JPH03239973A - Element for measuring dielectric breakdown relating to lapse of time - Google Patents

Element for measuring dielectric breakdown relating to lapse of time

Info

Publication number
JPH03239973A
JPH03239973A JP3633190A JP3633190A JPH03239973A JP H03239973 A JPH03239973 A JP H03239973A JP 3633190 A JP3633190 A JP 3633190A JP 3633190 A JP3633190 A JP 3633190A JP H03239973 A JPH03239973 A JP H03239973A
Authority
JP
Japan
Prior art keywords
dielectric breakdown
dielectrics
capacitors
lapse
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3633190A
Other languages
Japanese (ja)
Other versions
JPH07119788B2 (en
Inventor
Kiyoshi Onodera
小野寺 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2036331A priority Critical patent/JPH07119788B2/en
Publication of JPH03239973A publication Critical patent/JPH03239973A/en
Publication of JPH07119788B2 publication Critical patent/JPH07119788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the dielectric breakdown of an insulating film with lapse of time by forming many capacitors, which are formed by using the insulator thin films same as the insulator thin films to be evaluated as the dielectrics, on a substrate and parallel connecting the respective capacitors via the wiring branch lines cut by shorting currents. CONSTITUTION:A conductor layer 2 as a 1st electrode is formed over the entire surface of the substrate 1 and several tens to several hundred pieces of the dielectrics 3 which of the same insulating material as the insulating material to be evaluated of SiO2, etc., and has the same film thickness are formed on the surface of the conductor layer 2. Further, 2nd electrodes 4 are formed on the surface of the respective dielectrics 3 and the many capacitors are respectively separately constituted on the substrate 1. The respective electrodes 4 are connected via the aluminum wiring branch lines 6a to a common aluminum wiring line 6b. The branch lines 6a have the sectional area to the extent that the lines are cut by the large shorting current flowing in the capacitor when the dielectrics 3 of this capacitor causes the dielectric breakdown. The element for measuring the dielectric breakdown of the thin films with lapse of time constituted in such a manner is housed in a package 7. The large current flows in the capacitors and can be detected by an ammeter 8 when the dielectric breakdown occures by a deterioration of the dielectrics 3 with lapse of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜の経時絶縁破壊(TDDB:Time 
Dependent Dielectric Brea
kdown)  を測定するための素子に関するもので
あり、特に、MOSデバイスのゲート酸化膜等に使用す
る絶縁体薄膜の経時絶縁破壊を測定するのに適した経時
絶縁破壊測定用の素子に関するものである。
Detailed Description of the Invention (Industrial Field of Application)
Dependent Dielectric Brea
The present invention relates to an element for measuring dielectric breakdown over time, and in particular to an element for measuring dielectric breakdown over time, which is suitable for measuring dielectric breakdown over time of thin insulator films used for gate oxide films of MOS devices, etc. .

(従来の技術) MOSデバイスのゲート酸化膜の膜厚はVLS■の高集
積化に伴い益々薄くなる傾向にある。しかし、電源電圧
の低減化はデバイスの互換性、動作マージンの確保、高
速化の要求などから比較的ゆるやかにしか進行していな
い。したがって、MOSデバイスのゲート酸化膜にかか
る電界強度は実質的には増大しているということができ
る。更に、薄膜化によってゲート酸化膜自体の寿命が短
くなっていると考えられ、ゲート酸化膜の信頼性を評価
するに当たっては、従来から行われていた絶縁耐圧の測
定と共に、経時破壊も測定する必要がある。
(Prior Art) The thickness of the gate oxide film of a MOS device tends to become thinner and thinner as VLS (VLSI) becomes more highly integrated. However, the reduction in power supply voltage is progressing relatively slowly due to demands for device compatibility, securing operating margins, and increasing speed. Therefore, it can be said that the electric field strength applied to the gate oxide film of the MOS device is substantially increasing. Furthermore, the lifetime of the gate oxide film itself is thought to be shortened due to thinning of the film, so when evaluating the reliability of gate oxide films, it is necessary to measure breakdown over time in addition to the conventional measurement of dielectric strength. There is.

従来は、このような絶縁膜の経時変化における信転性を
評価するに当たっては、基板上にMOSFETなどの半
導体装置を形成し、これをパッケージ内に密封して完成
した製品をサンプリングしてTDDB測定を行っていた
。TDDB測定は、サンプリングしたそれぞれのパッケ
ージの中に収納されている半導体装置のキャパシタ構造
から配線を取り出して、これらに同時に一定時間に亙っ
て電界ストレスを加え、絶縁膜の経時破壊の有無をチエ
ツクしている。
Conventionally, when evaluating the reliability of such an insulating film over time, a semiconductor device such as a MOSFET was formed on a substrate, this was sealed in a package, and the completed product was sampled and TDDB measurements were performed. was going on. In TDDB measurement, wiring is taken out from the capacitor structure of the semiconductor device housed in each sampled package, and electric field stress is simultaneously applied to them for a certain period of time to check for damage to the insulating film over time. are doing.

(発明が解決しようとする課題) しかし、絶縁膜破壊試験は統計的現象であるため試験の
信輔度を上げるには数多くのサンプルを測定しなければ
ならず、上述した従来の方法では、半導体装置をパンケ
ージに収納した後の製品をサンプリングして測定してい
るため、サンプル数と同じ数のパッケージがTDDB測
定のために必要となる。しかし、半導体素子のパンケー
ジはそのほとんどがセラミック製であり、高価であると
共に、半導体装置をパッケージ内に密封するのにも多大
な手間がかかる。したがって、TDDB測定のために高
価でかつ製造に手間のかがるセラミンクパッケージを多
数消費してしまい測定コストカ上昇する結果となる。
(Problem to be solved by the invention) However, since the insulation film breakdown test is a statistical phenomenon, it is necessary to measure a large number of samples in order to increase the reliability of the test. Since the product is sampled and measured after it has been stored in the pan cage, the same number of packages as the number of samples are required for TDDB measurement. However, most of the semiconductor element pancakes are made of ceramic and are expensive, and it takes a lot of effort to hermetically seal the semiconductor device inside the package. Therefore, for TDDB measurement, a large number of expensive and time-consuming ceramic packages are consumed, resulting in an increase in measurement costs.

また、サンプル数が多いため、測定の自動化が望まれる
が、このためには多数のサンプルの測定を時分刻的に行
うことができる専用スキャナが必要となり、この装置も
複雑かつ高価である。
Furthermore, since there are a large number of samples, it is desirable to automate the measurement, but this requires a dedicated scanner that can measure a large number of samples in a timely manner, and this equipment is also complex and expensive.

本発明は、少数のセラミンクパッケージで多数のサンプ
ルの経時絶縁破壊を測定することができ、また複雑かつ
高価なスキャナを用いることなく、絶縁破壊の有無の測
定を容易に行い得るTDDB測定用素子を提供するもの
である。
The present invention is a TDDB measurement element that can measure the dielectric breakdown over time of a large number of samples with a small number of ceramic packages, and can easily measure the presence or absence of dielectric breakdown without using a complicated and expensive scanner. It provides:

(課題を解決するための手段) 上記課題を解決するために、本発明の経時絶縁破壊測定
用素子は、評価すべき絶縁体薄膜と同じ絶縁体薄膜を誘
電体とする多数のキャパシタを基板上に形成し、これら
のキャパシタを前記誘電体として使用した絶縁体薄膜に
絶縁破壊が生じたときに流れる大電流によって切断され
る枝路を介して並列に接続されるように配線を形成した
ことを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the element for measuring dielectric breakdown over time of the present invention has a large number of capacitors on a substrate whose dielectric material is the same insulator thin film as the insulator thin film to be evaluated. The wiring was formed so that these capacitors were connected in parallel through branch paths that were cut by the large current flowing when dielectric breakdown occurred in the insulating thin film used as the dielectric. This is a characteristic feature.

(作用) 上述した通り、本発明では、評価すべき絶縁体薄膜とは
別個に、これと同じ絶縁体薄膜を誘電体としたキャパシ
タを共通の基板上に多数形成し、この多数のキャパシタ
を1個のパッケージ内に収納してTDDB測定を行うよ
うにしている。したがって、多数の絶縁体薄膜のTDD
Bの測定に必要とするパッケージの数を極めて少ないも
のとすることができる。これらのキャパシタは、枝路を
介して共通路に並列に接続されており、これらの枝路は
絶縁膜に破壊が生じた時にキャパシタに流れる電流で切
断(溶断)される程度の寸法に形成されている。TDD
B測定は各キャパシタに一定の電圧を印加し、誘電体と
して使用した絶縁膜に絶縁破壊が生じた時にキャパシタ
の電極が導通してキャパシタに大電流が流れることを検
出して行う。大電流が流れる時に前記枝路は切断(溶断
)されるため、この電流は一時的に流れるだけである。
(Function) As described above, in the present invention, apart from the insulating thin film to be evaluated, a large number of capacitors using the same insulating thin film as a dielectric are formed on a common substrate, and these many capacitors are integrated into one. The TDDB measurement is carried out by storing it in a separate package. Therefore, TDD of multiple insulator thin films
The number of packages required to measure B can be extremely small. These capacitors are connected in parallel to the common path through branch circuits, and these branch circuits are formed to such a size that they are cut (fused) by the current flowing through the capacitors when the insulating film breaks down. ing. TDD
B measurement is performed by applying a constant voltage to each capacitor and detecting that when dielectric breakdown occurs in the insulating film used as a dielectric, the capacitor electrode becomes conductive and a large current flows through the capacitor. Since the branch path is cut (fused) when a large current flows, this current only flows temporarily.

大電流が流れた時点と回数をチエツクすることによって
TDDB測定を行うことができる。多数のキャパシタは
並列に接続されているため、1のキャパシタで絶縁破壊
が起こって枝路が切断されても、他のキャパシタには測
定電圧をそのまま印加することができ、したがって従来
のように複雑なスキャナを用いる必要はない。
TDDB measurement can be performed by checking the time and number of times a large current flows. Since many capacitors are connected in parallel, even if dielectric breakdown occurs in one capacitor and the branch circuit is cut off, the measurement voltage can still be applied to the other capacitors, which eliminates the complexity of the conventional method. There is no need to use a scanner.

このように構成すると、多数のサンプルのTDDB測定
を少数のパッケージ内 ため、測定に必要とするパッケージの数を従来の測定方
法に比して大幅に減らすことが可能であり、したがって
パッケージにかけるコストを節減することができる。ま
た、絶縁破壊が生じたか否かは電流の変化をチエツクす
ることで測定することができるため、各キャパシタをス
キャンする必要がなく、したがって、複雑かつ高価なス
キャナを用いる必要もない。
With this configuration, TDDB measurements of a large number of samples can be performed in a small number of packages, making it possible to significantly reduce the number of packages required for measurement compared to conventional measurement methods, thus reducing packaging costs. can be saved. Furthermore, since it is possible to determine whether dielectric breakdown has occurred by checking the change in current, there is no need to scan each capacitor, and therefore there is no need to use a complex and expensive scanner.

(実施例) 以下に、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明のTDDB測定用素子の線図的断面図
、第2図は本発明の素子を用いてTDDB測定を行うた
めの装置の構造を示す回路図である。
FIG. 1 is a diagrammatic cross-sectional view of a TDDB measuring element of the present invention, and FIG. 2 is a circuit diagram showing the structure of an apparatus for performing TDDB measurement using the element of the present invention.

第1図に示すように、基板Iの表面全面に第1電極とし
て作用する導電体層2を形成し、該導電体層2の表面に
例えば酸化シリコン(SiO□)等、評価すべき絶縁膜
と同じ絶縁材料からなり、同じ膜厚を有する絶縁膜より
成る誘電体3を数十〜数百個として形成する。それぞれ
の誘電体3の表面に更に第2電極4を形成し、基板1上
に多数のキャパシタを各別に構成する。それぞれの第2
電極4はアルミ配線枝路6aを介して共通アルミ配線路
6bに接続する。本発明においては、アルミ配線枝路6
aは誘電体3が絶縁破壊を起こしたときにそのキャパシ
タに流れる大きな短絡電流により切断(溶断)される程
度の断面積を有するのものとする。尚、第1電極2は基
板1の表面全面に形成されており、全キャパシタについ
て共通の電極を構成しており、共通アルミ配線路6Cに
接続する。
As shown in FIG. 1, a conductive layer 2 acting as a first electrode is formed on the entire surface of a substrate I, and an insulating film to be evaluated, such as silicon oxide (SiO□), is formed on the surface of the conductive layer 2. Several tens to hundreds of dielectrics 3 each made of an insulating film made of the same insulating material and having the same thickness are formed. A second electrode 4 is further formed on the surface of each dielectric 3, and a large number of capacitors are individually configured on the substrate 1. each second
The electrode 4 is connected to a common aluminum wiring path 6b via an aluminum wiring branch 6a. In the present invention, the aluminum wiring branch 6
It is assumed that a has a cross-sectional area large enough to be cut (fused) by a large short-circuit current flowing through the capacitor when dielectric breakdown occurs in the dielectric 3. Note that the first electrode 2 is formed on the entire surface of the substrate 1, constitutes a common electrode for all capacitors, and is connected to a common aluminum wiring path 6C.

このように、構成したTDDB測定用素子をパッケージ
7に収容し、共通のアルミ配線路6b及び6cを外部接
点へ接続して経時絶縁破壊測定用素子を完成する。第2
図に示すようにこれらのパッケージ7を複数個並列につ
ないで定電圧電源5に接続する。パッケージ7の周囲温
度は約150〜200″Cに設定する。これらのパッケ
ージ7と定電圧電源5との間に電流計8を配設し、各素
子の共通アルミ配線路6b、6cに流れる電流を測定す
る。
The element for measuring TDDB constructed in this way is housed in the package 7, and the common aluminum wiring paths 6b and 6c are connected to external contacts to complete the element for measuring dielectric breakdown over time. Second
As shown in the figure, a plurality of these packages 7 are connected in parallel and connected to a constant voltage power source 5. The ambient temperature of the packages 7 is set to approximately 150 to 200''C. An ammeter 8 is disposed between these packages 7 and the constant voltage power supply 5, and the current flowing through the common aluminum wiring paths 6b and 6c of each element is measured. Measure.

第3図は、共通アルミ配線路6b、6cに流れる電流の
大きさを示すグラフである。パッケージ7内に収納した
基板1上に形成した成るキャパシタの誘電体(絶縁膜)
3に経時変化により絶縁破壊が生じると、当該キャパシ
タに大電流が流れ、電流計8にてこれを検出することが
できる。上述した通り、各キャパシタの第2電極に接続
したアルミ配線枝路6aはこのとき流れる大電流によっ
て切断(溶断)されるように構成されているため、第3
図に示すように、電流計8に流れる大電流は一時的なも
のに留まる。各キャパシタは並列に接続されているので
、成るキャパシタに絶縁破壊が生じても他のキャパシタ
の測定に影響を与えることはない。電流計8に流れた電
流を記録装置(図示せず)に記録して、この記録をチエ
ツクすることによって絶縁破壊を起こした時点及び絶縁
膜3が破壊されたキャパシタの数を知ることができる。
FIG. 3 is a graph showing the magnitude of the current flowing through the common aluminum wiring paths 6b and 6c. Dielectric material (insulating film) of the capacitor formed on the substrate 1 housed in the package 7
When dielectric breakdown occurs in the capacitor 3 due to changes over time, a large current flows through the capacitor, and this can be detected by the ammeter 8. As mentioned above, the aluminum wiring branch 6a connected to the second electrode of each capacitor is configured to be cut (fused) by the large current flowing at this time.
As shown in the figure, the large current flowing through the ammeter 8 remains temporary. Since each capacitor is connected in parallel, even if dielectric breakdown occurs in one capacitor, it will not affect the measurement of other capacitors. The current flowing through the ammeter 8 is recorded in a recording device (not shown), and by checking this record, it is possible to know the point at which dielectric breakdown occurred and the number of capacitors in which the insulating film 3 was destroyed.

(発明の効果) 上記に詳細に述べたとおり、本発明によれば、1つのパ
ッケージ内に多数のキャパシタを収納して、これらのキ
ャパシタの誘電体を経時絶縁破壊を測定すべき絶縁膜を
同じ絶縁膜で形成したため、高価でかつ製造に手間のか
かるパ・ンケージを節減することができる。又、各キャ
パシタは短絡電流によって切断される配線枝路を介して
並列に接続したため、電流計で測定した電流の変化をチ
エ・ンクすることのみで、絶縁膜の経時絶縁破壊を測定
することができ、複雑なスキャナを使用する必要がない
(Effects of the Invention) As described in detail above, according to the present invention, a large number of capacitors are housed in one package, and the dielectrics of these capacitors are made of the same insulating film whose dielectric breakdown over time is to be measured. Since it is formed from an insulating film, it is possible to save on package, which is expensive and takes time to manufacture. In addition, since each capacitor was connected in parallel via a wiring branch that was cut by a short-circuit current, it was possible to measure the dielectric breakdown of the insulating film over time by simply checking the change in current measured with an ammeter. There is no need to use complicated scanners.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るTDDB測定用素子の線図的断
面図、 第2図は、本発明に係るTDDB測定を行うための装置
の回路図、 第3図は、第2図に示す回路に流れる電流の測定値を示
すグラフである。 1・・・基板       2・・・第1電極3・・・
絶縁膜      4・・・第2電極5・・・定電圧電
源 6a・・・アルミ配線枝路 6b、6C・・・共通アルミ配線路
FIG. 1 is a diagrammatic cross-sectional view of a TDDB measurement element according to the present invention, FIG. 2 is a circuit diagram of an apparatus for performing TDDB measurement according to the present invention, and FIG. 3 is a diagram shown in FIG. It is a graph showing the measured value of the current flowing in the circuit. 1... Substrate 2... First electrode 3...
Insulating film 4... Second electrode 5... Constant voltage power supply 6a... Aluminum wiring branch paths 6b, 6C... Common aluminum wiring path

Claims (1)

【特許請求の範囲】[Claims] 1、評価すべき絶縁体薄膜と同じ絶縁体薄膜を誘電体と
する多数のキャパシタを基板上に形成し、これらのキャ
パシタを前記誘電体として使用した絶縁体薄膜に絶縁破
壊が生じたときに流れる大電流によって切断される枝路
を介して並列に接続されるように配線を形成したことを
特徴とする経時絶縁破壊測定用素子。
1. A large number of capacitors whose dielectric material is the same insulating thin film as the insulating thin film to be evaluated is formed on a substrate, and when dielectric breakdown occurs in the insulating thin film using these capacitors as the dielectric material, the current flows. 1. An element for measuring dielectric breakdown over time, characterized in that wiring is formed so as to be connected in parallel via branch paths that are cut by a large current.
JP2036331A 1990-02-19 1990-02-19 Element for measuring dielectric breakdown over time Expired - Fee Related JPH07119788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036331A JPH07119788B2 (en) 1990-02-19 1990-02-19 Element for measuring dielectric breakdown over time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036331A JPH07119788B2 (en) 1990-02-19 1990-02-19 Element for measuring dielectric breakdown over time

Publications (2)

Publication Number Publication Date
JPH03239973A true JPH03239973A (en) 1991-10-25
JPH07119788B2 JPH07119788B2 (en) 1995-12-20

Family

ID=12466851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036331A Expired - Fee Related JPH07119788B2 (en) 1990-02-19 1990-02-19 Element for measuring dielectric breakdown over time

Country Status (1)

Country Link
JP (1) JPH07119788B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109722B2 (en) 2004-06-10 2006-09-19 International Business Machines Corporation Apparatus and method for PCB smoke and burn detection and prevention
CN113049921A (en) * 2019-12-10 2021-06-29 中芯国际集成电路制造(上海)有限公司 TDDB test structure, TDDB test system and test method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879273U (en) * 1981-11-25 1983-05-28 日本電気株式会社 Capacitor load test circuit
JPS58175475U (en) * 1982-05-19 1983-11-24 日本電気株式会社 semiconductor test equipment
JPS6279374A (en) * 1985-10-02 1987-04-11 Hitachi Ltd Inspecting device for insulator thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879273U (en) * 1981-11-25 1983-05-28 日本電気株式会社 Capacitor load test circuit
JPS58175475U (en) * 1982-05-19 1983-11-24 日本電気株式会社 semiconductor test equipment
JPS6279374A (en) * 1985-10-02 1987-04-11 Hitachi Ltd Inspecting device for insulator thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109722B2 (en) 2004-06-10 2006-09-19 International Business Machines Corporation Apparatus and method for PCB smoke and burn detection and prevention
CN113049921A (en) * 2019-12-10 2021-06-29 中芯国际集成电路制造(上海)有限公司 TDDB test structure, TDDB test system and test method thereof
CN113049921B (en) * 2019-12-10 2024-04-19 中芯国际集成电路制造(上海)有限公司 TDDB test structure, TDDB test system and test method thereof

Also Published As

Publication number Publication date
JPH07119788B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
US20100253380A1 (en) Dielectric film and layer testing
JP4387125B2 (en) Inspection method and inspection apparatus
KR20030090880A (en) Semiconductor integrated circuit device with test element group circuit
CN112864131B (en) Electromigration test structure and electromigration test method
US7863922B2 (en) Evaluation method of insulating film and measurement circuit thereof
JPH03239973A (en) Element for measuring dielectric breakdown relating to lapse of time
Kobayashi et al. Reliability evaluation and failure analysis for multilayer ceramic chip capacitors
US9082805B2 (en) System and method for testing an electrostatic chuck
JP2836676B2 (en) Test method and apparatus for semiconductor element
JPS6348185B2 (en)
KR19980041707A (en) Semiconductor device isolation defect evaluation test structure and evaluation method using the test structure
US11467204B2 (en) Testing an integrated capacitor
JP2584093B2 (en) Insulation film reliability evaluation method
JP2585556B2 (en) Semiconductor integrated circuit device
JP2634286B2 (en) Handler device for testing electrical characteristics of semiconductor devices
US3478260A (en) Testing for the presence of a contaminant in an insulating or semiconducting medium
JPH05335396A (en) Semiconductor device for test and its testing method
US6677608B2 (en) Semiconductor device for detecting gate defects
JPH0455771A (en) Semiconductor element and aging insulation breakdown testing method thereof
JPH0766263A (en) Contact resistance measuring method of multilayered metal wiring, semiconductor device and wafer
TW563220B (en) Method for picking defected dielectric in semiconductor device
KR100430419B1 (en) Method for the probe test pad on the semiconductor
JPH07321174A (en) Semiconductor inspection device
JPH08153764A (en) Method for testing reliability of semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees