JPS6314806A - Production of wear-resistant member - Google Patents

Production of wear-resistant member

Info

Publication number
JPS6314806A
JPS6314806A JP15849386A JP15849386A JPS6314806A JP S6314806 A JPS6314806 A JP S6314806A JP 15849386 A JP15849386 A JP 15849386A JP 15849386 A JP15849386 A JP 15849386A JP S6314806 A JPS6314806 A JP S6314806A
Authority
JP
Japan
Prior art keywords
wear
layer
base material
intermediate layer
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15849386A
Other languages
Japanese (ja)
Other versions
JPH0236643B2 (en
Inventor
Hisakatsu Nishihara
西原 久尅
Takao Mihara
三原 孝夫
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15849386A priority Critical patent/JPH0236643B2/en
Publication of JPS6314806A publication Critical patent/JPS6314806A/en
Publication of JPH0236643B2 publication Critical patent/JPH0236643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a wear-resistant member having an intricate shape by thermally spraying an Fe-Ni alloy contg. Ni at a limited ratio onto the surface of a metallic base material, pressing a canning material packed with a wear-resistant material thereon and subjecting the materials to hot hydrostatic pressurizing and sintering. CONSTITUTION:An intermediate layer 20 is formed on the surface of the metallic base material by thermally spraying the Fe-Ni alloy contg. 25-36at% Ni onto said surface. The coefft. of thermal expansion of the intermediate layer 20 obtd. by adjusting the Ni content of the above-mentioned alloy is adjusted to the intermediate of the respective coeffts. of thermal expansion of the above-mentioned metallic base material 10 and the under-mentioned wear- resistant material layer. The canning material 4 is then pressed to the intermediate layer 20 to delineate the space part for forming the wear-resistant material layer on the surface of the intermediate layer 20. The wear-resistant material 30 consisting of a uniform powder mixture composed of self-fluxing alloy powder of an Ni-Cr alloy, etc., and ceramic powder of WC, etc., is packed into said space part. While the inside of the space part is deaerated, the space part is hermetically sealed and the base material is subjected to the hot hydrostatic pressurizing and sintering. The dense and securely bonded wear-resistant material layer is thereby formed even on the base material 10 having the intricate surface shape via the intermediate layer 20 having a uniform film thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧延ロールや鋼材ガイドローラ等の耐摩耗部
材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing wear-resistant members such as rolling rolls and steel guide rollers.

〔従来の技術〕[Conventional technology]

圧延ロール等の耐摩耗部材は、部材全体を耐摩耗材料で
形成せずに、摩耗抵抗の必要な層のみを耐摩耗材料で形
成し、それ以外の部分には、比較的靭性の高い材料を適
用して2種の材料からなる積層構造とすることが、構造
上およびコスト上有利である。しかし、−Sに耐摩耗性
を存する層(耐摩耗層)を形成する材料は、多量の炭化
物を含有し、あるいは合金含有量の高い合金鋼材である
ために、靭性を有する層(基材層)との間に熱膨張係数
の差を生じるのが通例である。このため、製造工程の途
中で、または実使用時に、熱膨張係数の差に起因する割
れが往々にして発生する。
For wear-resistant parts such as rolling rolls, the entire member is not made of wear-resistant material, but only the layer that requires wear resistance is made of wear-resistant material, and the other parts are made of materials with relatively high toughness. It is advantageous in terms of structure and cost to form a laminated structure made of two types of materials. However, the material forming the wear-resistant layer (wear-resistant layer) in -S contains a large amount of carbide or is an alloy steel material with a high alloy content. ), it is common for there to be a difference in thermal expansion coefficient between the two. For this reason, cracks due to differences in thermal expansion coefficients often occur during the manufacturing process or during actual use.

これを解決するために、耐摩耗層と基材層との間に両者
の中間の熱膨張係数を有する中間層を形成して三層構造
とすることが有効なことはすでに知られている。また、
その製造方法としては、基材層と耐摩耗層との間に中間
層材として板状材を挾み、加熱下に加圧して三層の接触
面を融着させる方法、あるいは粉末を中間層材として基
材層の表面に所定の厚さに付与し、これに耐摩耗層を重
ねたうえ、加熱下に加圧して粉末層を焼結させると共に
三層の界面を融着させる方法などが行われている。
In order to solve this problem, it is already known that it is effective to form a three-layer structure between the wear-resistant layer and the base material layer by forming an intermediate layer having a coefficient of thermal expansion between the two. Also,
The manufacturing method is to sandwich a plate-shaped material as an intermediate layer material between the base material layer and the wear-resistant layer, and apply pressure under heat to fuse the contact surfaces of the three layers, or to apply powder to the intermediate layer. The powder layer is applied to the surface of the base material layer to a predetermined thickness, a wear-resistant layer is layered on top of this, and the powder layer is sintered by heating and pressure, and the interface between the three layers is fused. It is being done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の製造方法は、耐摩耗部材が平坦な板状体
のように単純な形状を有する場合に有効な方法であるが
、中間層の形状が複雑な場合には、中間層材の形成およ
び加工、更にはその上面の耐摩耗層の形成などが極めて
困難であり、また中間層や耐摩耗材層を均一な層厚に形
成することは容易でない。
However, the above manufacturing method is effective when the wear-resistant member has a simple shape such as a flat plate, but when the shape of the intermediate layer is complex, it is difficult to form the intermediate layer material. It is extremely difficult to process the material and to form a wear-resistant layer on the upper surface thereof, and it is not easy to form the intermediate layer or the wear-resistant material layer to have a uniform thickness.

本発明は上記問題点を解決することを目的とする。The present invention aims to solve the above problems.

〔問題点を解決するための手段および作用〕本発明の耐
摩耗部材の製造方法は、 基材層と耐摩耗材層と両者の中間の熱膨張係数を有する
中間層とからなる耐摩耗部材の製造方法であって、 基材の表面に、Ni含有量が25〜36a t%である
Fe−Ni合金を溶射することにより中間層を形成した
のち、キャニング材をあてがって中間層の表面に耐摩耗
材層を形成するための空間部を画成し、該空間部内に耐
摩耗材料として自溶性合金粉末とセラミック粉末との均
一な混合粉末を充填し、該混合粉末が充填された空間部
内を脱気しつつ密封したのち、熱間静水圧加圧焼結を行
うことを特徴としている。
[Means and effects for solving the problems] The method for manufacturing a wear-resistant member of the present invention includes manufacturing a wear-resistant member comprising a base material layer, a wear-resistant material layer, and an intermediate layer having a coefficient of thermal expansion intermediate between the two. The method comprises forming an intermediate layer by thermal spraying an Fe-Ni alloy having a Ni content of 25 to 36 at% on the surface of a base material, and then applying a canning material to coat the surface of the intermediate layer with a wear-resistant material. A space for forming a layer is defined, a uniform mixed powder of self-fusing alloy powder and ceramic powder is filled into the space as a wear-resistant material, and the space filled with the mixed powder is degassed. It is characterized by performing hot isostatic pressure sintering after sealing while heating.

本発明は、中間層材を溶射法により基材表面に吹き付け
て中間層を形成することとしたので、基材表面が凹凸ま
たは湾曲した複雑な形状であっても、その表面形状に則
した均一な層厚の中間層が形成される。
In the present invention, the intermediate layer is formed by spraying the intermediate layer material onto the surface of the base material using a thermal spraying method, so even if the surface of the base material has an uneven or curved complex shape, it can be uniformly formed according to the surface shape. An intermediate layer with an intermediate thickness is formed.

また、中間層材であるFi−Ni合金の熱膨張係数は第
4図に示すように、Ni含有量:25〜36at%の範
囲において、1×10−hから16X10−h/℃まで
の広い範囲に恒って変化するので、Ni含有量を変える
ことにより、比較的自由に基材層と耐摩耗材層の中間の
熱膨張係数を有する中間層を形成することができる。そ
の中間層の形成において、Ni含有量の異なるFe−N
i合金を2種以上使用し、これを基材表面に順次溶射し
て溶射層を積層することにより、熱膨張係数が基材層側
から耐摩耗材層側へ段階的に変化する中間層を形成する
ことも可能である。
In addition, as shown in Figure 4, the thermal expansion coefficient of the Fi-Ni alloy that is the intermediate layer material has a wide range from 1 x 10-h to 16 x 10-h/℃ in the Ni content range of 25 to 36 at%. By changing the Ni content, it is possible to relatively freely form an intermediate layer having a coefficient of thermal expansion between that of the base material layer and the wear-resistant material layer. In the formation of the intermediate layer, Fe-N with different Ni contents
By using two or more types of i-alloys and sequentially spraying them onto the surface of the base material and laminating the sprayed layers, an intermediate layer whose coefficient of thermal expansion changes stepwise from the base material layer side to the wear-resistant material layer side is formed. It is also possible to do so.

更に、自溶性合金粉末とセラミック粉末との混合粉末を
耐摩耗材料として形成される耐摩耗材層は、金属マトリ
ックスと、該マトリックスに分散相として分布するセラ
ミック粒子とからなる複合組織を有する焼結合金である
ので、極めて硬度が高く、すぐれた摩耗抵抗を有してい
る。また、その耐摩耗材層は中間層を介して形成される
ので、基材層との熱膨張係数の差が大きい場合でも、比
較的厚い層厚に形成することができる。
Furthermore, the wear-resistant material layer formed of a mixed powder of a self-fusing alloy powder and a ceramic powder as a wear-resistant material is a sintered alloy having a composite structure consisting of a metal matrix and ceramic particles distributed as a dispersed phase in the matrix. Therefore, it has extremely high hardness and excellent abrasion resistance. Moreover, since the wear-resistant material layer is formed through the intermediate layer, it can be formed to a relatively thick layer even if the difference in coefficient of thermal expansion from the base material layer is large.

なお、本発明は、熱間静水圧加圧焼結法により、基材層
と中間層と耐摩耗材層とを一体成形しているので、各層
とも緻密であり、且つ各層の接触界面は十分に融着し強
固な結合関係をなしている。
In addition, in the present invention, the base material layer, intermediate layer, and wear-resistant material layer are integrally molded using a hot isostatic pressure sintering method, so each layer is dense and the contact interface between each layer is sufficiently They are fused and form a strong bonding relationship.

本発明の耐摩耗材料を構成する自溶性合金は、Ni−C
r系(例えばCr:10〜17%、Fe 、 B −。
The self-fluxing alloy constituting the wear-resistant material of the present invention is Ni-C
r-based (e.g. Cr: 10-17%, Fe, B-.

St等5%以下、残部N i ) 、あるいはCO系合
金などである。
5% or less of St, etc., the balance being Ni), or a CO-based alloy.

自溶性合金粉末に配合されるセラミック粉末は、例えば
タングステンカーバイド(WC)、チタンナイトライド
(TiN)、チタンポライド(TiBり等の粉末である
The ceramic powder blended into the self-fusing alloy powder is, for example, tungsten carbide (WC), titanium nitride (TiN), titanium polide (TiB), or the like.

自溶性合金粉末に対するセラミック粉末の配合量は目的
とする耐摩耗部材の用途・使用条件等にもよるが一般的
に5〜80重量%の範囲が適当である。5重量%未満で
は、セラミック粒子の分散効果が不足し、一方80重量
%を越えると、耐摩耗材層が脆弱となるからである。
The amount of ceramic powder to be blended with the self-fusing alloy powder depends on the intended use and conditions of use of the wear-resistant member, but is generally in the range of 5 to 80% by weight. If it is less than 5% by weight, the dispersion effect of the ceramic particles will be insufficient, while if it exceeds 80% by weight, the wear-resistant material layer will become brittle.

耐摩耗材層の熱膨張係数は、自溶性合金粉末に対するセ
ラミック粉末の配合割合によって異なり、例えば74%
Ni14%Cr自溶性合金粉末にWC粉末を40重量%
配合して形成される耐摩耗材層の熱膨張係数(α)は約
7 xlO−’/’cであり、WC粉未配合量が20重
重量の場合は約9 Xl0−b/’Cである。従って、
基材層の熱膨張係数が同じであっても、耐摩耗材層の粉
末配合割合が異なる場合は、それに応じて中間層の熱膨
張係数を調整することが必要である。その調整は前記の
ように中間層材であるFe−Ni合金のNi含有量を変
えることにより容易に行うことができる。
The coefficient of thermal expansion of the wear-resistant material layer varies depending on the blending ratio of ceramic powder to self-fusing alloy powder, for example, 74%.
40% by weight of WC powder in Ni14%Cr self-fusing alloy powder
The coefficient of thermal expansion (α) of the wear-resistant material layer formed by blending is about 7 xlO-'/'c, and when the amount of WC powder not blended is 20% by weight, it is about 9 xl0-b/'C. . Therefore,
Even if the base material layer has the same coefficient of thermal expansion, if the powder blending ratio of the wear-resistant material layer differs, it is necessary to adjust the thermal expansion coefficient of the intermediate layer accordingly. The adjustment can be easily made by changing the Ni content of the Fe--Ni alloy that is the intermediate layer material, as described above.

他方、基材層は、目的とする耐摩耗部材に、その用途・
使用条件に応じた靭性を付与する適宜の金属材料(例え
ば、炭素鋼、低合金鋼、高合金鋼等)が使用される。
On the other hand, the base material layer is suitable for its intended use and wear resistance.
An appropriate metal material (for example, carbon steel, low alloy steel, high alloy steel, etc.) that provides toughness depending on the conditions of use is used.

なお、基材層表面に対する中間層の形成を溶射法により
行うので、溶射粒子は大気中を飛行する過程で酸化をう
ける。従って、中間層を形成したのち、還元処理を行う
ことは、中間層の材質を改善するために望ましいことで
ある。
Note that since the intermediate layer is formed on the surface of the base material layer by a thermal spraying method, the thermal spray particles are oxidized while flying in the atmosphere. Therefore, it is desirable to perform a reduction treatment after forming the intermediate layer in order to improve the material quality of the intermediate layer.

〔実施例〕〔Example〕

第1図CI)に示すように円周面に円弧状断面を有する
溝(11)が円周方向に形成されている炭素鋼(345
C)型環体(10)を基材とし、その溝(11)の表面
のスケールを除去したのち、中間層材料として、Ni含
有量が28at%および30a t%である2種類のF
e−Ni合金粉末(200〜350メツシュ)を用いて
2つの溶射Jl(21) (N i 28at%)と溶
射層(22) (N 130at%)からなる中間層(
20)を形成した。その中間層(20)を、真空中、8
00℃で還元処理したのち、第2図に示すように、基材
(10)の円周溝(11)と平行な凹陥部を有する軟鋼
製キャニング材(40)を基材に溶接して、耐摩耗材層
を形成するための空間(S)を画成した。ついで、基材
(10)の表面に予め形成しておいた粉末投入溝(50
)を介して、第3図のように、空間部(S)内に耐摩耗
材料として、Ni−Cr系自溶性合金粉末とWC粉末と
の混合粉末CWC粉未配合量:25重景重量を充填した
As shown in Fig. 1 CI), carbon steel (345
C) type ring body (10) was used as a base material, and after removing the scale on the surface of its groove (11), two types of F having Ni contents of 28 at% and 30 at% were used as intermediate layer materials.
Using e-Ni alloy powder (200 to 350 mesh), an intermediate layer (
20) was formed. The intermediate layer (20) is placed in a vacuum at 8
After reduction treatment at 00°C, as shown in Fig. 2, a mild steel canning material (40) having a concave portion parallel to the circumferential groove (11) of the base material (10) is welded to the base material. A space (S) for forming a wear-resistant material layer was defined. Next, a powder feeding groove (50) formed in advance on the surface of the base material (10) is inserted.
), as shown in Fig. 3, a mixed powder of Ni-Cr based self-fluxing alloy powder and WC powder was added as a wear-resistant material in the space (S), amount of CWC powder not blended: 25 heavy weight. Filled.

混合粉末(30)を充填したのち、脱気しつつ空間部(
S)を密封し、ついで熱間静水圧加圧焼結に付し、温度
:950℃、加圧カニ 1000kg f /crAの
条件下に焼結を完了した。その後、機械加工により、キ
ャニング材を除去し、基材層とその円周溝内に中間層を
介して形成された耐摩耗材層からなる製品を得た。その
中間層の層厚は3mm(第1層および第2層共に1.5
 m)であり、耐摩耗材層の層厚はiomsである。
After filling the mixed powder (30), the space (
S) was sealed and then subjected to hot isostatic pressure sintering, and the sintering was completed under the conditions of temperature: 950° C. and pressure crab 1000 kg f /crA. Thereafter, the canning material was removed by machining to obtain a product consisting of a base material layer and a wear-resistant material layer formed in the circumferential groove of the base material layer via an intermediate layer. The thickness of the intermediate layer is 3 mm (both the first and second layers are 1.5
m), and the layer thickness of the wear-resistant material layer is ioms.

また、各層の熱膨張係数は次のとおりである。Moreover, the thermal expansion coefficient of each layer is as follows.

基材層(S45C)  : 14X10−’/’C中間
層(1”e−Ni合金) 第1層(Ni28at%) : 12X10−’/’C
第2層(Ni30at%”) : 8 Xl0−’/℃
耐摩耗材層(Nt−Cr系自溶性合金+25%WC”)
  : 8 xlO−’/’c なお、中間層および耐摩耗材層のいずれも緻密な焼結組
織を有し、各層間の接合は完全であることも確認された
Base layer (S45C): 14X10-'/'C Intermediate layer (1"e-Ni alloy) First layer (Ni28at%): 12X10-'/'C
2nd layer (Ni30at%"): 8 Xl0-'/℃
Wear-resistant material layer (Nt-Cr self-fluxing alloy + 25% WC")
: 8 xlO-'/'c It was also confirmed that both the intermediate layer and the wear-resistant material layer had a dense sintered structure, and the bond between each layer was perfect.

他方、比較例として、中間層を形成しない点を除いて上
記実施例と同じ条件で耐摩耗材を製造したが、基材層と
耐摩耗材層との熱膨張係数の差が大きいため、層厚の厚
い耐摩耗材層を形成する場合は割れの発生を避けること
ができず、形成可能な耐摩耗材層の層厚は5鶴以下であ
った。
On the other hand, as a comparative example, a wear-resistant material was manufactured under the same conditions as in the above example except that no intermediate layer was formed, but the layer thickness was When forming a thick wear-resistant material layer, the occurrence of cracks cannot be avoided, and the thickness of the wear-resistant material layer that can be formed is 5 mm or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基材層の表面が複雑な形状を有するも
のである場合にも、均一な層厚を有する中間層と耐摩耗
材層とを積層形成することができる。また、その耐摩耗
材層の摩耗抵抗性はセラミック粉末の配合割合により調
節することができると同時に、耐摩耗材層と基材層の熱
膨張係数に応じて、中間層の熱膨張係数をそのNi含有
量により容易に調節することができる。しかも、中間層
および耐摩耗材層は緻密な焼結組織を有し、各層間の結
合も強固である。
According to the present invention, even when the surface of the base material layer has a complicated shape, the intermediate layer and the wear-resistant material layer having a uniform layer thickness can be laminated. In addition, the wear resistance of the wear-resistant material layer can be adjusted by adjusting the blending ratio of the ceramic powder, and at the same time, the thermal expansion coefficient of the intermediate layer can be adjusted depending on the thermal expansion coefficient of the wear-resistant material layer and the base material layer. The amount can be easily adjusted. Moreover, the intermediate layer and the wear-resistant material layer have a dense sintered structure, and the bond between each layer is strong.

従って、本発明方法は、圧延ロールやガイドローラ等、
例えばカリバ一部に中間層を介して耐摩耗材層を積層形
成したカリバー付き圧延ロールの製造方法等として極め
て有用である。
Therefore, the method of the present invention requires rolling rolls, guide rollers, etc.
For example, it is extremely useful as a method for manufacturing a rolling roll with a caliber in which a wear-resistant material layer is laminated on a portion of the caliber via an intermediate layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明方法の製造工程説明図、第4図
は中間層材であるFe−Ni合金のNi含有量と熱膨張
係数(α)の関係を示すグラフである。 10:基材、20:中間層、30:耐摩耗材料、40:
キャニング材。
1 to 3 are explanatory diagrams of the manufacturing process of the method of the present invention, and FIG. 4 is a graph showing the relationship between the Ni content and the coefficient of thermal expansion (α) of the Fe-Ni alloy that is the intermediate layer material. 10: Base material, 20: Intermediate layer, 30: Wear-resistant material, 40:
Canning material.

Claims (2)

【特許請求の範囲】[Claims] (1)金属基材層と耐摩耗材層とそれらの中間の熱膨張
係数を有する中間層とからなる耐摩耗部材の製造方法で
あって、 金属基材の表面に、Ni含有量が25〜36at%であ
るFe−Ni合金を溶射することにより中間層を形成し
たのち、キャニング材をあてがって中間層の表面に耐摩
耗材層を形成するための空間部を画成し、該空間部内に
耐摩耗材料として自溶性合金粉末とセラミック粉末との
均一な混合粉末を充填し、混合粉末が充填された空間部
内を脱気しつつ密封したのち、熱間静水圧加圧焼結を行
うことを特徴とする耐摩耗部材の製造方法。
(1) A method for manufacturing a wear-resistant member consisting of a metal base material layer, a wear-resistant material layer, and an intermediate layer having a thermal expansion coefficient intermediate therebetween, wherein the surface of the metal base material has a Ni content of 25 to 36 at. % by thermal spraying an Fe-Ni alloy, and then a canning material is applied to define a space for forming a wear-resistant material layer on the surface of the middle layer. The material is filled with a uniform mixed powder of self-fusing alloy powder and ceramic powder, and after the space filled with the mixed powder is degassed and sealed, hot isostatic pressure sintering is performed. A method for manufacturing a wear-resistant member.
(2)Ni含有量を段階的に変化させた2種以上のFe
−Ni合金を金属基材の表面に順次溶射積層することに
より、熱膨張係数が金属基材層側から耐摩耗材層側に段
階的に変化する中間層を形成することを特徴とする上記
第1項に記載の耐摩耗部材の製造方法。
(2) Two or more types of Fe with stepwise changes in Ni content
- The above-mentioned first method is characterized in that an intermediate layer whose coefficient of thermal expansion changes stepwise from the metal base material layer side to the wear-resistant material layer side is formed by sequentially thermally spraying and laminating the -Ni alloy on the surface of the metal base material layer. The method for manufacturing the wear-resistant member described in 2.
JP15849386A 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO Expired - Lifetime JPH0236643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15849386A JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15849386A JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6314806A true JPS6314806A (en) 1988-01-22
JPH0236643B2 JPH0236643B2 (en) 1990-08-20

Family

ID=15672946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15849386A Expired - Lifetime JPH0236643B2 (en) 1986-07-04 1986-07-04 TAIMAMOBUZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0236643B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082651A (en) * 2007-10-03 2009-04-23 Kanai Hiroaki Catheter tube molding core material and production method thereof
US7833154B2 (en) 2002-11-18 2010-11-16 Olympus Corporation Autoclave sterilization-compatible endoscope
JP2010260073A (en) * 2009-04-30 2010-11-18 Jfe Steel Corp Work roll for hot-finishing mill, hot-finishing mill train and rolling method
JP2014173131A (en) * 2013-03-08 2014-09-22 Dai Ichi High Frequency Co Ltd Method of forming self-fluxing alloy film
JP2016509124A (en) * 2012-12-07 2016-03-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ HIP solidified part manufacturing method and HIP processed part including wear-resistant layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833154B2 (en) 2002-11-18 2010-11-16 Olympus Corporation Autoclave sterilization-compatible endoscope
JP2009082651A (en) * 2007-10-03 2009-04-23 Kanai Hiroaki Catheter tube molding core material and production method thereof
JP2010260073A (en) * 2009-04-30 2010-11-18 Jfe Steel Corp Work roll for hot-finishing mill, hot-finishing mill train and rolling method
JP2016509124A (en) * 2012-12-07 2016-03-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ HIP solidified part manufacturing method and HIP processed part including wear-resistant layer
JP2014173131A (en) * 2013-03-08 2014-09-22 Dai Ichi High Frequency Co Ltd Method of forming self-fluxing alloy film

Also Published As

Publication number Publication date
JPH0236643B2 (en) 1990-08-20

Similar Documents

Publication Publication Date Title
US4228214A (en) Flexible bilayered sheet, one layer of which contains abrasive particles in a volatilizable organic binder and the other layer of which contains alloy particles in a volatilizable binder, method for producing same and coating produced by heating same
EP1727643B1 (en) Method of making sputtering target
JPH09507696A (en) Method for manufacturing composite metal products
GB1312151A (en) Manufacture of composite materials
US2359361A (en) Composite metal element and method of making same
EP0005285B1 (en) Process for applying a dense layer of cermets or cemented carbides to a metal object
JPS6314806A (en) Production of wear-resistant member
JPS60174805A (en) Manufacture of metal composite matter
US4280841A (en) Method for manufacturing a mechanical seal ring
US4849163A (en) Production of flat products from particulate material
JPH05156388A (en) Double-layered sintered sliding member and its manufacture
US4386959A (en) Method for compound sintering
JPS6333504A (en) Production of columnar laminate
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPH02175014A (en) Composite sintered hard alloy roll and its manufacture
JP2006118033A (en) Method for producing compositionally gradient cemented carbide
JPH03136846A (en) Preparation of heat-resistant and abrasion-resistant member
JP2698855B2 (en) Method of manufacturing screw for plastic molding machine and method of forming alloy layer
JPS6256502A (en) Hard facing method for integrally forming sintered hard layer on ferrous metallic plate
FI97452C (en) Preparation of a piece
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JPS63203221A (en) Metallic die
JPH0241708A (en) Composite roll
JPH03240940A (en) Screw for plastic molding machine and its manufacture
JPH03291112A (en) Guide roller for rolling and its manufacture