JP2006118033A - Method for producing compositionally gradient cemented carbide - Google Patents

Method for producing compositionally gradient cemented carbide Download PDF

Info

Publication number
JP2006118033A
JP2006118033A JP2004339596A JP2004339596A JP2006118033A JP 2006118033 A JP2006118033 A JP 2006118033A JP 2004339596 A JP2004339596 A JP 2004339596A JP 2004339596 A JP2004339596 A JP 2004339596A JP 2006118033 A JP2006118033 A JP 2006118033A
Authority
JP
Japan
Prior art keywords
die
cemented carbide
sintering
sintered body
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004339596A
Other languages
Japanese (ja)
Inventor
Shuichi Kamoda
秀一 鴨田
Yasuki Miyakoshi
康樹 宮腰
Hidenori Takahashi
英徳 高橋
Yoshio Nakajima
快雄 中嶋
Kenji Shimamura
健二 嶋村
Kenichi Sato
健一 佐藤
Koji Maki
孝司 牧
Hideo Ando
秀夫 安藤
Hiroaki Chagi
広明 茶木
Akihiro Taguchi
章弘 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAPPORO KENSAKU KOGYO KK
Hokkaido Prefecture
SPS Syntex Inc
Original Assignee
SAPPORO KENSAKU KOGYO KK
Hokkaido Prefecture
SPS Syntex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAPPORO KENSAKU KOGYO KK, Hokkaido Prefecture, SPS Syntex Inc filed Critical SAPPORO KENSAKU KOGYO KK
Priority to JP2004339596A priority Critical patent/JP2006118033A/en
Publication of JP2006118033A publication Critical patent/JP2006118033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compositionally gradient sintered compact combining wear resistance, weldability and machine workability using several kinds of cemented carbides with different compositions and different optimum sintering temperatures, to provide a method for producing a composite body obtained by joining them and steel, and to provide a compact obtained thereby. <P>SOLUTION: In this invention, green compacts with prescribed shape are beforehand molded, and they are piled or arranged inside a die, and are subjected to pulse electric sintering while being pressurized with punches, thus a dense sintered compact of compositionally gradient cemented carbides free from variation in shape and dimensions can be obtained. Further, since the sintering is performed in such a manner that the optimum temperature gradient is provided for the body to be sintered in the die using spacers, or punches and a die subjected to groove working, the sintered compact having desired uniform layers and gradient layers can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、組成が異なり、最適焼結温度が異なる数種類の超硬合金を用いて、耐摩耗性と溶接性及び機械加工性を兼ね備えた組成傾斜焼結体、又は、これらと鋼を接合した複合体を製造する方法と、それによって得られる成形体に関するものである。  In the present invention, a composition gradient sintered body having wear resistance, weldability, and machinability, or steel and these are joined using several kinds of cemented carbides having different compositions and different optimum sintering temperatures. The present invention relates to a method for producing a composite and a molded body obtained thereby.

耐摩耗性と溶接性及び機械加工性を兼ね備えた組成傾斜超硬合金を一工程で作製する方法として、従来法はダイスの外径側に段差やテーパを付け、そのダイス内部に各組成の粉末を順次充填・積層し、上下のパンチにて加圧しながらパルス通電を印して焼結している。これによって、ダイス内部の被処理物には段差やテーパに応じた厚さ方向の温度傾斜が付き、各組成に応じた最適温度での焼結がなされることになっている。このダイス外径側に段差やテーパを付ける場合、ダイスの肉厚差を大きくする程、焼結温度差も大となるが、肉厚を薄くし過ぎると、焼結圧力に耐えられず破損するし、また、厚くし過ぎると温度制御がききずらく、温度差が付かないなど限界がある。  As a method for producing a composition graded cemented carbide with wear resistance, weldability and machinability in one step, the conventional method is to provide a step or taper on the outer diameter side of the die and powder of each composition inside the die. Are sequentially filled and laminated, and pulsed energized while being pressed with upper and lower punches, and sintered. As a result, the workpiece in the die has a temperature gradient in the thickness direction corresponding to the step or taper, and is sintered at the optimum temperature corresponding to each composition. When adding a step or taper to the outer diameter of this die, the larger the die thickness difference, the larger the sintering temperature difference. However, if the thickness is made too thin, it will not withstand the sintering pressure and will be damaged. However, if it is too thick, temperature control is difficult and there is a limit such as no temperature difference.

また、液相焼結体である超硬合金をパルス通電焼結する場合、当然、本焼結法の特長である短時間加熱(急速昇温)で行うのが一般的であるが、この場合、パルス通電方向に対する直角平面においては均一な焼結温度が得られず、中央部に比べると外周側の方が温度が低くなり、外周側が焼結不足となること、あるいは中央部が焼結過多となり結合相成分が溶出することは良く経験することである。発明人らは、黒鉛製のダイス及びパンチを用いて、ダイス内試料の到達温度が1000℃となるまでパルス通電加熱し、その際のダイス内試料(φ30×5mm)の温度差を調べた。その結果、パンチとダイス間の隙間(径差)が0.2mm程度でも、中央部と外周部では100℃の温度差が見られ、また、隙間を無くしても短時間の加熱では数十℃の温度差が認められた(文献;北海道立工業技術センター、北海道立工業試験場 平成13年度共同研究報告書「傾斜組成及び反応焼結技術を応用した機能材料の開発」)。  In addition, when pulsed current sintering of cemented carbide, which is a liquid phase sintered body, is naturally performed by short-time heating (rapid temperature rise), which is a feature of this sintering method. In the plane perpendicular to the pulse current direction, a uniform sintering temperature cannot be obtained, and the temperature on the outer peripheral side is lower than the central part and the outer peripheral side is undersintered, or the central part is oversintered. It is a common experience for the binder phase components to elute. The inventors used a graphite die and punch to heat the pulse until the temperature reached by the sample in the die reached 1000 ° C., and examined the temperature difference of the sample in the die (φ30 × 5 mm). As a result, even when the gap (diameter difference) between the punch and the die is about 0.2 mm, a temperature difference of 100 ° C. is observed in the central portion and the outer peripheral portion. (Reference: Hokkaido Prefectural Industrial Technology Center, Hokkaido Prefectural Industrial Experiment Station 2001 Joint Research Report “Development of Functional Materials Applying Gradient Composition and Reaction Sintering Technology”).

このため、粉末材料が成形ダイ及び/又はパンチと接する面に、耐熱性導電材料と耐熱性絶縁材料とからなる半導電層を介在させて、パンチ側、ダイ側からの電気伝導性(通電量)を調節する方法が考案され、既に特許出願されている(特開2000−239071)。  For this reason, a semiconductive layer made of a heat-resistant conductive material and a heat-resistant insulating material is interposed on the surface where the powder material is in contact with the forming die and / or the punch, and the electric conductivity (energization amount from the punch side and die side) ) Has been devised and a patent application has already been filed (Japanese Patent Laid-Open No. 2000-239071).

従来法による、ダイス内に各組成の粉末を順次充填・積層し、上下のパンチにて加圧しながらパルス通電を印して焼結する方法では、数mm以上の厚さで、しかも平滑な層を順次積み重ねて組成傾斜体とする場合は問題とならないが、層が薄い場合には、粉末充填後、その層が不足する箇所が生じ、また、各層の形状が複雑であったり、非対称なものを作製する場合には、各粉末充填の度に混入防止用のジグが必要となり、場合によってはダイスの上下を逆転させて充填する必要があるなど処理が煩雑となっている。また、当然、充填後の各層厚さ、幅などもバラツキが大きく、同じ焼結体を作製することが困難となっている。  In the conventional method, a powder of each composition is filled and laminated in a die in sequence, and the powder is energized and sintered by applying pressure with upper and lower punches. However, if the layers are thin, there is no problem, but if the layer is thin, there will be a shortage of the layer after powder filling, and the shape of each layer will be complicated or asymmetric In order to manufacture the product, a jig for preventing mixing is required every time the powder is filled, and in some cases, it is necessary to fill the die by turning it upside down. In addition, naturally, the thickness and width of each layer after filling vary greatly, making it difficult to produce the same sintered body.

また、従来法では黒鉛等からなるダイスの外径側に段差やテーパを付けて、内部の被焼結体に温度傾斜を設けているが、これだけでは、適正な温度傾斜とならず良好な焼結体が得られないこともある。しかも、形状や組成(層)が非対称な焼結体等にはこの方法は適用し難く、材料、形状に対する設計の自由度が小さい。  In addition, in the conventional method, a step or taper is provided on the outer diameter side of a die made of graphite or the like, and a temperature gradient is provided in the internal sintered body. In some cases, no union can be obtained. Moreover, this method is difficult to apply to a sintered body having an asymmetric shape or composition (layer), and the degree of freedom in designing the material and shape is small.

さらに、粉末材料が成形ダイ及び/又はパンチと接する面に、耐熱性導電材料と耐熱性絶縁材料とからなる半導電層を介在させる方法は、塗布、焼き付け、乾燥などの処理が煩雑であり、多くの処理時間を要する。また、この塗膜面が粉末との接触面となり、その面粗度が転写されるため、被焼結体の塗膜との接触面が平滑とならないデメリットも生じる。  Furthermore, the method of interposing a semiconductive layer composed of a heat-resistant conductive material and a heat-resistant insulating material on the surface where the powder material is in contact with the molding die and / or the punch, the processes such as coating, baking, and drying are complicated. It takes a lot of processing time. Moreover, since this coating-film surface becomes a contact surface with powder and the surface roughness is transcribe | transferred, the demerit that the contact surface with the coating film of a to-be-sintered body becomes smooth also arises.

本発明は、組成が異なり、最適焼結温度が異なる数種類の超硬合金粉末を用いて組成傾斜焼結体を作製する過程において、あらかじめ所定形状を有し、かつ、分割・切り出しや軽い切削加工等に対しても耐えうる強度を有した圧粉体を成形しておき、これらをダイス型内に積み重ね、又は並べて、パンチにて加圧しながらパルス通電焼結する製造方法とそれによる成形体に関するものである。  The present invention has a predetermined shape in the process of producing a composition gradient sintered body using several types of cemented carbide powders having different compositions and different optimum sintering temperatures, and has a predetermined shape in advance, and is divided, cut out and lightly cut. The present invention relates to a manufacturing method in which green compacts having strength to withstand, etc. are molded, and these are stacked or arranged in a die mold and subjected to pulse current sintering while being pressed with a punch, and a molded article thereby Is.

また、この場合、溝加工を施したスペーサ、又はパンチ、ダイスを用いることによって、溝加工部分の通電経路を断ち、又は通電量を制御し、ダイス内の被焼結体に最適な温度傾斜を設けて焼結する方法とそれによって得られる成形体に関するものである。  Also, in this case, by using a grooved spacer, punch, or die, the energization path of the grooved part is cut off or the energization amount is controlled so that the optimum temperature gradient is applied to the sintered body in the die. The present invention relates to a method of providing and sintering and a molded body obtained thereby.

本発明によって、形状・寸法にバラツキが無く、緻密な組成傾斜超硬合金の焼結体が得られる。また、従来の方法では困難だった非対称の組成傾斜合金の焼結においても良好な温度傾斜を与えることができるため、材料設計の幅が拡大する。さらに、多数個の焼結体を作製する上では、短時間で、良質な焼結体が作製され、その結果、溶接、あるいは直接接合された耐久性の高い複合構造体を得ることができる。  According to the present invention, a sintered body of a dense composition gradient cemented carbide with no variation in shape and dimensions can be obtained. In addition, since a good temperature gradient can be given even in the sintering of an asymmetric composition gradient alloy, which was difficult with the conventional method, the range of material design is expanded. Furthermore, when producing a large number of sintered bodies, a high-quality sintered body is produced in a short time, and as a result, a highly durable composite structure that is welded or directly joined can be obtained.

本発明においては、多数回の繰り返し焼結に使用するダイス、パンチと合わせて、被焼結体との接触面側には使いきりを目的としたスペーサを用いる。この場合、スペーサのパンチ及びダイスとの接触側、又はスペーサと接触するパンチ及びダイスについては、被焼結体の焼結温度を調節するため、所定の箇所に凹み状や鋸歯状の溝加工を施しておく。  In the present invention, a spacer intended to be used up is used on the contact surface side with the object to be sintered together with a die and a punch used for repeated sintering many times. In this case, with respect to the contact side of the spacer with the punch and the die, or with respect to the punch and the die that comes in contact with the spacer, in order to adjust the sintering temperature of the sintered body, a recess or sawtooth-shaped groove is formed in a predetermined place. Give it.

併せて、被焼結体については、あらかじめ所定形状の圧粉体(ブロック)を各組成ごとに作製しておく。この作製には通常のプレス、冷間静水圧(CIP)法、あるいは焼結温度よりも低温での加圧・加熱による仮焼結法を適用する。次に、これによって所定形状に成形したブロック、又は、大型の圧粉体から切り出したブロックをダイス内に積み重ね、又は並べる。その後、上下のパンチによって加圧しながらパルス通電焼結する。焼結条件は特に限定する必要はないが、圧力はパンチ、ダイスの強度より低い範囲で、昇温速度は100〜300℃/分程度で良い。  In addition, a green compact (block) having a predetermined shape is previously prepared for each composition for the object to be sintered. For this production, a normal press, a cold isostatic pressure (CIP) method, or a pre-sintering method by pressing and heating at a temperature lower than the sintering temperature is applied. Next, blocks formed into a predetermined shape or blocks cut out from a large green compact are stacked or arranged in a die. Thereafter, pulse current sintering is performed while pressing with upper and lower punches. The sintering conditions are not particularly limited, but the pressure may be lower than the punch and die strength, and the temperature elevation rate may be about 100 to 300 ° C./min.

以下,本発明の実施例について、図面を参照しつつ詳細に説明する.
耐摩耗性を維持しつつ、溶接、又は機械加工が容易な組成傾斜超硬合金とするためには、超硬質となる組成の合金及び溶接しても亀裂、割れ等が生じない組成の合金、更にはこれらの熱膨張係数差を緩和するための中間的組成の合金、の計3つ、又は、それ以上の種類を組み合わせることが必要となる。発明人らは、WC−Co系合金におけるCo量、又は、WC−Ni系合金におけるNi量を10〜40wt%まで変えた各超硬合金と鋼をTIG溶接して、溶け込み性、溶接強度などを詳細に調べた。その結果、Co量及びNi量を30wt%以上とすることで、良好な接合性を示すことを明らかにした。これらの研究成果は、北海道立工業試験場報告:No.299、「鋼とのティグ溶接に及ぼす超硬合金中Co量の影響」、及びFGM2003 in札幌、第15回傾斜機能材料シンポジウム論文集、「組成傾斜したNi基超硬合金の開発と応用」にても報告している。また、この場合、超硬質組成の合金(例えばWC−10wt%Ni)と溶接可能合金(Co量、あるいはNi量を30wt%以上とした合金)の2層を直接積層し、焼結したものでは、それと鋼を溶接すると超硬質組成合金側に亀裂、あるいは割れが生じること、その改善には、応力緩和する中間的組成とした合金の一つ、あるいは複数が必要であることも明らかにしている。
これらの知見を基に、超硬質層としてWC−10wt%Co、中間層としてWC−15Niwt%、溶接層としてWC−30wt%Niの3層構造とした組成傾斜超硬合金を作製した。WC粒径はいずれも4.5μmとした。まず、各層の成形体(ブロック)を作製した。前記の通り、ブロックの作製法としてはCIPなど種々の方法を適用できるが、ここでは、所定形状の黒鉛製ダイス、パンチを用いて、パルス通電焼結法にて800〜840℃の低温加熱、10kNの加圧で作製した。図3はこの方法で得られた各ブロックを組み合わせたものである。この後、所定の黒鉛製ダイス内に各ブロックを装填し、上、下パンチにて加圧しながらパルス通電焼結法にて、1235℃(ダイス外周温度)、20kNの条件で焼結体を作製した。図4はこれらの方法で得られた組成傾斜超硬合金焼結体の断面硬さである。最表面の硬さが1500HV、中間層が約1000HV、溶接層が600HVを示し、各層ではほぼ一定の硬さで、全体としては階段状の硬さ分布を呈している。この硬さ分布は、同一条件で焼結したもの4個について測定したが、いずれも同じであった。図5は組成傾斜超硬合金とステンレス鋼板をTIG溶接した後の断面マクロ組織である。組成傾斜超硬合金においては所望の層構造を呈しており、溶接部近傍も亀裂、割れ等は認められず、良好な溶接体となっていることがわかる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In order to make a composition gradient cemented carbide that is easy to weld or machine while maintaining wear resistance, an alloy having a composition that becomes super hard and an alloy that does not cause cracks, cracks, etc. even when welded, Furthermore, it is necessary to combine a total of three or more kinds of alloys having intermediate compositions to alleviate these differences in thermal expansion coefficients. The inventors TIG welded each cemented carbide and steel in which the amount of Co in the WC-Co-based alloy or the amount of Ni in the WC-Ni-based alloy was changed to 10 to 40 wt%, and the penetration, welding strength, etc. Was examined in detail. As a result, it has been clarified that good bonding properties are exhibited when the Co content and Ni content are 30 wt% or more. These research results are reported in Hokkaido Industrial Research Institute Report: No. 299, “Effect of Co content in cemented carbide on TIG welding with steel”, FGM2003 in Sapporo, 15th Functionally Graded Materials Symposium, “Development and application of compositionally graded Ni-based cemented carbide” Even reporting. In this case, an alloy having an ultra-hard composition (for example, WC-10 wt% Ni) and a weldable alloy (an alloy having Co content or Ni content of 30 wt% or more) are directly laminated and sintered. It has also been clarified that when steel is welded to it, cracks or cracks are formed on the super-hard composition alloy side, and that improvement requires one or more alloys with an intermediate composition to relieve stress. .
Based on these findings, a composition gradient cemented carbide with a three-layer structure of WC-10 wt% Co as the super hard layer, WC-15 Ni wt% as the intermediate layer, and WC-30 wt% Ni as the weld layer was produced. The WC particle size was 4.5 μm in all cases. First, the molded body (block) of each layer was produced. As described above, various methods such as CIP can be applied as a method for producing the block, but here, using a graphite die having a predetermined shape and a punch, low-temperature heating at 800 to 840 ° C. by a pulse current sintering method, It was produced with a pressure of 10 kN. FIG. 3 is a combination of the blocks obtained by this method. Thereafter, each block is loaded into a predetermined graphite die, and a sintered body is produced under the conditions of 1235 ° C. (die outer peripheral temperature) and 20 kN by the pulse current sintering method while pressing with the upper and lower punches. did. FIG. 4 shows the cross-sectional hardness of the composition gradient cemented carbide sintered body obtained by these methods. The hardness of the outermost surface is 1500 HV, the intermediate layer is about 1000 HV, and the weld layer is 600 HV. Each layer has a substantially constant hardness and exhibits a stepwise hardness distribution as a whole. This hardness distribution was measured on four samples sintered under the same conditions, and all were the same. FIG. 5 is a cross-sectional macrostructure after TIG welding of a composition gradient cemented carbide and a stainless steel plate. It can be seen that the composition gradient cemented carbide has a desired layer structure, and no cracks, cracks, or the like are observed in the vicinity of the welded portion, and a good welded body is obtained.

次に、スペーサ等に溝加工することで通電経路を断ち、温度調節することにより均一な焼結体が得られることを実証した例を示す。
図6に示す形状の黒鉛製ダイス、パンチ、スペーサを用いて、WC−10wt%Niの超硬合金(直径20mm、厚さ約4.5mm)を焼結した。この場合、直径20mm、厚さ5mmのスペーサの片面(パンチとの接触面)に、中心から半径4mmまでの範囲に約0.1mm深さのフラットな凹み溝、ここから半径6mmまでの範囲に約0.1mm深さ、ピッチ約0.5mmの鋸歯状の溝を掘った。ダイス内に超硬合金を充填し、このスペーサを上部パンチと超硬合金との間に配置(溝加工面はパンチ側)し、最終圧力6.5kN、ダイス外周における到達温度1235℃、平均昇温速度140℃/分の条件でパルス通電焼結した。
図7に本法で得られた焼結体の平面における硬さ分布を示す。また、比較として、溝加工を施さず、両面平滑面とした同一材質のスペーサを用いて、同一条件で作製した焼結体の硬さ分布を示す。ともに、焼結体の測定面は0.1mm程度研削し、その後、ダイヤモンド(15μm)でバフ仕上げしている。溝加工していないスペーサを用いた場合の焼結体の硬さは、中央部で極端に高く、外周部にいくにつれて低下した、いわゆる山形の硬さ分布を呈している。これに対して、本法の溝加工によるスペーサを用いた場合の硬さは、図7に示すように外周部ではわずかに低いものの、それ以外の範囲ではほぼ同じ硬さを示しており、焼結における温度調整が良好になされていることが明らかである。
なお、溝加工していないスペーサを用いた場合の方が最高硬さが高くなっているが、これは、中央部が最適焼結温度よりも高温になったため、そこから結合相成分であるNiが溶出したためである。このことからも、溝加工スペーサを用いることで均一な焼結温度、均質な焼結体が得られたことが裏付けられる。
Next, an example will be shown in which it is demonstrated that a uniform sintered body can be obtained by cutting the energization path by performing groove processing on a spacer or the like and adjusting the temperature.
A WC-10 wt% Ni cemented carbide (diameter: 20 mm, thickness: about 4.5 mm) was sintered using a graphite die, punch and spacer having the shape shown in FIG. In this case, a flat recessed groove with a depth of about 0.1 mm in the range from the center to a radius of 4 mm on one side (contact surface with the punch) of the spacer having a diameter of 20 mm and a thickness of 5 mm, and from here to a radius of 6 mm. A serrated groove having a depth of about 0.1 mm and a pitch of about 0.5 mm was dug. Cemented carbide is filled in the die, and this spacer is placed between the upper punch and the cemented carbide (the groove processing surface is on the punch side), the final pressure is 6.5 kN, the temperature reached at the die outer periphery is 1235 ° C, the average rise Pulse current sintering was performed at a temperature rate of 140 ° C./min.
FIG. 7 shows the hardness distribution in the plane of the sintered body obtained by this method. In addition, as a comparison, the hardness distribution of a sintered body produced under the same condition using a spacer made of the same material having a smooth surface on both sides without performing groove processing is shown. In both cases, the measurement surface of the sintered body was ground by about 0.1 mm, and then buffed with diamond (15 μm). The hardness of the sintered body in the case of using a spacer that has not been grooved exhibits a so-called mountain-shaped hardness distribution that is extremely high in the central portion and decreases as it goes to the outer peripheral portion. On the other hand, the hardness when using the spacer by the groove processing according to this method is slightly lower at the outer peripheral portion as shown in FIG. It is clear that the temperature adjustment during the ligation is good.
Note that the maximum hardness is higher when spacers that are not grooved are used, but this is because the central part has become higher than the optimum sintering temperature, and Ni is the binder phase component from there. This is because of elution. This also confirms that a uniform sintered temperature and a uniform sintered body were obtained by using the groove processing spacer.

図1は本発明の実施形態の一例を示した成形体(ブロック)の積層状態と焼結用ダイス、パンチ、スペーサの斜視図(半割状態)である。  FIG. 1 is a perspective view (half-split state) of a molded body (block) laminated state and sintering dies, punches, and spacers showing an example of an embodiment of the present invention. 図2は本発明の実施形態の一例で、組成傾斜超硬合金を鋼母材等に溶接する手法を示した斜視図である。  FIG. 2 is an example of an embodiment of the present invention, and is a perspective view showing a method of welding a composition gradient cemented carbide to a steel base material or the like. 図3は低温度で圧粉状態とした各組成の成形体(ブロック)外観である。  FIG. 3 is an appearance of a molded body (block) of each composition in a compacted state at a low temperature. 図4は図3の成形体を型に装填し、パルス通電焼結した組成傾斜超硬合金の硬さ分布である。  FIG. 4 shows the hardness distribution of the composition gradient cemented carbide obtained by charging the compact of FIG. 図5は図3の成形体を型に装填し、パルス通電焼結した組成傾斜超硬合金とステンレス鋼板をTIG溶接した複合体の断面マクロ組織である。  FIG. 5 is a cross-sectional macrostructure of a composite in which the molded body of FIG. 3 is loaded into a mold and a composition gradient cemented carbide alloy and a stainless steel plate, which are pulse-electrically sintered, are TIG welded. 図6は本発明の実施形態の一例を示す、スペーサの溝加工状態とダイス及びパンチの斜視図(半割状態)である。  FIG. 6 is a perspective view (half-split state) of the groove processing state of the spacer and the dies and punches showing an example of the embodiment of the present invention. 図7は図6のスペーサ、ダイス、パンチを用いてパルス通電焼結した超硬合金の硬さ分布を平滑な(溝加工を施さない)スペーサを用いた場合と比較したものである。  FIG. 7 is a comparison of the hardness distribution of a cemented carbide that has been pulse-electrically sintered using the spacer, die, and punch of FIG. 6 with a smooth spacer (without groove processing).

符号の説明Explanation of symbols

1 耐摩耗層となる超硬合金
2 中間層となる超硬合金
3 溶接層となる超硬合金
4 ダイス
5 上部パンチ
6 下部パンチ
7 上部スペーサ(溝加工スペーサ)
7−1 凹み溝
7−2 鋸歯状溝
8 下部スペーサ
9 側部スペーサ(溝加工スペーサ)
10 組成傾斜超硬合金
11 溶接部
12 鋼母材
13 超硬合金(単層)
DESCRIPTION OF SYMBOLS 1 Cemented carbide used as wear-resistant layer 2 Cemented carbide used as intermediate layer 3 Cemented carbide used as weld layer 4 Die 5 Upper punch 6 Lower punch 7 Upper spacer (grooving spacer)
7-1 Recessed groove 7-2 Sawtooth groove 8 Lower spacer 9 Side spacer (Groove processing spacer)
DESCRIPTION OF SYMBOLS 10 Composition gradient cemented carbide 11 Welded part 12 Steel base material 13 Cemented carbide (single layer)

Claims (5)

組成が異なり、最適焼結温度が異なる数種類の超硬合金粉末を用いて組成傾斜焼結体を作製する過程において、あらかじめ所定形状の圧粉体を成形しておき、これらをダイス型内に積み重ね、又は並べて、パンチにて加圧しながらパルス通電焼結する製造方法。In the process of making a composition gradient sintered body using several types of cemented carbide powders with different compositions and different optimum sintering temperatures, green compacts of a predetermined shape are formed in advance and stacked in a die. Or a method of manufacturing by performing pulsed current sintering while pressing with a punch. 組成が異なり、最適焼結温度が異なる数種類の超硬合金粉末を用いてパルス通電焼結法にて組成傾斜焼結体を作製する過程において、溝加工を施したスペーサ、又はパンチ、ダイスを用いることによって、溝加工部分の通電経路を断ち、又は通電量を制御し、ダイス内の被焼結体に最適な温度傾斜を設けて焼結する方法。In the process of producing a composition gradient sintered body by pulse electric current sintering method using several kinds of cemented carbide powders with different compositions and different optimum sintering temperatures, a grooved spacer, punch, or die is used. This is a method in which the energization path of the groove processed portion is cut or the energization amount is controlled, and an optimum temperature gradient is provided to the sintered body in the die for sintering. 請求項1、2に記載の製造方法において、あらかじめ作製しておいた超硬合金焼結体と圧粉体を組み合わせた形でダイス型内に充填し、パンチにて加圧しながらパルス通電焼結する製造方法。3. The manufacturing method according to claim 1, wherein the die mold is filled in a combination of a cemented carbide sintered body and a green compact prepared in advance, and pulsed current sintering while pressing with a punch. Manufacturing method. 請求項1、2に記載の製造方法において、あらかじめ加工しておいた鋼等の溶製材と、あらかじめ作製しておいた超硬合金の焼結体、又は圧粉体を組み合わせた形でそれぞれダイス型内に充填し、パンチにて加圧しながらパルス通電焼結する製造方法。3. The manufacturing method according to claim 1 or 2, wherein each of the dies is a combination of a melted material such as steel that has been processed in advance and a sintered body of cemented carbide or a green compact that has been prepared in advance. A manufacturing method that fills in a mold and performs pulsed current sintering while pressing with a punch. 請求項1、2、3、4に記載の製造方法により製造された組成傾斜超硬合金及び複合体。A composition-graded cemented carbide and composite produced by the production method according to claim 1, 2, 3, 4.
JP2004339596A 2004-10-25 2004-10-25 Method for producing compositionally gradient cemented carbide Pending JP2006118033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339596A JP2006118033A (en) 2004-10-25 2004-10-25 Method for producing compositionally gradient cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339596A JP2006118033A (en) 2004-10-25 2004-10-25 Method for producing compositionally gradient cemented carbide

Publications (1)

Publication Number Publication Date
JP2006118033A true JP2006118033A (en) 2006-05-11

Family

ID=36536182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339596A Pending JP2006118033A (en) 2004-10-25 2004-10-25 Method for producing compositionally gradient cemented carbide

Country Status (1)

Country Link
JP (1) JP2006118033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062505A1 (en) 2006-11-20 2008-05-29 Kabushiki Kaisha Miyanaga Superhard tip and process for producing the same
KR101310206B1 (en) * 2011-10-21 2013-09-24 (재)대구기계부품연구원 Hige toughness functional graded hard metal tool for friction stir joining and manufacturing method thereof
CN103418788A (en) * 2013-07-23 2013-12-04 浙江大学 Device and method for thermoforming gradient materials
CN108620595A (en) * 2018-04-03 2018-10-09 鑫京瑞钨钢(厦门)有限公司 Hard alloy screw nut mold with multilayered and graded structure and its manufacturing method
CN110227818A (en) * 2019-07-18 2019-09-13 吉林大学 A kind of layering power spreading device for powder metallurgy function-graded material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363612A (en) * 2001-05-31 2002-12-18 Ss Alloy Kk Thermal processing equipment by electric heating
JP2003342610A (en) * 2002-05-22 2003-12-03 Daido Steel Co Ltd Metal sintered compact and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363612A (en) * 2001-05-31 2002-12-18 Ss Alloy Kk Thermal processing equipment by electric heating
JP2003342610A (en) * 2002-05-22 2003-12-03 Daido Steel Co Ltd Metal sintered compact and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062505A1 (en) 2006-11-20 2008-05-29 Kabushiki Kaisha Miyanaga Superhard tip and process for producing the same
US9463507B2 (en) 2006-11-20 2016-10-11 Kabushiki Kaisha Miyanaga Method for producing hard tip
KR101310206B1 (en) * 2011-10-21 2013-09-24 (재)대구기계부품연구원 Hige toughness functional graded hard metal tool for friction stir joining and manufacturing method thereof
CN103418788A (en) * 2013-07-23 2013-12-04 浙江大学 Device and method for thermoforming gradient materials
CN108620595A (en) * 2018-04-03 2018-10-09 鑫京瑞钨钢(厦门)有限公司 Hard alloy screw nut mold with multilayered and graded structure and its manufacturing method
CN108620595B (en) * 2018-04-03 2019-06-04 鑫京瑞钨钢(厦门)有限公司 Hard alloy screw nut mold and its manufacturing method with multilayered and graded structure
CN110227818A (en) * 2019-07-18 2019-09-13 吉林大学 A kind of layering power spreading device for powder metallurgy function-graded material

Similar Documents

Publication Publication Date Title
US4289833A (en) Liquid phase sintered dense composite body for brazed joints and method for making the same
RU2684464C2 (en) Compound roll
KR100623304B1 (en) Cutting segment, method for manufacturing cutting segment and cutting tool
JPH09194909A (en) Composite material and its production
JP2015506818A (en) High pressure carbide components incorporating gradient structures
JP2006118033A (en) Method for producing compositionally gradient cemented carbide
JP2014531700A (en) Method for producing semi-finished products for electrical contacts and contact pieces
US20120301675A1 (en) Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
KR100873467B1 (en) Method and apparatus of pressure-assisted electric-current sintering
JPS60174805A (en) Manufacture of metal composite matter
JP2611934B2 (en) Cemented carbide-based wear-resistant material and method for producing the same
US4425299A (en) Method for bonding sintered metal pieces
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by spark plasma sintering (SPS) method and its industrial applications
KR101053879B1 (en) Cemented carbide-steel bonding body and method for manufacturing the same
JP2018505313A (en) Coating source
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
CN110328371B (en) Method for manufacturing yin-yang matching true color separation jewelry
JPS58141880A (en) Joining method of sintered hard alloy
FR2461541A1 (en) COMPOSITE SINTERING PROCESS
JP2011011927A (en) Method for producing hafnium carbide sintered compact
JP7296466B2 (en) Method for manufacturing metal member
WO2022095112A1 (en) Slider manufacturing method, slider and textile machine using same
US11951709B1 (en) Canister and method of production
JPS59209473A (en) Production of bonding member for sintered hard alloy and sintered steel
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Effective date: 20090818

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091016

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100702