高集積化と共に、ゲート酸
化膜も薄くなってゆき電荷蓄積により静電破壊が起こり
やすい状況になっているため、さらに電荷蓄積によって
ゲート酸化膜が破壊されてしまえば半導体ウェーハの検
査工程でその半導体チップは不良となってしまうが、ゲ
ート酸化膜が完全に破壊されず膜質が変化して漏れ電流
を流しやすくなった場合半導体ウェーハ検査工程では良
品となって後工程まで送られることもあるため、ゲート
酸化膜の絶縁耐圧の測定はますます欠かせないものとな
ってきている。
In recent years, as MOS semiconductor devices have become more highly integrated, gate oxide films have also become thinner, making it easier for electrostatic damage to occur due to charge accumulation.If the gate oxide film is further destroyed by charge accumulation, the semiconductor In the wafer inspection process, the semiconductor chip becomes defective, but if the gate oxide film is not completely destroyed and the film quality changes, making it easier for leakage current to flow, the semiconductor chip becomes a good product in the semiconductor wafer inspection process and passes through the subsequent process. Therefore, measuring the dielectric strength of the gate oxide film is becoming increasingly essential.

r発明が解決しようとする課題〕 上述した従来のMOS型半導体装置はゲート酸化膜静電
破壊評価用のダミー素子が該MOS型半導体装置内に形
成されている場合、外部リード取出し端子とは個別に形
成されかつその寸法も比較的小さいため、絶縁耐圧を測
定するためには耐圧測定装置を用いて作業者が1チツプ
ごとに測定を行なう必要があり、しかもダミー素子の測
定端子が小さいために測定針を接触させることが困難で
ある。これはダミー素子がMOS型半導体装置外の別の
チップに形成されている場合も全く同様である。従って
MOS型半導体装置を構成している半導体ウェーハごと
、あるいはチップごとに絶縁耐圧を測定する場合には、
すべて作業者が手作業でこれを行なわねばならず、測定
に多大の工数がかかりかつ測定効率も悪いという問題が
ある。また、ダミー素子がMOS型半導体装置とは別の
箇所に形成されている場合は、上記の問題点に加えてM
O3型半導体装置各チップごとのゲート酸化膜絶縁耐圧
を知ることができないという問題点がある。
rProblems to be Solved by the Invention] In the conventional MOS type semiconductor device described above, when a dummy element for evaluating gate oxide film electrostatic damage is formed in the MOS type semiconductor device, it is separated from the external lead extraction terminal. , and its dimensions are relatively small. Therefore, in order to measure the dielectric strength, it is necessary for an operator to measure each chip using a withstand voltage measuring device. Moreover, since the measurement terminal of the dummy element is small, It is difficult to make contact with the measuring needle. This is exactly the same even when the dummy element is formed on another chip outside the MOS type semiconductor device. Therefore, when measuring the dielectric strength of each semiconductor wafer or chip that constitutes a MOS type semiconductor device,
All of this must be done manually by the operator, and there are problems in that the measurement requires a large amount of man-hours and the measurement efficiency is poor. In addition, if the dummy element is formed at a different location from the MOS type semiconductor device, in addition to the above problems, the M
There is a problem in that it is not possible to know the gate oxide film dielectric strength voltage for each chip of an O3 type semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMOS型半導体装置は、チップ上の一部にゲー
ト酸化膜絶縁耐圧をチェックするためのMOSl造を有
するダミー素子及びそのゲート電極である測定端子を有
するMOS型半導体装置において、前記測定端子は前記
チップ上に配列された外部リード取出端子と同一の配列
領域に設けられているというものである。
The MOS type semiconductor device of the present invention has a dummy element having a MOS structure for checking a gate oxide film dielectric strength voltage in a part of the chip, and a measurement terminal which is the gate electrode of the dummy element. are provided in the same array area as the external lead extraction terminals arrayed on the chip.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明のmlの実施例を示すMOS型半導体装
置のナツプ11のレイアウト図であり、チップ11の周
辺部にはアルミニウム膜からなる多数個の外部リード取
出し端子12を配列し、その内側にはこれら外部リード
取出し端子12に接続される入出力バッファ等の周辺回
路13を、さらにその内側にはメモリセルや演算回路等
の内部回路14をそれぞれ配設している。
FIG. 1 is a layout diagram of a nap 11 of a MOS type semiconductor device showing an embodiment of the present invention.A large number of external lead extraction terminals 12 made of aluminum film are arranged around the periphery of the chip 11. Peripheral circuits 13 such as input/output buffers connected to these external read output terminals 12 are provided inside, and internal circuits 14 such as memory cells and arithmetic circuits are provided further inside.

ゲート酸化膜絶縁耐圧チエツク用の測定端子15は前記
外部リード取出し端子12が配列されているチップ11
の周辺領域の一部に配設しており、その構造は第5図に
示す通りである。本実施例では測定端子15は外部リー
ド取出し端子12と同じ大きさでかつこれらと同一の配
列領域に設けられた構成としている。
The measurement terminal 15 for checking the gate oxide film insulation withstand voltage is connected to the chip 11 on which the external lead extraction terminals 12 are arranged.
The structure is shown in FIG. 5. In this embodiment, the measurement terminal 15 has the same size as the external lead extraction terminal 12 and is arranged in the same arrangement area as these terminals.

従ってこのような構成のチップを有するMOS型半導体
装置では、半導体ウェーハの検査工程において従来から
使用されている多探針特性測定装置の探針をあらかじめ
チップ11上に形成されている測定端子15に接触する
ように配列しておき、さらに本来の検査に先立って絶縁
耐圧を測定するように多探針特性測定装置のプログラム
を用意しておけば、検査工程の一部としてゲート酸化膜
絶縁耐圧の測定が可能になる。
Therefore, in a MOS semiconductor device having a chip with such a configuration, the probe of a multi-probe characteristic measuring device conventionally used in the semiconductor wafer inspection process is attached to the measurement terminal 15 formed in advance on the chip 11. By arranging them so that they are in contact with each other, and by preparing a program for the multi-probe characteristic measuring device to measure the dielectric strength voltage prior to the actual inspection, it is possible to measure the dielectric strength voltage of the gate oxide film as part of the inspection process. Measurement becomes possible.

このため、ゲート酸化膜絶縁耐圧測定の自動化が可能に
なり、作業者の手作業による測定を不要にして工数の低
減、測定効率の向上を計ることかできる。ここで、測定
端子15は他の回路に電気的影響を与えない場合には外
部リード取出し端子12の一部を兼用する形にすること
もできる。
Therefore, it is possible to automate the measurement of the gate oxide film dielectric strength voltage, which eliminates the need for manual measurement by operators, thereby reducing the number of man-hours and improving measurement efficiency. Here, the measurement terminal 15 may be configured to also serve as a part of the external lead extraction terminal 12 if it does not have an electrical influence on other circuits.

さらに測定端子15の大きさは必ずしも外部リード取出
し端子12と同じ大きさにする必要はなく、あまり小さ
くならない範囲で小型化、または大型化することは可能
である。実際には外部リード取出し端子の少なくとも5
0%の面積を有することが好ましい。
Furthermore, the size of the measurement terminal 15 does not necessarily have to be the same as the external lead extraction terminal 12, and it is possible to make it smaller or larger as long as it does not become too small. Actually at least 5 of the external lead extraction terminals
It is preferable to have an area of 0%.

第2図は本発明の第2の実施例を示すMO3型半導体チ
ップ21のレイアウト図である。
FIG. 2 is a layout diagram of an MO3 type semiconductor chip 21 showing a second embodiment of the present invention.

第1の実施例と異なっている部分は、ゲート酸化膜絶縁
耐圧チエツク用の測定端子15に接続された導電性多結
晶シリコン層26が半導体チップ21の周辺部を囲繞し
て配置されていることである、これは、電荷蓄積による
ゲート酸化膜の面積に比べて直接電荷を受ける導電性多
結晶シリコン層の面積が大きいほど電荷MFIIによる
静電破壊を検出しやすくなるためである。
The difference from the first embodiment is that a conductive polycrystalline silicon layer 26 connected to a measurement terminal 15 for checking the gate oxide film dielectric strength voltage is arranged to surround the periphery of the semiconductor chip 21. This is because the larger the area of the conductive polycrystalline silicon layer that directly receives charges compared to the area of the gate oxide film due to charge accumulation, the easier it is to detect electrostatic damage caused by charges MFII.

また、導電性多結晶シリコン層26の配置は半導体チッ
プ21の動作に影響を及ぼさない場所であればどこに設
置してもよいし、またその形状も自由に設定できる。
Further, the conductive polycrystalline silicon layer 26 may be placed anywhere as long as it does not affect the operation of the semiconductor chip 21, and its shape can be freely set.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート酸化膜絶縁耐圧を
チエツクする測定端子を外部リード取出し端子と同一の
配列領域に設けることによりその大きさも外部リード取
出し端子とほぼ同程度にできるので、ゲート酸化膜絶縁
耐圧測定を従来の多探針特性装置を用いて1チツプごと
に行うことが可能となり、これにより測定の自動化を達
成し、測定の簡易化および測定の効率を向上できるとい
う効果がある。
As explained above, in the present invention, by providing the measurement terminal for checking the gate oxide film dielectric strength voltage in the same array area as the external lead extraction terminal, the size of the measurement terminal can be made almost the same as that of the external lead extraction terminal. It becomes possible to measure the membrane dielectric strength voltage for each chip using a conventional multi-probe characteristic device, which has the effect of achieving automation of the measurement, simplifying the measurement, and improving the efficiency of the measurement.

さらに多探針特性装置による半導体ウェーハ検査工程に
おいて、ゲート酸化膜絶縁耐圧の許容値を決めて不良品
にはインカー打点を打つようにしておけば、電荷蓄積に
よってゲート酸化膜が完全には破壊されず酸化膜質が変
って漏れ電流を流しやすくなった場合でも、従来のよう
に半導体ウェーハ検査工程で誤って良品と判定されるこ
とがないため、半導体チップ検査工程までゲート酸化膜
絶縁耐圧の悪いチップが送られることもなく、無駄な工
数を使わずにすむという効果もある。
Furthermore, in the semiconductor wafer inspection process using a multi-probe characteristic device, if the allowable value of the gate oxide film dielectric strength is determined and an inker dot is placed on defective products, the gate oxide film will not be completely destroyed due to charge accumulation. Even if the quality of the oxide film changes and leakage current is more likely to flow, the semiconductor wafer inspection process will not incorrectly judge the product as good, unlike in the past, so chips with poor gate oxide dielectric breakdown voltage will not be detected until the semiconductor chip inspection process. This also has the effect of eliminating the need for wasted man-hours, as no messages are sent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の第1の実施例及び
第2の実施例を示すMOS型半導体装置のレイアウト図
、第3図及び第4図はそれぞれ第1、第2の従来例を示
すMOS型半導体装置のレイアウト図、第5図はゲート
酸化膜絶縁耐圧チエツク用のダミー素子の断面図である
。 11.21.31.41−MOS型半導体装置(チップ
)、12,22.32・・・外部リード取出し端子、1
3.23.33・・・周辺回路、1525.35.45
・・・ゲート酸化、膜絶縁耐圧チエツク用の測定端子、
26・・・導電性多結晶シリコン層、42・・・半導体
ウェーハ、10・・・半導体基板、20・・・フィール
ド酸化膜、30・・・ゲート酸化膜、40・・・導電性
多結晶シリコン層、50・・・絶縁膜。 兇  1
1 and 2 are layout diagrams of a MOS type semiconductor device showing a first embodiment and a second embodiment of the present invention, respectively, and FIGS. 3 and 4 show the first and second conventional examples, respectively. FIG. 5 is a sectional view of a dummy element for checking the dielectric breakdown voltage of a gate oxide film. 11.21.31.41-MOS type semiconductor device (chip), 12,22.32...External lead extraction terminal, 1
3.23.33... Peripheral circuit, 1525.35.45
...Measurement terminal for gate oxidation and membrane insulation voltage check,
26... Conductive polycrystalline silicon layer, 42... Semiconductor wafer, 10... Semiconductor substrate, 20... Field oxide film, 30... Gate oxide film, 40... Conductive polycrystalline silicon Layer, 50...insulating film.兇 1

Claims (1)

【特許請求の範囲】[Claims] チップの一部にゲート酸化膜絶縁耐圧をチェックするた
めのMOS構造を有するダミー素子及びそのゲート電極
である測定端子を有するMOS型半導体装置において、
前記測定端子は前記チップ上に配列された外部リード取
出端子と同一の配列領域に設けられていることを特徴と
するMOS型半導体装置。
In a MOS type semiconductor device having a dummy element having a MOS structure for checking the gate oxide film dielectric strength voltage in a part of the chip and a measurement terminal which is the gate electrode of the dummy element,
A MOS type semiconductor device, wherein the measurement terminal is provided in the same arrangement area as external lead extraction terminals arranged on the chip.
JP63188717A 1988-07-27 1988-07-27 Mos type semiconductor device Pending JPH0237764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188717A JPH0237764A (en) 1988-07-27 1988-07-27 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188717A JPH0237764A (en) 1988-07-27 1988-07-27 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0237764A true JPH0237764A (en) 1990-02-07

Family

ID=16228553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188717A Pending JPH0237764A (en) 1988-07-27 1988-07-27 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0237764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466956A (en) * 1993-11-18 1995-11-14 Nec Corporation Semiconductor integrated circuit device with electrode for measuring interlayer insulator capacitance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466956A (en) * 1993-11-18 1995-11-14 Nec Corporation Semiconductor integrated circuit device with electrode for measuring interlayer insulator capacitance

Similar Documents

Publication Publication Date Title
CN110364447B (en) Monitoring structure and monitoring method for critical dimension of semiconductor process
JPH0237764A (en) Mos type semiconductor device
CN114927505A (en) Chip test structure and test method
US6340604B1 (en) Contactor and semiconductor device inspecting method
JPS6348185B2 (en)
JP3575073B2 (en) Insulation-isolated semiconductor device inspection method and insulation-isolated semiconductor device
JPH09213901A (en) Semiconductor memory having tegs and testing method thereof
JP2585556B2 (en) Semiconductor integrated circuit device
US6677608B2 (en) Semiconductor device for detecting gate defects
CN104701298B (en) Gate oxide integrity (GOI) test structure and method of testing
US20230048600A1 (en) Semiconductor structure and method for manufacturing semiconductor structure
JP2943399B2 (en) Semiconductor integrated circuit
TW563220B (en) Method for picking defected dielectric in semiconductor device
JPS61267337A (en) Semiconductor device
KR20000045895A (en) Method for forming test pattern
JP3341694B2 (en) Inspection method of plasma damage and its inspection element
JPH03239973A (en) Element for measuring dielectric breakdown relating to lapse of time
JPH07321174A (en) Semiconductor inspection device
JPH0322456A (en) Semiconductor device and inspecting method thereof
JPS5943733Y2 (en) semiconductor equipment
JPH02106945A (en) Manufacture of semiconductor integrated circuit
JPH0262947B2 (en)
JPH0455771A (en) Semiconductor element and aging insulation breakdown testing method thereof
JP3250215B2 (en) Method and apparatus for evaluating plasma non-uniformity
JPH0729950A (en) Measuring method for temperature characteristic of semiconductor wafer