JP2597105B2 - Copper member surface hardening method - Google Patents

Copper member surface hardening method

Info

Publication number
JP2597105B2
JP2597105B2 JP23583487A JP23583487A JP2597105B2 JP 2597105 B2 JP2597105 B2 JP 2597105B2 JP 23583487 A JP23583487 A JP 23583487A JP 23583487 A JP23583487 A JP 23583487A JP 2597105 B2 JP2597105 B2 JP 2597105B2
Authority
JP
Japan
Prior art keywords
copper
less
copper member
welding
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23583487A
Other languages
Japanese (ja)
Other versions
JPS6479359A (en
Inventor
利明 石井
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23583487A priority Critical patent/JP2597105B2/en
Publication of JPS6479359A publication Critical patent/JPS6479359A/en
Application granted granted Critical
Publication of JP2597105B2 publication Critical patent/JP2597105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銅または銅合金部材の表面硬化方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for hardening a surface of a copper or copper alloy member.

〔従来の技術〕 良熱伝導性または良電気伝導性を必要とする部材とし
て、銅または銅合金製部材(以下、単に「銅部材」)が
使用されるが、銅部材は軟質で耐摩耗性に乏しいので、
これを摺動部に適用する場合は、その表面をクロムやニ
ッケル等のめっき皮膜または溶射皮膜で被覆することに
より必要な耐摩耗性をもたせることが行われている。
[Prior art] Copper or copper alloy members (hereinafter simply referred to as “copper members”) are used as members requiring good thermal conductivity or good electrical conductivity, but the copper members are soft and wear-resistant. Is scarce,
When this is applied to a sliding portion, the surface thereof is coated with a plating film such as chromium or nickel or a thermal spray coating to provide necessary wear resistance.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、めっき皮膜は約500μm以下と薄く、使用
中、機械的応力、衝撃、熱応力等の外的負荷により、割
れ・剥離等が生じ易く、また母材との接合力が弱いた
め、熱的要因による接合界面での膨れ、およびそれによ
る剥離等が発生し易い。他方、容射皮膜は、膜圧は比較
的厚く形成することは可能であるが、めっき皮膜の場合
と同様に、母材との接合は単純な物理的付着であり、使
用中にその皮膜に割れや剥離等が生じ易いという問題が
ある。
However, the plating film is as thin as about 500 μm or less. During use, cracks and peeling are likely to occur due to external loads such as mechanical stress, impact, and thermal stress, and the bonding strength with the base material is weak. Swelling at the bonding interface due to factors and peeling due to the swelling are likely to occur. On the other hand, the spray film can be formed with a relatively high film pressure, but as with the plating film, bonding with the base material is simple physical adhesion, There is a problem that cracks and peeling are likely to occur.

別法として、金属とセラミック粒子の混合物を肉盛材
料とし、溶接肉盛法により、銅部材表面に、金属マトリ
ックスと分散相としてのセラミック粒子からなる複合組
織を有する肉盛層(複合肉盛層)を形成することが考え
られる。この溶接肉盛は、銅製部材の表面硬化法として
提案されている方法であり、その複合肉盛層は、母材と
強固な融着結合関係を有し、耐剥離性にすぐれていると
同時に、セラミック粒子の分散強化作用により、金属単
相の肉盛層を大きく凌ぐ高度の耐摩耗性を有している。
As another method, a mixture of metal and ceramic particles is used as a cladding material, and a cladding layer (composite cladding layer) having a composite structure composed of a metal matrix and ceramic particles as a dispersed phase is formed on a copper member surface by a welding cladding method. ) Is conceivable. This weld overlay is a method that has been proposed as a surface hardening method for copper members, and the composite overlay has a strong fusion bonding relationship with the base material and is excellent in peel resistance. Due to the dispersion strengthening action of the ceramic particles, it has a high degree of abrasion resistance which greatly surpasses the metal single-phase cladding layer.

しかしながら、この溶接肉盛法を銅部材の表面硬化法
として利用しようとしても、銅製部材と異なり、銅部材
は融点が1000〜1100℃と低いため、溶接熱を十分に供給
することができず、しかも銅部材は、鋼製部材に比べて
熱伝導率が数倍大きく、溶接部からの熱拡散が急速に生
じるため、肉盛材と母材との十分な溶込み・融合を達成
することができない。従って形成される複合肉盛層は溶
込み不良や複合組織の不均一性等の欠陥を内包する。そ
の対策として、溶接肉盛の施工に先立って、銅部材を高
温度(約600℃以上)に加熱して溶接部の熱不足を補う
ことは可能であるが、銅部材表面をそのような高温度に
加熱すると、溶接部およびその近傍の表面に酸化物が生
成し、溶接部にブローホール等の溶接欠陥が生じる原因
となる。また、銅や銅合金は、線膨張係数が大きい(軟
鋼の約1.5倍)ため、あまり高温度に予熱すると、部材
に変形・歪が発生し、それを矯正するための煩わしい後
処理が必要となる。
However, even if this welding overlay method is used as a surface hardening method for a copper member, unlike a copper member, the melting point of the copper member is as low as 1000 to 1100 ° C., so that the welding heat cannot be sufficiently supplied. In addition, copper members have a thermal conductivity several times higher than steel members, and heat diffusion from the weld occurs rapidly, so it is possible to achieve sufficient penetration and fusion between the cladding material and the base metal. Can not. Therefore, the formed composite build-up layer contains defects such as poor penetration and non-uniformity of the composite structure. As a countermeasure, it is possible to heat the copper member to a high temperature (approximately 600 ° C or higher) to compensate for the lack of heat at the weld before the welding overlay is applied. When heated to a temperature, an oxide is generated on the welded portion and on the surface in the vicinity thereof, which causes welding defects such as blow holes in the welded portion. In addition, copper and copper alloys have a large coefficient of linear expansion (about 1.5 times that of mild steel), so if preheated to an excessively high temperature, deformation and distortion will occur in the member, which requires cumbersome post-treatment to correct it. Become.

これらのことから、一般に銅部材の表面に異材を溶接
内盛することは至難であるとされていた。
For these reasons, it has been generally considered to be extremely difficult to weld and dispose a dissimilar material on the surface of a copper member.

本発明は、上記問題を解消した溶接肉盛による銅部材
表面の硬化方法を提供しようとするものである。
An object of the present invention is to provide a method of hardening a copper member surface by welding overlay, which solves the above problem.

〔問題点を解決するための手段および作用〕[Means and actions for solving the problems]

本発明に係る銅部材の表面硬化方法は、 銅部材の表面に、膜厚50〜500μmのニッケルめっき
膜を形成したのち、C:1%以下,Cr:5〜30%,Fe:50%以
下,Ti:3%以下,Al:3%以下,およびMo:20%以下,Co:50
%以下,W:10%以下,Nb:5%以下から選ばれる1種もしく
は2種以上の元素、残部実質的にNiからなるマトリック
ス金属と、分散相として該マトリックス金属に混在する
粒径50〜200μmの炭化物系セラミック粒子20〜80重量
%からなる複合組織を有する溶接肉盛層を形成すること
を特徴としている。
The method for hardening the surface of a copper member according to the present invention comprises the steps of: forming a nickel plating film having a thickness of 50 to 500 μm on the surface of the copper member, and then: C: 1% or less, Cr: 5 to 30%, Fe: 50% or less , Ti: 3% or less, Al: 3% or less, Mo: 20% or less, Co: 50
% Or less, W: 10% or less, Nb: one or more elements selected from 5% or less, a matrix metal consisting essentially of Ni, and a particle size of 50 to 50% mixed with the matrix metal as a dispersed phase. The present invention is characterized in that a weld overlay having a composite structure composed of 20 to 80% by weight of carbide ceramic particles of 200 μm is formed.

本発明方法によれば、銅部材表面の溶接肉盛施工に先
立って、まずその部材表面にニッケル皮膜が形成され
る。ニッケル皮膜の熱伝導率は0.201cal/deg・cm・sec
(0℃)と、母材である銅のそれ(0.989cal/deg・cm・
sec(18℃))に比し十分に低く、その低熱伝導性によ
り、溶接肉盛施工時の溶接部からの熱拡散を効果的に抑
制し、溶接部を、肉盛層の溶込み・融合に必要な高温状
態に保持する役目を果たす。また、ニッケル皮膜は、耐
酸化性にすぐれ、高温状態での銅部材表面の酸化防止膜
として、酸化物の生成とそれに因るブローホール等の溶
接欠陥を防止する役目を果たす。そのニッケル皮膜は、
めっきまたは溶射等により形成される。その膜厚は、上
記熱拡散抑制効果を十分なものとするために、50μm以
上であることが好ましい。但し、あまり厚くしても効果
の増加はなく、経済性を損なうばかりか、そのニッケル
分が肉盛層を汚染し、肉盛層の材料特性を低下させる原
因ともなる。これらの不都合を避けるために、500μm
を上限とする。
According to the method of the present invention, a nickel coating is first formed on the surface of a copper member prior to welding overlaying on the surface of the copper member. Thermal conductivity of nickel film is 0.201cal / deg ・ cm ・ sec
(0 ° C) and that of copper (0.989cal / deg · cm ·)
sec (18 ℃)), and its low thermal conductivity effectively suppresses the diffusion of heat from the welded part during welding overlaying. It serves to maintain the high temperature required for Further, the nickel film is excellent in oxidation resistance and serves as an antioxidant film on the surface of the copper member in a high-temperature state, thereby preventing the formation of oxides and welding defects such as blow holes due to the formation of oxides. The nickel film is
It is formed by plating or thermal spraying. The film thickness is preferably 50 μm or more in order to make the above-mentioned thermal diffusion suppressing effect sufficient. However, even if the thickness is too large, the effect is not increased, and not only the economic efficiency is impaired, but also the nickel content contaminates the build-up layer and causes a deterioration in the material properties of the build-up layer. To avoid these inconveniences,
Is the upper limit.

銅部材の表面に上記ニッケル皮膜を形成したのち、必
要に応じ予熱処理が施され、ついで溶接肉盛が施工され
る。銅部材の表面には、熱拡散抑制効果を有するニッケ
ル皮膜が被覆されているので、予熱を必要とする場合で
も、その加熱温度は400〜500℃程度で十分である。
After the nickel film is formed on the surface of the copper member, a pre-heat treatment is performed if necessary, and then a weld overlay is applied. Since the surface of the copper member is coated with a nickel film having an effect of suppressing thermal diffusion, even when preheating is required, a heating temperature of about 400 to 500 ° C. is sufficient.

銅部材表面に対する溶接肉盛は、前記成分組成を有す
る金属分と炭化物系セラミック粒子とからなる混合物を
溶接材(肉盛材)とし、プラズマ溶接、TIG溶接等によ
り行われ、その溶接肉盛により、前記成分組成を有する
金属マトリックスとこれに分散相として均一に混在する
炭化物系セラミック粒子とからなる複合肉盛層が形成さ
れる。
The weld overlay on the copper member surface is performed by plasma welding, TIG welding, or the like, using a mixture of the metal component having the component composition and the carbide-based ceramic particles as a weld material (overlay material). Thus, a composite build-up layer comprising a metal matrix having the above-described component composition and carbide-based ceramic particles uniformly mixed as a dispersed phase with the metal matrix is formed.

複合肉盛層における分散相で炭化物系セラミック粒子
は、例えば、クロム炭化物(Cr3C2,Cr7C3等),ニオブ
炭化物(NbC),タングステン炭化物(WC),チタン炭
化物(TiC),炭化珪素(SiC)等である。
The carbide-based ceramic particles in the dispersed phase in the composite overlay include, for example, chromium carbide (Cr 3 C 2 , Cr 7 C 3 etc.), niobium carbide (NbC), tungsten carbide (WC), titanium carbide (TiC), and carbide. Silicon (SiC) or the like.

複合肉盛層における分散相を炭化物系セラミック粒子
としたのは、極めて硬質で、熱的安定性やマトリックス
金属との濡れ性が良く、分散相としての適性を有してい
るからであり、他方、マトリックス金属を前記成分組成
を有するNi基合金に限定したのは、その成分組成範囲内
において、炭化物系セラミックス粒子と共に、高温強
度、耐熱性、耐酸化性、耐衝撃性等にすぐれた複合肉盛
層を形成することができるからである。
The dispersed phase in the composite overlay was made of carbide-based ceramic particles because it was extremely hard, had good thermal stability and good wettability with the matrix metal, and was suitable as a dispersed phase. The reason why the matrix metal is limited to the Ni-based alloy having the above-described composition is that, within the range of the composition, the composite meat is excellent in high-temperature strength, heat resistance, oxidation resistance, impact resistance, etc. together with the ceramic ceramic particles. This is because an embossed layer can be formed.

また、複合肉盛層の複合組織中に占める炭化物系セラ
ミック粒子の割合を、20重量%以上としたのは、該粒子
の分散強化作用により複合肉盛層に十分な高度・耐摩耗
性をもたせるためであり、他方80重量%を上限値とした
のは、それを越えると、溶接施工性が悪くなり、均質な
複合組織を形成することが困難となるほか、その肉盛層
の靭性が乏しくなるからである。なお、炭化物系セラミ
ック粒子の粒径は、その分散強化作用を効果的に発揮さ
せる点から、50〜200μmの範囲が適当である。
Further, the ratio of the carbide-based ceramic particles in the composite structure of the composite cladding layer is set to 20% by weight or more because the composite cladding layer has sufficient high degree of wear and abrasion resistance by the dispersion strengthening action of the particles. On the other hand, the reason why the upper limit was set to 80% by weight is that if it exceeds this, the weldability becomes poor, it becomes difficult to form a homogeneous composite structure, and the toughness of the overlay layer is poor. Because it becomes. The particle size of the carbide-based ceramic particles is suitably in the range of 50 to 200 μm from the viewpoint of effectively exhibiting the dispersion strengthening action.

〔実施例〕〔Example〕

純銅板(幅50mm×長さ200mm×板厚30mm)を母材と
し、その表面にニッケルの溶射を行ってニッケル皮膜で
被覆された供試材を得る。これを予熱したのち、別途準
備した肉盛材料を用いてプラズマ粉体溶接肉盛法(溶接
電流:120〜160A)により層厚5mmの肉盛層(2層盛り)
を形成した。肉盛材料としては、Ni基合金粉末と炭化ク
ロム粒子(粒径:100μm)との混合粉末を使用した。
Using a pure copper plate (width 50 mm x length 200 mm x plate thickness 30 mm) as a base material, the surface is sprayed with nickel to obtain a test material coated with a nickel film. After preheating, a 5 mm thick cladding layer (two cladding layers) is formed by a plasma powder welding cladding method (welding current: 120 to 160 A) using a separately prepared cladding material.
Was formed. As the overlay material, a mixed powder of a Ni-based alloy powder and chromium carbide particles (particle diameter: 100 μm) was used.

また、比較例として、ニッケル皮膜を省略した用材を
用い、予熱後、上記と同じ溶接肉盛を行った。第1表に
その結果を示す。試番(No.1〜3)は発明例、No.11〜1
3は比較例である。
Further, as a comparative example, the same welding overlay as described above was performed after preheating using a material from which the nickel film was omitted. Table 1 shows the results. Test numbers (Nos. 1 to 3) are invention examples, Nos. 11 to 1
3 is a comparative example.

第1表に示したように、本発明方法により形成される
肉盛層(供試No.1〜3)は、ブローホールや溶込み不良
がなく、またその表面硬度も高く均一であり、健全な肉
盛品質を備えている。他方、ニッケル皮膜を省略したN
o.11は、溶接施工に先立つ予熱処理温度を高めているに
も拘らず、溶込み不良が発生し、しかもその溶着金属
(肉盛層)にブローホールが発生しており、肉盛層の硬
度のバラツキも大きい。また、No.12のようにニッケル
皮膜を設けても、その膜厚が薄過ぎると、保護膜として
の効果が不足するためブローホールの発生を防ぐことが
できず、その逆にNo.13のように、ニッケル皮膜の膜厚
を不必要に厚くした場合は、溶け込み不良やブローホー
ル等の欠陥は生じないけれども、そのニッケル分が溶着
金属中に溶融混入することにより溶着金属に偏析が生じ
た結果、その表面硬度が著しく不均一となっており、い
ずれの場合も、本発明による肉盛層の品質に及ばない。
As shown in Table 1, the build-up layers (test Nos. 1 to 3) formed by the method of the present invention are free from blowholes and poor penetration, have a high surface hardness, are uniform, and are sound. It has a good build-up quality. On the other hand, N with the nickel coating omitted
In o.11, although the pre-heating temperature prior to welding was raised, poor penetration occurred, and the weld metal (facing layer) had blowholes. The variation in hardness is large. Also, even if a nickel film is provided as in No. 12, if the film thickness is too thin, the effect as a protective film is insufficient, so that the occurrence of blow holes cannot be prevented. As described above, when the thickness of the nickel film was unnecessarily increased, defects such as poor penetration and blowholes did not occur, but segregation occurred in the deposited metal due to melting and mixing of the nickel component into the deposited metal. As a result, the surface hardness is remarkably non-uniform, and in any case, the quality of the build-up layer according to the present invention is inferior.

〔発明の効果〕 本発明方法によれば、銅または銅合金部材の表面に、
溶込み不良やブローホール等がなく、かつ均質な複合肉
盛層を形成することができ、また溶接施工先立つ予熱処
理における加熱温度も比較的低くてよいので、部材に変
形や歪みが生じることもない。従って、本発明は、モー
ルド材、高炉用送風支管の先端部材、通電ロール、その
他の各種用途における銅または銅合金部材の表面改質、
ハードフェーシングのための溶接肉盛法として極めて有
用であり、そのすぐれた溶接品質によって構造部材とし
ての安定性・信頼性を高め、従来材を凌ぐ耐久性を保証
することができる。
[Effect of the Invention] According to the method of the present invention, on the surface of the copper or copper alloy member,
There is no penetration failure, no blowholes, etc., and a uniform composite overlay can be formed, and the heating temperature in the pre-heat treatment prior to welding work can be relatively low, so that deformation or distortion may occur in the member. Absent. Accordingly, the present invention provides a molding material, a tip member of a blast furnace ventilation branch pipe, an energizing roll, and surface modification of a copper or copper alloy member in various other uses.
It is extremely useful as a weld overlay method for hard facing, and its excellent welding quality enhances the stability and reliability as a structural member, and can guarantee durability superior to conventional materials.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅部材の表面に、膜厚50〜500μmのニッ
ケルめっき膜を形成したのち、C:1%以下,Cr:5〜30%,F
e:50%以下,Ti:3%以下,Al:3%以下,およびMo:20%以
下,Co:50%以下,W:10%以下,Nb:5%以下から選ばれる1
種もしくは2種以上の元素、残部実質的にNiからなるマ
トリックス金属と、分散相として該マトリックス金属に
混在する粒径50〜200μmの炭化物系セラミック粒子20
〜80重量%からなる複合組織を有する溶接肉盛層を形成
することを特徴とする銅部材表面硬化方法。
(1) After forming a nickel plating film having a thickness of 50 to 500 μm on the surface of a copper member, C: 1% or less, Cr: 5 to 30%, F:
e: 50% or less, Ti: 3% or less, Al: 3% or less, Mo: 20% or less, Co: 50% or less, W: 10% or less, Nb: 5% or less1
A matrix metal consisting of one or more kinds of elements and the balance substantially consisting of Ni; and a carbide-based ceramic particle 20 having a particle size of 50 to 200 μm mixed with the matrix metal as a dispersed phase.
A method for hardening a surface of a copper member, comprising forming a weld overlay having a composite structure of about 80% by weight.
JP23583487A 1987-09-18 1987-09-18 Copper member surface hardening method Expired - Lifetime JP2597105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23583487A JP2597105B2 (en) 1987-09-18 1987-09-18 Copper member surface hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23583487A JP2597105B2 (en) 1987-09-18 1987-09-18 Copper member surface hardening method

Publications (2)

Publication Number Publication Date
JPS6479359A JPS6479359A (en) 1989-03-24
JP2597105B2 true JP2597105B2 (en) 1997-04-02

Family

ID=16991953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23583487A Expired - Lifetime JP2597105B2 (en) 1987-09-18 1987-09-18 Copper member surface hardening method

Country Status (1)

Country Link
JP (1) JP2597105B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397618B2 (en) * 2013-11-26 2018-09-26 株式会社戸畑製作所 Abrasion rod for wear-resistant coating

Also Published As

Publication number Publication date
JPS6479359A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
CN108690946B (en) Spray welding powder material and preparation method and application thereof
TWI302949B (en)
JPH089115B2 (en) Plasma powder overlay welding material for rolled steel guide member in hot rolling line
JP2597105B2 (en) Copper member surface hardening method
JP2021042403A (en) Composite member, and manufacturing method of composite member
WO2014105239A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JPS6054295A (en) Build-up method by welding
JPS61186190A (en) Composite filter rod for building up by welding
JPH0244638B2 (en)
JPS61231151A (en) Surface hardening treatment for titanium or titanium alloy
JP2979102B2 (en) Manufacturing method of sliding parts
JP6193651B2 (en) Resistance welding electrode
JPH09301518A (en) Roller for belt conveyor
JPS6333108A (en) Superior wear resistant roll at high temperature
CN117403104A (en) Nickel-based alloy resistant to ultrahigh temperature flame corrosion and laser cladding process thereof
JP2006263807A (en) Roll for continuous casting having excellent wear resistance
JPH01270574A (en) Ceramics-joining component and joining method thereof
JPH01139715A (en) Hearth roll having superior build-up resistance
JPS6054294A (en) Cored wire for build-up by welding
JPH06287770A (en) Method for treating surface of turbine moving blade
JP3113234B2 (en) Screw for injection molding machine and method of manufacturing the screw