JPH0236643B2 - TAIMAMOBUZAINOSEIZOHOHO - Google Patents

TAIMAMOBUZAINOSEIZOHOHO

Info

Publication number
JPH0236643B2
JPH0236643B2 JP15849386A JP15849386A JPH0236643B2 JP H0236643 B2 JPH0236643 B2 JP H0236643B2 JP 15849386 A JP15849386 A JP 15849386A JP 15849386 A JP15849386 A JP 15849386A JP H0236643 B2 JPH0236643 B2 JP H0236643B2
Authority
JP
Japan
Prior art keywords
wear
layer
resistant
material layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15849386A
Other languages
Japanese (ja)
Other versions
JPS6314806A (en
Inventor
Hisakatsu Nishihara
Takao Mihara
Atsushi Funakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15849386A priority Critical patent/JPH0236643B2/en
Publication of JPS6314806A publication Critical patent/JPS6314806A/en
Publication of JPH0236643B2 publication Critical patent/JPH0236643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧延ロールや鋼材ガイドローラ等の
耐摩耗部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing wear-resistant members such as rolling rolls and steel guide rollers.

〔従来の技術〕[Conventional technology]

圧延ロール等の耐摩耗部材は、部材全体を耐摩
耗材料で形成せずに、摩耗抵抗の必要な層のみを
耐摩耗材料で形成し、それ以外の部分には、比較
的靭性の高い材料を適用して2種の材料からなる
積層構造とすることが、構造上およびコスト上有
利である。しかし、一般に耐摩耗性を有する層4
(耐摩耗層)を形成する材料は、多量の炭化物を
含有し、あるいは合金含有量の高い合金鋼材であ
るために、靭性を有する層(基材層)との間に熱
膨張係数の差を生じるのが通例である。このた
め、製造工程の途中で、または実使用時に、熱膨
張係数の差に起因する割れが往々にして発生す
る。
For wear-resistant parts such as rolling rolls, the entire member is not made of wear-resistant material, but only the layer that requires wear resistance is made of wear-resistant material, and the other parts are made of materials with relatively high toughness. It is advantageous in terms of structure and cost to form a laminated structure made of two types of materials. However, in general, the wear-resistant layer 4
The material forming the (wear-resistant layer) contains a large amount of carbide or is an alloy steel material with a high alloy content, so there is a difference in thermal expansion coefficient between it and the tough layer (base material layer). It is normal for this to occur. For this reason, cracks due to differences in thermal expansion coefficients often occur during the manufacturing process or during actual use.

これを解決するために、耐摩耗層と基材層との
間に両者の中間の熱膨張係数を有する中間層を形
成して三層構造とすることが有効なことはすでに
知られている。また、その製造方法としては、基
材層と耐摩耗層との間に中間層材として板状材を
挾み、加熱下に加圧して三層の接触面を融着させ
る方法、あるいは粉末を中間層材として基材層の
表面に所定の厚さに付与し、これに耐摩耗層を重
ねたうえ、加熱下に加圧して粉末層を焼結させる
と共に三層の界面を融着させる方法などが行われ
ている。
In order to solve this problem, it is already known that it is effective to form a three-layer structure between the wear-resistant layer and the base material layer by forming an intermediate layer having a coefficient of thermal expansion between the two. In addition, the manufacturing method includes a method in which a plate material is sandwiched as an intermediate layer material between the base material layer and the wear-resistant layer, and the contact surfaces of the three layers are fused together by applying pressure under heat. A method of applying powder to a specified thickness on the surface of a base material layer as an intermediate layer material, overlaying a wear-resistant layer on top of this, and applying pressure under heat to sinter the powder layer and fuse the interface of the three layers. etc. are being carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の製造方法は、耐摩耗部材が平坦
な板状体のように単純な形状を有する場合に有効
な方法であるが、中間層の形状が複雑な場合に
は、中間層材の形成および加工、更にはその上面
の耐摩耗層の形成などが極めて困難であり、また
中間層や耐摩耗材層を均一な層厚に形成すること
は容易でない。
However, the above manufacturing method is effective when the wear-resistant member has a simple shape such as a flat plate, but when the shape of the intermediate layer is complex, it is difficult to form the intermediate layer material. It is extremely difficult to process the material and to form a wear-resistant layer on the upper surface thereof, and it is not easy to form the intermediate layer or the wear-resistant material layer to have a uniform thickness.

本発明は上記問題点を解決することを目的とす
る。
The present invention aims to solve the above problems.

〔問題点を解決するための手段および作用〕[Means and actions for solving problems]

本発明の耐摩耗部材の製造方法は、 基材層と耐摩耗材層と両者の中間の熱膨張係数
を有する中間層とからなる耐摩耗部材の製造方法
であつて、 基材の表面に、Ni含有量が25〜36at%である
Fe−Ni合金を溶射することにより中間層を形成
したのち、キヤニング材をあてがつて中間層の表
面に耐摩耗材層を形成するための空間部を画成
し、該空間部内に耐摩耗材料として自溶性合金粉
末とセラミツク粉末との均一な混合粉末を充填
し、該混合粉末が充填された空間部内を脱気しつ
つ密封したのち、熱間静水圧加圧焼結を行うこと
を特徴としている。
The method for manufacturing a wear-resistant member of the present invention is a method for manufacturing a wear-resistant member comprising a base material layer, a wear-resistant material layer, and an intermediate layer having a coefficient of thermal expansion intermediate between the two, the method comprising: Ni on the surface of the base material; The content is 25-36at%
After forming an intermediate layer by thermal spraying Fe-Ni alloy, a caning material is applied to define a space for forming a wear-resistant material layer on the surface of the intermediate layer, and a wear-resistant material is formed in the space. It is characterized by filling a homogeneous mixed powder of self-fusing alloy powder and ceramic powder, sealing the space filled with the mixed powder while deaerating it, and then performing hot isostatic pressure sintering. .

本発明は、中間層材を溶射法により基材表面に
吹き付けて中間層を形成することとしたので、基
材表面が凹凸または湾曲した複雑な形状であつて
も、その表面形状に則した均一な層厚の中間層が
形成される。
In the present invention, the intermediate layer is formed by spraying the intermediate layer material onto the surface of the base material using a thermal spraying method, so even if the surface of the base material has an uneven or curved complex shape, it can be uniformly formed according to the surface shape. An intermediate layer with an intermediate thickness is formed.

また、中間層材であるFi−Ni合金の熱膨張係
数は第4図に示すように、Ni含有量:25〜36at
%の範囲において、1×10-6から16×10-6/℃ま
での広い範囲に恒つて変化するので、Ni含有量
を変えることにより、比較的自由に基材層と耐摩
耗材層の中間の熱膨張係数を有する中間層を形成
することができる。その中間層の形成において、
Ni含有量の異なるFe−Ni合金を2種以上使用
し、これを基材表面に順次溶射して溶射層を積層
することにより、熱膨張係数が基材層側から耐摩
耗材層側へ段階的に変化する中間層を形成するこ
とも可能である。
In addition, as shown in Figure 4, the thermal expansion coefficient of the Fi-Ni alloy, which is the intermediate layer material, is as follows: Ni content: 25 to 36at
% range, it always changes over a wide range from 1 × 10 -6 to 16 × 10 -6 /℃, so by changing the Ni content, you can relatively freely change the temperature between the base material layer and the wear-resistant material layer. It is possible to form an intermediate layer having a coefficient of thermal expansion of . In the formation of that intermediate layer,
By using two or more types of Fe-Ni alloys with different Ni contents and sequentially spraying them onto the base material surface and stacking the sprayed layers, the coefficient of thermal expansion gradually changes from the base material layer side to the wear-resistant material layer side. It is also possible to form an intermediate layer that changes to

更に、自溶性合金粉末とセラミツク粉末との混
合粉末を耐摩耗材料として形成される耐摩耗材層
は、金属マトリツクスと、該マトリツクスに分散
相として分布するセラミツク粒子とからなる複合
組織を有する焼結合金であるので、極めて硬度が
高く、すぐれた摩耗低抗を有している。また、そ
の耐摩耗材層は中間層を介して形成されるので、
基材層との熱膨張係数の差が大きい場合でも、比
較的厚い層厚に形成することができる。
Furthermore, the wear-resistant material layer formed using a mixed powder of a self-fusing alloy powder and a ceramic powder as a wear-resistant material is a sintered alloy having a composite structure consisting of a metal matrix and ceramic particles distributed as a dispersed phase in the matrix. Therefore, it has extremely high hardness and excellent wear resistance. In addition, since the wear-resistant material layer is formed through an intermediate layer,
Even when the difference in thermal expansion coefficient from the base material layer is large, the layer can be formed to have a relatively thick layer thickness.

なお、本発明は、熱間静水圧加圧焼結法によ
り、基材層と中間層と耐摩耗材層とを一体成形し
ているので、各層とも緻密であり、且つ各層の接
触界面は十分に融着し強固な結合関係をなしてい
る。
In addition, in the present invention, the base material layer, intermediate layer, and wear-resistant material layer are integrally molded using a hot isostatic pressure sintering method, so each layer is dense and the contact interface between each layer is sufficiently They are fused and form a strong bonding relationship.

本発明の耐摩耗材料を構成する自溶性合金は、
Ni−Cr系(例えばCr:10〜17%、Fe、B、Si等
5%以下、残部Ni)あるいはCo系合金などであ
る。
The self-fluxing alloy constituting the wear-resistant material of the present invention is
It is a Ni-Cr alloy (for example, Cr: 10 to 17%, Fe, B, Si, etc. 5% or less, balance Ni) or a Co-based alloy.

自溶性合金粉末に配合されるセラミツク粉末
は、例えばタングステンカーバイド(WC)、チ
タンナイトライド(TiN)、チタンボライド
(TiB2)等の粉末である。
The ceramic powder blended into the self-fusing alloy powder is, for example, tungsten carbide (WC), titanium nitride (TiN), titanium boride (TiB 2 ), or the like powder.

自溶性合金粉末に対するセラミツク粉末の配合
量は目的とする耐摩耗部材の用途・使用条件等に
もよるが一般的に5〜80重量%の範囲が適当であ
る。5重量%未満では、セラミツク粒子の分散効
果が不足し、一方80重量%を越えると、耐摩耗材
層が脆弱となるからである。
The amount of ceramic powder to be blended with the self-fusing alloy powder depends on the intended use and conditions of use of the wear-resistant member, but is generally in the range of 5 to 80% by weight. If it is less than 5% by weight, the dispersion effect of the ceramic particles will be insufficient, while if it exceeds 80% by weight, the wear-resistant material layer will become brittle.

耐摩耗材層の熱膨張係数は、自溶性合金粉末に
対するセラミツク粉末の配合割合によつて異な
り、例えば74%Ni−14%Cr自溶性合金粉末にWC
粉末を40重量%配合して形成される耐摩耗材層の
熱膨張係数(α)は約7×10-6/℃であり、WC
粉末配合量が20重量%の場合は約9×10-6/℃で
ある。従つて、基材層の熱膨張係数が同じであつ
ても、耐摩耗材層の粉末配合割合が異なる場合
は、それに応じて中間層の熱膨張係数を調整する
ことが必要である。その調整は前記のように中間
層材であるFe−Ni合金のNi含有量を変えること
により容易に行うことができる。
The coefficient of thermal expansion of the wear-resistant material layer varies depending on the blending ratio of ceramic powder to self-fusing alloy powder. For example, 74%Ni-14%Cr self-fusing alloy powder has a WC
The coefficient of thermal expansion (α) of the wear-resistant material layer formed by blending 40% by weight of powder is approximately 7×10 -6 /°C, and the WC
When the powder content is 20% by weight, the temperature is approximately 9×10 −6 /°C. Therefore, even if the base layer has the same coefficient of thermal expansion, if the powder blending ratio of the wear-resistant material layer differs, it is necessary to adjust the coefficient of thermal expansion of the intermediate layer accordingly. The adjustment can be easily made by changing the Ni content of the Fe--Ni alloy that is the intermediate layer material, as described above.

他方、基材層は、目的とする耐摩耗部材に、そ
の用途・使用条件に応じた靭性を付与する適宜の
金属材料(例えば、炭素鋼、低合金鋼、高合金鋼
等)が使用される。
On the other hand, the base material layer is made of an appropriate metal material (e.g., carbon steel, low alloy steel, high alloy steel, etc.) that imparts toughness to the intended wear-resistant member according to its application and usage conditions. .

なお、基材層表面に対する中間層の形成を溶射
法により行うので、溶射粒子は大気中を飛行する
過程で酸化をうける。従つて、中間層を形成した
のち、還元処理を行うことは、中間層の材質を改
善するために望ましいことである。
Note that since the intermediate layer is formed on the surface of the base material layer by a thermal spraying method, the thermal spray particles are oxidized while flying in the atmosphere. Therefore, it is desirable to perform a reduction treatment after forming the intermediate layer in order to improve the material quality of the intermediate layer.

実施例 第1図〔〕に示すように円周面に円弧状断面
を有する溝11が円周方向に形成されている炭素
鋼(S45C)製環体10を基材とし、その溝11
の表面のスケールを除去したのち、中間層材料と
して、Ni含有量が28at%および30at%である2
種類のFe−Ni合金粉末(200〜350メツシユ)を
用いて2つの溶射層21(Ni28at%)と溶射層
22(Ni30at%)からなる中間層20を形成し
た。その中間層20を、真空中、800℃で還元処
理したのち、第2図に示すように、基材10の円
周溝11と平行な凹陥部を有する軟鋼製キヤニン
グ材40を基材に溶接して、耐摩耗材層を形成す
るための空間Sを画成した。ついで、基材10の
表面に予め形成しておいた粉末投入溝50を介し
て、第3図のように、空間部S内に耐摩耗材料と
して、Ni−Cr系自溶性合金粉末とWC粉末との混
合粉末(WC粉末配合量:25重量%)を充填し
た。
Example As shown in FIG. 1 [ ], a carbon steel (S45C) ring body 10 in which a groove 11 having an arcuate cross section is formed in the circumferential direction on the circumferential surface is used as a base material, and the groove 11 is
After removing the scale on the surface of
An intermediate layer 20 consisting of two thermally sprayed layers 21 (28at% Ni) and a thermally sprayed layer 22 (30at% Ni) was formed using different kinds of Fe-Ni alloy powders (200 to 350 meshes). After reducing the intermediate layer 20 in a vacuum at 800°C, a mild steel canning material 40 having a concave portion parallel to the circumferential groove 11 of the base material 10 is welded to the base material, as shown in FIG. Thus, a space S for forming the wear-resistant material layer was defined. Next, as shown in FIG. 3, Ni-Cr self-fluxing alloy powder and WC powder are poured into the space S as wear-resistant materials through the powder input groove 50 previously formed on the surface of the base material 10. A mixed powder of (WC powder blending amount: 25% by weight) was filled.

混合粉末30を充填したのち、脱気しつつ空間
部Sを密封し、ついで熱間静水圧加圧焼結に付
し、温度:950℃、加圧力:1000Kgf/cm2の条件
下に焼結を完了した。その後、機械加工により、
キヤニング材を除去し、基材層とその円周溝内に
中間層を介して形成された耐摩耗材層からなる製
品を得た。その中間層の層厚は3mm(第1層およ
び第2層共に1.5mm)であり、耐摩耗材層の層厚
は10mmである。
After filling the mixed powder 30, the space S is sealed while deaerating, and then subjected to hot isostatic pressure sintering under the conditions of temperature: 950°C and pressing force: 1000 Kgf/cm 2 completed. Then, by machining,
The canning material was removed to obtain a product consisting of a base material layer and a wear-resistant material layer formed within the circumferential groove of the base material layer with an intermediate layer interposed therebetween. The layer thickness of the intermediate layer is 3 mm (both the first layer and the second layer are 1.5 mm), and the layer thickness of the wear-resistant material layer is 10 mm.

また、各層の熱膨張係数は次のとおりである。 Moreover, the thermal expansion coefficient of each layer is as follows.

基材層(S45C):14×10-6/℃ 中間層(Fe−Ni合金) 第1層(Ni28at%):12×10-6/℃ 第2層(Ni30at%):8×10-6/℃ 耐摩耗材層(Ni−Cr系自溶性合金+25%WC):
8×10-6/℃ なお、中間層および耐摩耗材層のいずれも緻密
な焼結組織を有し、各層間の接合は完全であるこ
とも確認された。
Base layer (S45C): 14×10 -6 /℃ Intermediate layer (Fe-Ni alloy) 1st layer (Ni28at%): 12×10 -6 /℃ 2nd layer (Ni30at%): 8×10 -6 /℃ Wear-resistant material layer (Ni-Cr self-fluxing alloy + 25% WC):
8×10 −6 /° C. It was also confirmed that both the intermediate layer and the wear-resistant material layer had a dense sintered structure, and the bond between each layer was perfect.

他方、比較例として、中間層を形成しない点を
除いて上記実施例と同じ条件で耐摩耗材を製造し
たが、基材層と耐摩耗材層との熱膨張係数の差が
大きいため、層厚の厚い耐摩耗材層を形成する場
合は割れの発生を避けることができず、形成可能
な耐摩耗材層の層厚は5mm以下であつた。
On the other hand, as a comparative example, a wear-resistant material was manufactured under the same conditions as in the above example except that no intermediate layer was formed, but the layer thickness was When forming a thick wear-resistant material layer, cracking cannot be avoided, and the thickness of the wear-resistant material layer that can be formed is 5 mm or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基材層の表面が複雑な形状を
有するものである場合にも、均一な層厚を有する
中間層と耐摩耗材層とを積層形成するとができ
る。また、その耐摩耗材層の摩耗抵抗性はセラミ
ツク粉末の配合割合により調節することができる
と同時に、耐摩耗材層と基材層の熱膨張係数に応
じて、中間層の熱膨張係数をそのNi含有量によ
り容易に調節することができる。しかも、中間層
および耐摩耗材層は緻密な焼結組織を有し、各層
間の結合も強固である。
According to the present invention, even when the surface of the base material layer has a complicated shape, the intermediate layer and the wear-resistant material layer having a uniform layer thickness can be laminated. In addition, the wear resistance of the wear-resistant material layer can be adjusted by the blending ratio of ceramic powder, and at the same time, the thermal expansion coefficient of the intermediate layer can be adjusted depending on the thermal expansion coefficient of the wear-resistant material layer and the base material layer. The amount can be easily adjusted. Moreover, the intermediate layer and the wear-resistant material layer have a dense sintered structure, and the bond between each layer is strong.

従つて、本発明方法は、圧延ロールやガイドロ
ーラ等、例えばカリバー部に中間層を介して耐摩
耗材層を積層形成したカリバー付き圧延ロールの
製造方法等として極めて有用である。
Therefore, the method of the present invention is extremely useful as a method for manufacturing a mill roll, a guide roller, etc., for example, a mill roll with a caliber in which a wear-resistant material layer is laminated on the caliber portion via an intermediate layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明方法の製造工程説明
図、第4図は中間層材であるFe−Ni合金のNi含
有量と熱膨張係数(α)の関係を示すグラフであ
る。 10:基材、20:中間層、30:耐摩耗材
料、40:キヤニング材。
1 to 3 are explanatory diagrams of the manufacturing process of the method of the present invention, and FIG. 4 is a graph showing the relationship between the Ni content and the coefficient of thermal expansion (α) of the Fe-Ni alloy that is the intermediate layer material. 10: Base material, 20: Intermediate layer, 30: Wear-resistant material, 40: Canning material.

Claims (1)

【特許請求の範囲】 1 金属基材層と耐摩耗材層とそれらの中間の熱
膨張係数を有する中間層とからなる耐摩耗部材の
製造方法であつて、 金属基材の表面に、Ni含有量が25〜36at%で
あるFe−Ni合金を溶射することにより中間層を
形成したのち、キヤニング材をあてがつて中間層
の表面に耐摩耗材層を形成するための空間部を画
成し、該空間部内に耐摩耗材料として自溶性合金
粉末とセラミツク粉末との均一な混合粉末を充填
し、混合粉末が充填された空間部内を脱気しつつ
密封したのち、熱間静水圧加圧焼結を行うことを
特徴とする耐摩耗部材の製造方法。 2 Ni含有量を段階的に変化させた2種以上の
Fe−Ni合金を金属基材の表面に順次溶射積層す
ることにより、熱膨張係数が金属基材層側から耐
摩耗材層側に段階的に変化する中間層を形成する
ことを特徴とする上記第1項に記載の耐摩耗部材
の製造方法。
[Scope of Claims] 1. A method for manufacturing a wear-resistant member comprising a metal base material layer, a wear-resistant material layer, and an intermediate layer having a thermal expansion coefficient intermediate therebetween, comprising: a Ni content on the surface of the metal base material; After forming an intermediate layer by thermal spraying an Fe-Ni alloy with a content of 25 to 36 at%, a caning material is applied to define a space for forming a wear-resistant material layer on the surface of the intermediate layer. A uniform mixed powder of self-fusing alloy powder and ceramic powder is filled into the space as a wear-resistant material, and after the space filled with the mixed powder is sealed while being deaerated, hot isostatic pressure sintering is performed. A method of manufacturing a wear-resistant member, characterized in that: 2 Two or more types with stepwise changes in Ni content
The above-mentioned feature is characterized in that an intermediate layer whose coefficient of thermal expansion changes stepwise from the metal base material layer side to the wear-resistant material layer side is formed by sequentially thermally spraying and laminating the Fe-Ni alloy on the surface of the metal base material layer. A method for manufacturing a wear-resistant member according to item 1.
JP15849386A 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO Expired - Lifetime JPH0236643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15849386A JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15849386A JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6314806A JPS6314806A (en) 1988-01-22
JPH0236643B2 true JPH0236643B2 (en) 1990-08-20

Family

ID=15672946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15849386A Expired - Lifetime JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0236643B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833154B2 (en) 2002-11-18 2010-11-16 Olympus Corporation Autoclave sterilization-compatible endoscope
JP5243764B2 (en) * 2007-10-03 2013-07-24 金井 宏彰 Catheter tube forming core material and method for manufacturing the same
JP5458655B2 (en) * 2009-04-30 2014-04-02 Jfeスチール株式会社 Work roll for hot finish rolling mill, hot finish rolling mill row and rolling method
EP2740553A1 (en) * 2012-12-07 2014-06-11 Sandvik Intellectual Property AB Method for manufacture of HIP consolidated component
JP6045094B2 (en) * 2013-03-08 2016-12-14 第一高周波工業株式会社 Method for forming self-fluxing alloy film

Also Published As

Publication number Publication date
JPS6314806A (en) 1988-01-22

Similar Documents

Publication Publication Date Title
EP0215941B1 (en) Titanium carbide/titanium alloy composite and process for powder metal cladding
US4859542A (en) Graded structure composites
JPH0448524B2 (en)
US4317850A (en) Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object
EP0005285B1 (en) Process for applying a dense layer of cermets or cemented carbides to a metal object
JPH0236643B2 (en) TAIMAMOBUZAINOSEIZOHOHO
JPH0437658A (en) Combined material and its production
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH1112758A (en) Metallic parts coated with cermet sintered compact, and their production
JPS63203705A (en) Composite sintered body of cubic boron nitride and cemented carbide
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP2001059147A (en) Composite member made of steel, having wear resistant sintered outer layer
JP3690618B2 (en) Cemented carbide composite roll
JPS6333504A (en) Production of columnar laminate
JPS6333108A (en) Superior wear resistant roll at high temperature
JPH0241708A (en) Composite roll
JPS63203221A (en) Metallic die
JPS6256502A (en) Hard facing method for integrally forming sintered hard layer on ferrous metallic plate
JP2004181520A (en) Composite rolling roll made of cemented carbide
JP2597105B2 (en) Copper member surface hardening method
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JPH0418956B2 (en)
JP2648307B2 (en) Composite cermet roll
JPS58199804A (en) Formation of abrasion resistant coating layer
Ikegaya et al. Study on the composition graded cemented carbide/steel by spark plasma sintering