JPS63203221A - Metallic die - Google Patents

Metallic die

Info

Publication number
JPS63203221A
JPS63203221A JP3662287A JP3662287A JPS63203221A JP S63203221 A JPS63203221 A JP S63203221A JP 3662287 A JP3662287 A JP 3662287A JP 3662287 A JP3662287 A JP 3662287A JP S63203221 A JPS63203221 A JP S63203221A
Authority
JP
Japan
Prior art keywords
carbide
alloy
mold
carbides
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3662287A
Other languages
Japanese (ja)
Inventor
Toshio Okitsu
沖津 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3662287A priority Critical patent/JPS63203221A/en
Publication of JPS63203221A publication Critical patent/JPS63203221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PURPOSE:To improve the durability and profitability of a die by integrally coating the alloy layer of corrosion resistance, wear resistance and heat resistance dispersing a carbide on the material working face of the die using a metal material. CONSTITUTION:As correction, wear and heat resistant alloy, the alloy dispersing the carbide of the element of group IVA, VA and VIA of a periodic table or one kind or more than two kinds of carbide selected from among the compound carbide with these carbides as the basic components on the ground of Ni base or Co base alloy is taken. The alloy layer is formed by subjecting the mixture of one kind or more than two kinds of compound carbides to build up welding by powder building-up or integrally sintered by HIP sintering. At this time, the grain size of the carbide is taken in the range of 5-300mum and the mixing amt. of the carbide in the range of 10-80% at volume ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐食性、耐摩耗性、耐熱性に優れた金型に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a mold having excellent corrosion resistance, wear resistance, and heat resistance.

〔従来の技術〕[Conventional technology]

近年、技術の高度化に伴って、金型による型加工品は寸
法管理が益々厳しくなってきた。
In recent years, with the advancement of technology, dimensional control of molded products using molds has become increasingly strict.

これに伴って、型材料としても耐摩耗性、耐食性に優れ
た高級材料が志向される様になった。
Along with this, high-grade materials with excellent wear resistance and corrosion resistance have become desirable as mold materials.

従来、型材料としては、工具鋼とりわけ5KD−11,
5KD−61等の材質が一般的に用いられているが、こ
の材料では上記要求に対応できなくなっているのが現状
である。
Conventionally, tool steel, especially 5KD-11,
Although a material such as 5KD-61 is generally used, the current situation is that this material cannot meet the above requirements.

この結果、一部の分野では、WC−Co系の超硬合金も
使用される様になったが、この合金は耐食性に問題があ
る上に、値段も極端に高く、使用分野が制限される。こ
のため、耐食性、耐摩耗性に優れ、値段も安く、汎用性
のある型材が望まれている。
As a result, WC-Co-based cemented carbide alloys have come to be used in some fields, but this alloy has problems with corrosion resistance and is extremely expensive, limiting the fields of use. . Therefore, there is a need for a mold material that has excellent corrosion resistance and wear resistance, is inexpensive, and is versatile.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、かかる経緯に鑑みてなされたもので、その目
的とする所は安価で、汎用性があって、耐食、耐摩、耐
熱性に優れた新しい構造の金型を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a mold with a new structure that is inexpensive, versatile, and has excellent corrosion resistance, wear resistance, and heat resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記問題に関して鋭意研究を行った結果次
の知見を得た。本発明は、この知見をもとになされたも
のである。
The inventor of the present invention obtained the following knowledge as a result of intensive research regarding the above problem. The present invention was made based on this knowledge.

(1)  基材として金属材料、特に鉄鋼材料を用いた
金型の材料加工面に、炭化物の分散した耐食、耐摩耗、
耐熱合金の層を一体的に被覆した構造の、いわゆる複合
構造の金型にすると、上記問題点が解決できること。
(1) Corrosion-resistant, abrasion-resistant,
The above-mentioned problems can be solved by using a mold with a so-called composite structure, in which a layer of heat-resistant alloy is integrally coated.

(2)炭化物の分散した耐食、耐摩耗、耐熱合金として
は、Ni基あるいはGo基合金の素地に、周期律表の第
rVA、VA、VIA族の元素の炭化物あるいはこれら
の炭化物を基本成分とする複合炭化物・め中から選ばれ
た1種あるいは2種以上の炭化物が分散した合金が好ま
しいこと。
(2) Corrosion-resistant, wear-resistant, and heat-resistant alloys with dispersed carbides include carbides of elements in groups rVA, VA, and VIA of the periodic table, or carbides of these carbides as basic components, on a base of Ni-based or Go-based alloys. It is preferable to use an alloy in which one or more types of carbides selected from composite carbides and medium are dispersed.

(3)上記被覆層の形成には、Ni基あるいはCo基の
合金粉末と、周期律表の第IVA、VA、VIA族元素
の炭化物あるいは、これらの炭化物を基本成分とする複
合炭化物の1種あるいは2種以上の粉末の混合物を粉体
肉盛によって肉盛溶接する方法あるいはHIP焼結によ
って一体的に焼結させる方法が有効であること。
(3) To form the above-mentioned coating layer, Ni-based or Co-based alloy powder and carbides of Group IVA, VA, and VIA elements of the periodic table, or one type of composite carbide containing these carbides as basic components, are used. Alternatively, a method of welding a mixture of two or more types of powder by powder overlay or a method of integrally sintering by HIP sintering is effective.

(4)上記炭化物の粒径は5〜300μmの範囲のもの
が好ましいこと。
(4) The grain size of the carbide is preferably in the range of 5 to 300 μm.

(5)上記炭化物の混合量は、体積比で10〜80%の
範囲が好ましいこと。
(5) The amount of the carbide mixed is preferably in the range of 10 to 80% by volume.

〔作 用〕[For production]

金型材料の加工面は極めて複雑な曲面を呈することもあ
り、このような加工面に薄くて均一な厚みの合金層を形
成するには、肉盛溶接法あるいはHIP焼結法が最も好
ましい方法である。
The machined surface of the mold material may have an extremely complex curved surface, and in order to form a thin and uniformly thick alloy layer on such a machined surface, overlay welding or HIP sintering is the most preferable method. It is.

肉盛溶接あるいはHIP焼結するためには、素地を形成
する合金は耐食、耐摩、耐熱性の外に、金型基材の融点
以下の温度で基材に融着あるいは焼結でき、しかも炭化
物となじみの良いことが必要になる。
In order to perform overlay welding or HIP sintering, the alloy forming the base material must not only be corrosion resistant, wear resistant, and heat resistant, but also be able to be fused or sintered to the base material at a temperature below the melting point of the mold base material, and also be carbide-resistant. It is necessary to have a good sense of familiarity.

本発明の素地成分にNii、 CojJ合金が選んだの
は、このことを考慮したからである。
It is with this consideration in mind that Nii and CojJ alloys were selected as the base components of the present invention.

旧、 Co以外の成分としては色々な組合せがあるが、
例えば次の組合せのものが有効である。
There are various combinations of ingredients other than Co.
For example, the following combinations are effective.

Cr: 5.0〜20.Owt、% 基地中に固溶して基地の硬さの向上に有効であり、また
Cと結合して炭化物を形成して耐摩耗性を高める。しか
し5.0%未満では耐摩耗性、耐食性が不十分であり、
20.0%を越えると脆くなるので好ましくない。
Cr: 5.0-20. Owt, % It dissolves in solid solution in the base and is effective in improving the hardness of the base, and also combines with C to form carbide to improve wear resistance. However, if it is less than 5.0%, wear resistance and corrosion resistance are insufficient.
If it exceeds 20.0%, it becomes brittle, which is not preferable.

最も好ましい範囲は10.0〜18.0%である。The most preferred range is 10.0-18.0%.

B:1.Q〜5.0 匈t0% 組成中に高硬度の硼化物を析出させるので合金の硬さを
高め、また耐摩耗性を向上させるのに効果があり、更に
溶融点を下げる効果がある。
B:1. Q~5.0 0% High hardness boride is precipitated in the composition, which is effective in increasing the hardness of the alloy and improving wear resistance, and furthermore, has the effect of lowering the melting point.

しかし、1%未満では十分な硬さかえられず、溶融点も
高くなり、肉盛後、あるいは焼結後冷却する際に割れや
すくなる。また、5.0%を越えると合金が脆くなり割
れやすくなるので好ましくない。
However, if it is less than 1%, sufficient hardness cannot be achieved, the melting point becomes high, and it becomes easy to crack during cooling after overlaying or sintering. Moreover, if it exceeds 5.0%, the alloy becomes brittle and easily cracks, which is not preferable.

最も好ましい範囲は2.4〜4.0%である。The most preferred range is 2.4-4.0%.

Fe:10%以下 基地の靭性向上に有効であるが、10.0%を越えると
、基地の硬さを低下させ、また耐食性も低下させるので
好ましくない。
Fe: 10% or less is effective in improving the toughness of the base, but if it exceeds 10.0%, it is not preferable because it reduces the hardness of the base and also reduces the corrosion resistance.

最も好ましい範囲は3〜6%である。The most preferred range is 3-6%.

Si:0.5〜5.0% 基地の高硬度化に有効で、また脱酸元素としても必要で
ある。しかし、0.5%未満では必要な硬さが得られず
、また5、 0%を越えると靭性を悪化させるので好ま
しくない。
Si: 0.5-5.0% Effective for increasing the hardness of the base, and also necessary as a deoxidizing element. However, if it is less than 0.5%, the necessary hardness cannot be obtained, and if it exceeds 5.0%, the toughness deteriorates, which is not preferable.

最も好ましい範囲は、2.0〜4.0%である。The most preferred range is 2.0-4.0%.

C:2.0%以下 NiあるいはCoに固溶して強度を高めると共に、合金
元素と結合して炭化物を形成し、耐摩耗性を向上させる
。しかし、2.0%を越えると靭性を低下させるので好
ましくない。
C: 2.0% or less It forms a solid solution in Ni or Co to increase strength, and also combines with alloying elements to form carbides to improve wear resistance. However, if it exceeds 2.0%, it is not preferable because it reduces toughness.

最も好ましい範囲は、0.4〜1.0%である。The most preferred range is 0.4-1.0%.

本発明では上記Ni基、Co基の合金素地の中に周期律
表の第IVA、VA、VIA族元素の炭化物あるいは、
これらを基本成分とする複合炭化物の中から選ばれた1
種又は2種以上の炭化物が分散されている。
In the present invention, carbides of Group IVA, VA, VIA elements of the periodic table, or
1 selected from composite carbides containing these as basic components
Seeds or two or more types of carbides are dispersed.

これらの炭化物は高硬度の炭化物であり、肉盛後あるい
は焼結後の合金に十分な耐摩耗性を与えるが、なかでも
比重6.5〜8.5の炭化物が最も好ましい。
These carbides are highly hard carbides and provide sufficient wear resistance to the alloy after overlaying or sintering, but carbides having a specific gravity of 6.5 to 8.5 are most preferred.

比重がこの範囲のものであると、炭化物はNi基、Co
基の合金素地(比重約7.5)の中に均等に分散するこ
とができる。
When the specific gravity is within this range, the carbide contains Ni groups, Co
It can be evenly dispersed in the base alloy matrix (specific gravity approximately 7.5).

また、炭化物の全量の30体積以上をこの炭化物にする
と、残りの炭化物は上記比重範囲を逸脱するものでも炭
化物全体の分散性はほとんど阻害されることはない。
Moreover, if 30 volumes or more of the total amount of carbide is made up of this carbide, even if the remaining carbide has a specific gravity outside the above range, the dispersibility of the entire carbide will hardly be hindered.

使用する炭化物の粒径は、5〜300μ翔の範囲が好ま
しい範囲である。5μm未満では肉盛中あるいは焼結中
に、素地に過度に固溶することがある。また、300μ
mを越えると、肉盛層あるいは焼結層に割れが生じやす
くなり好ましくない。
The particle size of the carbide used is preferably in the range of 5 to 300 microns. If the thickness is less than 5 μm, excessive solid solution may occur in the base material during build-up or sintering. Also, 300μ
If it exceeds m, cracks tend to occur in the built-up layer or sintered layer, which is not preferable.

炭化物の混合量は、体積比で10〜80%の範囲が好ま
しいが、肉盛溶接によって合金層を形成する場合は、上
限を50%に抑えるのが好ましい。
The amount of carbide mixed is preferably in the range of 10 to 80% by volume, but when forming an alloy layer by overlay welding, it is preferable to suppress the upper limit to 50%.

肉盛溶接では、50%を越えると割れに対して過度に敏
感になるためである。
This is because overlay welding becomes excessively sensitive to cracking if it exceeds 50%.

HIP焼結による場合は、80%まで添加しても割れに
対しては比較的安全である。
In the case of HIP sintering, it is relatively safe against cracking even if it is added up to 80%.

以上のようにして得られる耐食、耐摩耗性合金の層は、
肉盛溶接あるいはHIP焼結によって形成されるので、
拡散層を介して金型母材に強固に結合し、耐剥離性が大
きい。
The corrosion-resistant and wear-resistant alloy layer obtained in the above manner is
It is formed by overlay welding or HIP sintering, so
It is firmly bonded to the mold base material through the diffusion layer and has high peeling resistance.

次に、本発明金型の母材について述べる。Next, the base material of the mold of the present invention will be described.

本発明の肉盛層あるいは焼結層は、素地を構成する合金
そのものが脆くて割れやすい材質であるうえに、更に炭
化物粒子が分散しているので、冷却時の引張応力によっ
て割れが発生しゃすい。
The overlay layer or sintered layer of the present invention is not only made of a material that is brittle and easily cracked, but also has carbide particles dispersed therein, making it difficult for cracks to occur due to tensile stress during cooling. .

一方、金型母材としては機械構造用炭素鋼、合金鋼、そ
の他用途に応じて各種材質の鋼材を適用できるが、その
中でオーステナイト系ステンレス鋼を使用するのが、ク
ラック防止の観点からは有利である。すなわち、母材は
熱膨張(収縮)係数が大きいため、肉盛層あるいは焼結
層の収縮に十分に追従することができる。また、冷却時
に変態が起らず、オーステナイト状態のままであるので
、塑性変形能が大きく、割れ防止に有利である。
On the other hand, carbon steel for mechanical structures, alloy steel, and various other steel materials can be used as the mold base material depending on the application, but austenitic stainless steel is the best choice from the viewpoint of preventing cracks. It's advantageous. That is, since the base material has a large coefficient of thermal expansion (contraction), it can sufficiently follow the contraction of the built-up layer or the sintered layer. Furthermore, since no transformation occurs during cooling and the austenitic state remains, the plastic deformability is large and is advantageous in preventing cracking.

本発明の合金層を形成する方法としては、前記したよう
に肉盛溶接法およびHI P焼結法が好ましい方法であ
るが、次に、これらの方法につい′て述べる。
As described above, the overlay welding method and the HIP sintering method are preferred methods for forming the alloy layer of the present invention.Next, these methods will be described.

(1)  肉盛溶接法 熱源としてガスあるいはプラズマを用い、前記した粉体
材料を溶接部に吹きつけ、同じ熱源あるいは別の熱源を
使って基地金属(Ni基、C。
(1) Overlay welding method Using gas or plasma as a heat source, the above-mentioned powder material is blown onto the welding area, and the base metal (Ni-based, C, etc.) is used using the same heat source or another heat source.

基合金)を溶融して、母材および炭化物となじませて一
体化させる方法である。
This is a method in which the base alloy (base alloy) is melted and blended with the base metal and carbide to integrate them.

(2)HIP焼結法 金型母材の加工面に鉄板で作ったキャニング材を当接さ
せることなく離隔して配置し、底面および側面の一端を
封止材で封止した後、他端の側面より前記した原料粉末
の混合物を充てんし、脱気した後他端の側面も封止する
(2) HIP sintering method A canning material made of an iron plate is placed on the processed surface of the mold base material at a distance without contacting it, and after sealing one end of the bottom and side surfaces with a sealing material, the other end is The mixture of raw material powders described above is filled from one side of the container, and after degassing, the other end of the mixture is also sealed.

次に、これを熱間静水圧焼結(HIP焼結)に付し、キ
ャニング材に作用する加圧力で上記原料粉末を金型母材
に押し当て、焼結させる。
Next, this is subjected to hot isostatic pressure sintering (HIP sintering), and the raw material powder is pressed against the mold base material by the pressure applied to the canning material, and sintered.

焼結後、キャニング材を除去して所定寸法に仕上げるこ
とにより、金型が完成する。
After sintering, the canning material is removed and the mold is finished to a predetermined size.

〔実施例〕〔Example〕

本発明の構造を実施例図面に゛よって説明する。 The structure of the present invention will be explained with reference to the drawings.

第1図(a)、 (b)は本発明実施例金型の構造を説
明する図である。
FIGS. 1(a) and 1(b) are diagrams illustrating the structure of a mold according to an embodiment of the present invention.

1は金型母材、2は母材1の上に被覆された耐食、耐摩
耗、耐熱性合金の層である。
1 is a mold base material, and 2 is a layer of a corrosion-resistant, wear-resistant, and heat-resistant alloy coated on the base material 1.

合金層2は、Ni基、Co基合金の基地の中に周期律表
第1’/A、VA、VIA族元素の炭化物あるいはこれ
らの炭化物を基本成分とする複合炭化物が分散した合金
から成り、母材1に冶金的に接合されている。
The alloy layer 2 is made of an alloy in which carbides of Group 1'/A, VA, and VIA elements of the periodic table or composite carbides containing these carbides as basic components are dispersed in a base of Ni-based and Co-based alloys, It is metallurgically joined to the base material 1.

金型母材1に合金層2を被覆するにあたっては、母材1
をあらかじめ金型曲面に荒加工して、この面に合せて合
金層を被覆する場合と、母材は未加工(平面)のまま、
この上に合金層を必要な厚さ被覆して、この被覆層に金
型の曲面を後加工する場合、及びこの両方を折衷する場
合がある。第1図(a)は母材をあらかじめ加工した場
合のもので、金型曲面の起伏が激しいものに有効である
。第1図(blは母材は未加工のまま被覆して後で加工
する場合のもので、金型曲面が比較的平坦なものに有利
である。
In coating the mold base material 1 with the alloy layer 2, the base material 1
In some cases, the base metal is rough-machined into a mold curved surface in advance and the alloy layer is coated on this surface, and in other cases, the base material is left unprocessed (flat).
There are cases in which an alloy layer is coated on this to a required thickness and the curved surface of the mold is post-processed on this coating layer, and there are cases in which both are combined. FIG. 1(a) shows the case where the base material has been processed in advance, and is effective for molds with severe undulations on the curved surface. Figure 1 (bl) shows the case where the base material is coated unprocessed and processed later, which is advantageous for molds with relatively flat curved surfaces.

次に、第1図(a)の構造の金型をHIP焼結及び肉盛
法で製造する場合の具体的な実施例について述べる。
Next, a specific example will be described in which a mold having the structure shown in FIG. 1(a) is manufactured by HIP sintering and overlaying.

実施例1:HIP焼結を利用する場合 HIP焼結を利用して本発明を実施する場合の具体的な
要領を第2図により説明する。
Example 1: When using HIP sintering A specific procedure for carrying out the present invention using HIP sintering will be explained with reference to FIG.

1は金型母材、2はキャニング材、3はキャニング材と
母材の側面の隙間を封止する側面封止材、4はキャニン
グ材と母材の隙間に充てんされた焼結原料粉末である。
1 is the mold base material, 2 is the canning material, 3 is the side sealing material that seals the gap between the side surfaces of the canning material and the base material, and 4 is the sintered raw material powder filled in the gap between the canning material and the base material. be.

く金型母材〉 金型母材は1100X100X50の材質が30M44
0ブロツクを用いて、第2図の1にて示すような断面形
状(最大溝深さ10mm)にあらかじめ荒加工したもの
を使用した。
Mold base material> The mold base material is 1100X100X50 and the material is 30M44
A 0 block was used that had been rough-machined in advance into a cross-sectional shape (maximum groove depth 10 mm) as shown at 1 in FIG.

〈キャニング材〉 キャニング材2には、厚さ2龍の軟鋼板を第2図に示す
ような断面形状にあらかじめ金型の曲面形状に沿って成
形加工したものを用いた。
<Canning Material> As the canning material 2, a mild steel plate having a thickness of 2 mm was previously formed into a cross-sectional shape as shown in FIG. 2 along the curved shape of a mold.

〈焼結合金〉 焼結合金の原料粉末の組成を第1表に示す。<Sintered alloy> Table 1 shows the composition of the raw material powder for the sintered alloy.

〈原料粉末の充てん〉 第2図に示すような配置で、金型母材1とキャニング材
2を15mの隙間を置いて配置し、同図の左側面の隙間
を残して、他の側面の隙間は側面封止材3で封止し、残
った左側隙間より原料粉末4を充てんし、充てん後脱気
し、残りの隙間を封止した。これを前記第1表の隘1〜
6の組成の各々について行った。
<Filling with raw material powder> In the arrangement shown in Figure 2, mold base material 1 and canning material 2 are placed with a gap of 15 m, leaving a gap on the left side of the figure, and filling the other side with a gap of 15 m. The gap was sealed with a side sealing material 3, and the remaining left gap was filled with raw material powder 4. After filling, it was degassed, and the remaining gap was sealed. This is shown in column 1 of Table 1 above.
The test was conducted for each of the 6 compositions.

<HIP焼結〉 圧力1100 kg/co?、温度980℃でHIP焼
結した。
<HIP sintering> Pressure 1100 kg/co? , HIP sintering was performed at a temperature of 980°C.

焼結後、各々のキャニング材を機械的に除去し、所定の
寸法に仕上げて金型を完成した。11kL1〜6の各々
の金型について、焼結合金と金型母材の接合の状態およ
び炭化物の分散の状態について調べた。
After sintering, each canning material was mechanically removed and the mold was finished to the predetermined dimensions. For each of the molds of 11 kL 1 to 6, the state of bonding between the sintered alloy and the mold base material and the state of dispersion of carbides were investigated.

接合の状態は各金型とも完全に一体焼結されていた。The joining condition was that each mold was completely sintered as one piece.

炭化物の分散性は各金型とも概ね良好で、特にNcL3
、魚5.11k16が優れていた。
The dispersibility of carbide was generally good for each mold, especially for NcL3.
, fish 5.11k16 was excellent.

また、いずれの焼結層にも割れは認められなかった。Moreover, no cracks were observed in any of the sintered layers.

実施例2;肉盛溶接を利用する場合 く金型母材〉 型材として100X100X50鶴の5US304オー
ステナイト系ステンレス鋼のブロックを用い、これを第
3図の1にて示す断面形状(最大溝深さ10m)にあら
かじめ荒加工したものを母材とした。
Example 2; Mold base material when using overlay welding> A 100x100x50 block of 5US304 austenitic stainless steel was used as the mold material, and the cross-sectional shape shown at 1 in Fig. 3 (maximum groove depth 10 m) was used as the mold material. ) was rough-processed in advance and used as the base material.

く肉盛合金〉 肉盛合金の原料粉末の組成を第2表に示す。Overlay alloy〉 Table 2 shows the composition of the raw material powder for the overlay alloy.

く肉盛溶接〉 患1〜6の各々の組成についてプラズマ溶接によって厚
みがlQmmの肉盛を行い所定寸法に仕上げ、第3図に
示す様な構造の金型を作製した。同図の7は金型母材、
2は肉盛層である。
Overlay Welding> For each of the compositions Nos. 1 to 6, overlaying was performed to a thickness of 1Q mm by plasma welding to obtain a predetermined dimension, and a mold having a structure as shown in FIG. 3 was manufactured. 7 in the same figure is the mold base material,
2 is a build-up layer.

肉盛後、l1kL1〜6の各々について、肉盛境界部の
融着状況及び炭化物の分散状況について調べた。
After the build-up, each of l1kL1 to 6 was examined for the fusion state at the build-up boundary and the dispersion state of carbide.

境界部には拡散層が形成され、肉盛合金は母材に完全に
融着していた。
A diffusion layer was formed at the boundary, and the overlay alloy was completely fused to the base metal.

炭化物の分散性は、いずれの合金も概ね良好で特に、N
13、磁5、階6が優れていた。
The dispersibility of carbides is generally good for all alloys, especially for N.
13, magnetic 5, and floor 6 were excellent.

また、いずれの肉盛層にも割れは認められなかった。Moreover, no cracks were observed in any of the overlay layers.

〔発明の効果〕 本発明は、以上詳記したように、金型母材の加工面に耐
食、耐摩耗、耐熱性に優れた合金層を薄く、かつ均一な
厚さで被覆一体化させることが可能であり、金型の耐久
性と経済性の向上に大いに貢献できるものである。
[Effects of the Invention] As described in detail above, the present invention is to integrally coat the machined surface of a mold base material with an alloy layer having excellent corrosion resistance, wear resistance, and heat resistance with a thin and uniform thickness. This makes it possible to greatly contribute to improving the durability and economic efficiency of molds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図である。 第2図は、HIP焼結を用いて本発明を実施した場合の
具体的な要領を説明する図である。 第3図は肉盛溶接を用いて本発明を実施した場合の金型
の構造を説明する図である。 第1図で、1・・・金型母材、2・・・合金層第2図で
、l・・・金型母材、2・・・キャニング材、3・・・
側面封止材、4・・・原料粉末第3図で、1・・・金型
母材、2・・・肉盛層。
FIG. 1 is a diagram illustrating the present invention in detail. FIG. 2 is a diagram illustrating a specific procedure for carrying out the present invention using HIP sintering. FIG. 3 is a diagram illustrating the structure of a mold when the present invention is implemented using overlay welding. In Fig. 1, 1... Mold base material, 2... Alloy layer In Fig. 2, l... Mold base material, 2... Canning material, 3...
Side sealing material, 4... Raw material powder In Fig. 3, 1... Mold base material, 2... Overlay layer.

Claims (4)

【特許請求の範囲】[Claims] (1)型材料として金属材料を用いた金型の材料加工面
に、耐食、耐摩、耐熱性の合金の層が一体的に被覆され
た構造の金型であって、該合金の層が、Ni基あるいは
Co基合金の素地に周期律表の第IVA、VA、VIA族元
素の炭化物あるいはこれらの炭化物を基本成分とする複
合炭化物の中から選ばれた1種又は2種以上の炭化物が
分散した合金で構成されてなることを特徴とする金型。
(1) A mold having a structure in which a material processing surface of a mold using a metal material as a mold material is integrally coated with a layer of a corrosion-resistant, wear-resistant, and heat-resistant alloy, and the alloy layer is One or more carbides selected from carbides of Group IVA, VA, and VIA elements of the periodic table or composite carbides containing these carbides as basic components are dispersed in a base of Ni-based or Co-based alloy. A mold characterized by being made of a metal alloy.
(2)上記合金層が、Ni基あるいはCo基合金の粉末
と、周期律表の第IVA、VA、VIA族元素の炭化物ある
いはこれらを基本成分とする複合炭化物の1種又は2種
以上の粉末を肉盛溶接あるいはHIP焼結することによ
って形成されたものである特許請求の範囲第1項に記載
の金型。
(2) The alloy layer is made of powder of Ni-based or Co-based alloy, carbide of Group IVA, VA, or VIA elements of the periodic table, or powder of one or more composite carbides containing these as basic components. The mold according to claim 1, which is formed by overlay welding or HIP sintering.
(3)上記炭化物の粒径が5〜300μmである特許請
求の範囲第1項又は第2項に記載の金型。
(3) The mold according to claim 1 or 2, wherein the carbide has a particle size of 5 to 300 μm.
(4)上記炭化物の混合量が、体積比で10〜80%で
ある特許請求の範囲第1〜3項のいずれか1項に記載の
金型。
(4) The mold according to any one of claims 1 to 3, wherein the amount of the carbide mixed is 10 to 80% by volume.
JP3662287A 1987-02-19 1987-02-19 Metallic die Pending JPS63203221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3662287A JPS63203221A (en) 1987-02-19 1987-02-19 Metallic die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3662287A JPS63203221A (en) 1987-02-19 1987-02-19 Metallic die

Publications (1)

Publication Number Publication Date
JPS63203221A true JPS63203221A (en) 1988-08-23

Family

ID=12474909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3662287A Pending JPS63203221A (en) 1987-02-19 1987-02-19 Metallic die

Country Status (1)

Country Link
JP (1) JPS63203221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124035A (en) * 1991-11-06 1993-05-21 Japan Steel Works Ltd:The Die and surface treatment thereof
JP2000202548A (en) * 1999-01-19 2000-07-25 Sanyo Special Steel Co Ltd Clad metallic mold for hot pressing and manufacture thereof
CN104525681A (en) * 2014-11-18 2015-04-22 西安理工大学 A cold punching die and a manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124035A (en) * 1991-11-06 1993-05-21 Japan Steel Works Ltd:The Die and surface treatment thereof
JP2000202548A (en) * 1999-01-19 2000-07-25 Sanyo Special Steel Co Ltd Clad metallic mold for hot pressing and manufacture thereof
CN104525681A (en) * 2014-11-18 2015-04-22 西安理工大学 A cold punching die and a manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA2893021C (en) Composite wear pad and methods of making the same
US20160193660A1 (en) Cladded articles and methods of making the same
JPH09507696A (en) Method for manufacturing composite metal products
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
US20140272446A1 (en) Wear-resistant claddings
CN108130530A (en) A kind of particle for ultrahigh speed laser melting coating enhances powder metal composition
CN108690946B (en) Spray welding powder material and preparation method and application thereof
CN104946914B (en) A kind of forming method of Metal Substrate functional gradient composite materials
JP6804982B2 (en) Methods and Compositions for Preparing Overlays Containing Titanium Carbide
US4973356A (en) Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material
CN113174525A (en) High-entropy alloy powder and preparation and application thereof
US3819364A (en) Welding hard metal composition
JPS63203221A (en) Metallic die
JP2005187944A (en) Wear-resistant mechanical component and method of producing the same
US5366138A (en) Wear resistant die face and method
JP2742603B2 (en) Multi-screw cylinder with water cooling jacket for kneading / extrusion molding apparatus and method for producing the same
JP2562445B2 (en) Abrasion resistant composite roll
JP2001059147A (en) Composite member made of steel, having wear resistant sintered outer layer
JPS61186190A (en) Composite filter rod for building up by welding
JPS61218869A (en) Construction and manufacture for cylinder with high resistance to abrasion and erosion
JP2597105B2 (en) Copper member surface hardening method
Maslyuk et al. Layered powder metallurgy wear-and corrosion-resistant materials for tool and tribological applications. Structure and properties
JP3519152B2 (en) WC particle-dispersed W-reinforced Ni-based alloy and composite material using the same
JPH026098A (en) Powder plasma overlay alloy material and powder plasma overlaying method
JPS63157707A (en) Wear resistant composite roll