JPS61231151A - Surface hardening treatment for titanium or titanium alloy - Google Patents

Surface hardening treatment for titanium or titanium alloy

Info

Publication number
JPS61231151A
JPS61231151A JP7369485A JP7369485A JPS61231151A JP S61231151 A JPS61231151 A JP S61231151A JP 7369485 A JP7369485 A JP 7369485A JP 7369485 A JP7369485 A JP 7369485A JP S61231151 A JPS61231151 A JP S61231151A
Authority
JP
Japan
Prior art keywords
titanium
titanium alloy
hardening
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7369485A
Other languages
Japanese (ja)
Inventor
Yoshiro Ashida
芦田 善郎
Yuichi Seki
勇一 関
Shigenori Kusumoto
栄典 楠本
Kiyoshi Yamauchi
山内 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7369485A priority Critical patent/JPS61231151A/en
Publication of JPS61231151A publication Critical patent/JPS61231151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a wear resisting surface hardening layer excelling in adhesion without adversely affecting the CONSTITUTION:The hardening matter consisting of >=1 kind among metallic oxides, metallic nitrides, metallic carbides, hard.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン又はチタン合金の表面硬化処理方法に関
し、特にチタン又はチタン合金(以下チタン合金で代表
する)製機械構造用部品の表面に特殊な硬化処理を施し
、その耐摩耗性を改善する技術に関Tるものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a surface hardening treatment method for titanium or titanium alloys, and in particular for the surface hardening of mechanical structural parts made of titanium or titanium alloys (hereinafter referred to as titanium alloys). This article relates to a technology that improves its wear resistance by subjecting it to hardening treatment.

〔従来の技術〕[Conventional technology]

チタン合金は軽量で高レベルの機械的強度を有しており
、しかも耐食性やろう付は性等も優れたものであるとこ
ろから、ea械構造用の高級部品としてかなり実用化さ
れている。但しチタン合金は超硬合金等に比べて表面硬
度が低く耐摩耗性に欠けるところから、耐摩耗性を改善
すべく下記の様な多くの方法が提案されている。
Titanium alloys are lightweight and have a high level of mechanical strength, and also have excellent corrosion resistance and brazing properties, so they have been put into practical use as high-grade parts for EA machine structures. However, since titanium alloys have lower surface hardness and lack wear resistance than cemented carbide and the like, many methods have been proposed to improve wear resistance, such as those described below.

υクロムめっき法 2)硬化肉盛溶接法 3)表面窒化処理法 4)浸炭処理法 5)表面酸化法 の硬質合金溶射法 υろう付は法 8)硬質合金クラッド法 しかしこれらの方法には夫々次の様な欠点がある。υChromium plating method 2) Hardfacing welding method 3) Surface nitriding method 4) Carburizing method 5) Surface oxidation method hard alloy thermal spraying method υBrazing is legal 8) Hard alloy cladding method However, each of these methods has the following drawbacks.

υの方法ではめつき処理時にチタン合金が水素を吸収し
て水素脆化を起こし、疲労強度等が劣化する。
In method υ, the titanium alloy absorbs hydrogen during the plating process, causing hydrogen embrittlement and deteriorating fatigue strength.

2)の方法では、硬化肉盛溶接時のエネルギー密度を十
分に高めることができず、炭化物の様な高融点化合物の
肉盛溶接が実質的に不可能であるから、Hv  : 1
000以上といった表面硬度を得ることができず、しか
もチタン合金母材の熱変形が著しい。
In method 2), the energy density during hardfacing welding cannot be sufficiently increased, and it is virtually impossible to build up welding of high melting point compounds such as carbides, so Hv: 1
It is not possible to obtain a surface hardness of 0.000 or more, and furthermore, the thermal deformation of the titanium alloy base material is significant.

3)、 4) 、 5)の方法によって得られる硬化深
さはせいぜい50μm程度であり、実用的にみて十分な
耐摩耗性を確保し得るに足る硬化深さが得られない。
The hardening depth obtained by methods 3), 4), and 5) is at most about 50 μm, and from a practical standpoint, a hardening depth sufficient to ensure sufficient wear resistance cannot be obtained.

6) 、 7)の方法では、硬化層と母材の密着性が乏
しく、硬化層が剥離し易い。
In the methods 6) and 7), the adhesiveness between the cured layer and the base material is poor, and the cured layer is likely to peel off.

8)の方法の場合、チタン合金は酸素との親和力が強く
表面に酸化物皮膜が形成され易い為。
In the case of method 8), titanium alloy has a strong affinity for oxygen and is likely to form an oxide film on its surface.

クラツド材との接着性を十分に高めることがむつかしい
It is difficult to sufficiently increase the adhesion with the cladding material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の様な従来技術の問題点を解消し、十分な
硬度と硬化深さを有するばかりでなくチタン合金母材と
の密着性にも優れた表面硬化層を、しかも母材の物性に
極力悪影響を及ぼ丁ことがなく2更には機械構造部品に
ついて耐摩耗性が要求される任意の表面位置に形成する
ことのできる技術を提供しようとするものである。
The present invention solves the problems of the prior art as described above, and creates a hardened surface layer that not only has sufficient hardness and hardening depth but also has excellent adhesion to the titanium alloy base material, and also has the physical properties of the base material. The purpose of the present invention is to provide a technique that can be formed at any surface location where abrasion resistance is required for mechanical structural parts while minimizing adverse effects on the surface of the machine.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係る表面硬化処理法の構成は、チタン又はチタ
ン合金製機械構造用部品の表面に、金属酸化物、金属窒
化物、金属炭化物、硬質金属間化合物及び硬化性合金元
素等からなる硬質化合物を付着させて該付着部に高エネ
ルギービームを照射し、表層部において硬質化物質とチ
タン又はチタン合金とを融合一体化させるところに要旨
を有するものである。
The structure of the surface hardening treatment method according to the present invention is that a hard compound consisting of a metal oxide, a metal nitride, a metal carbide, a hard intermetallic compound, a hardenable alloy element, etc. is applied to the surface of a mechanical structural part made of titanium or a titanium alloy. The gist is that the hardened material and titanium or titanium alloy are fused and integrated in the surface layer by applying a high-energy beam to the attached portion.

〔作用〕[Effect]

本発明によれば、前述の如くチタン合金基材の表面に硬
質化物質を付着させて該付着部にレーザ光線や電子ビー
ム等の高エネルギービームラ照射し、硬質化物質を基材
表層部のチタン合金と共に加熱して融合一体化させ、表
層部に超硬質の層を形成Tるものである。こうして得ら
れる表層硬質1ヒ部の構造は硬質化物質の種類によって
異なる様であるが、代表的なものとしては第1〜3図の
構造のものが挙げられる。
According to the present invention, as described above, a hardening substance is attached to the surface of a titanium alloy base material, and the attached portion is irradiated with a high-energy beam such as a laser beam or an electron beam, and the hardening substance is applied to the surface of the titanium alloy base material. It is heated together with the alloy to fuse and integrate it, forming an ultra-hard layer on the surface layer. The structure of the hard surface layer 1 thus obtained seems to vary depending on the type of hardening material, but typical examples include the structures shown in FIGS. 1 to 3.

第1図はチタン合金と合金化し易い硬質化物質を使用し
たときに得られる表層硬質化部の縦断面構造を示T模式
図であり、図中Bは硬質化物とチタン合金との合金化層
(超硬質合金層)、Dはチタン合金基材を示す。即ちチ
タン合金と合金化し易い硬質化物質を用いた場合は、レ
ーザ光線等による融合一体化によってチタン合金基材り
の表層部に超硬質の合金層が形成される。該超硬質合金
層Bの肉厚はレーザ光線等による加熱深さを調整するこ
とによって任意にコントロールすることができ、またそ
の硬さは硬質化物質の付着量を調整Tることによって自
在にコントロールTることかできる。
Figure 1 is a T schematic diagram showing the vertical cross-sectional structure of a hardened surface area obtained when a hardened material that is easily alloyed with a titanium alloy is used, and B in the figure is an alloyed layer of the hardened material and titanium alloy. (Superhard alloy layer), D indicates a titanium alloy base material. That is, when a hardened substance that is easily alloyed with a titanium alloy is used, an ultra-hard alloy layer is formed on the surface layer of the titanium alloy base material by fusion and integration using a laser beam or the like. The thickness of the ultra-hard alloy layer B can be arbitrarily controlled by adjusting the heating depth with a laser beam, etc., and its hardness can be freely controlled by adjusting the amount of hardening material attached. I can do T.

第2図は硬質化物質の一部がチタン合金と合金化し易い
ものである場合に形成される表面硬質化部の縦断面模式
図である。図中Aは超硬物質層であり、基材表面に付着
させた硬質化物質が高エネルギビームで一旦溶融した後
急冷凝固することにより形成される。即ち硬質化物質は
前述の如く或は後で詳述Tる如くそれ自身他めて硬質の
素材であるから、それ自身の急冷凝固層でも良質の超硬
質表面層としての機能を十分に果たす。Bは硬質化物質
の一部がチタン合金と合金化した超硬質合金層を示し、
この中には硬質化物質Cの一部がマトリックス金属中に
分散し合金化している。この超硬質合金層Bは、超硬物
質11JAとチタン合金基材りの密着性を高める役割り
も果たしている。これら超硬物質層A及び超硬合金6m
の各肉厚も、高エネルギービームの照射条件や硬質化物
質の付着量を調整することによって任意に変えることが
できる。
FIG. 2 is a schematic vertical cross-sectional view of a surface hardened portion formed when a part of the hardened substance is easily alloyed with a titanium alloy. In the figure, A is a superhard material layer, which is formed by once melting a hardening material attached to the surface of a base material with a high-energy beam and then rapidly solidifying it. That is, since the hardening material is a material that is harder than itself as described above or as will be described in detail later, its own rapidly solidified layer sufficiently functions as a high-quality ultra-hard surface layer. B indicates a super hard alloy layer in which a part of the hardened substance is alloyed with a titanium alloy,
In this, a part of the hardening substance C is dispersed and alloyed in the matrix metal. This super-hard alloy layer B also plays a role in increasing the adhesion between the super-hard material 11JA and the titanium alloy base material. These cemented carbide layer A and cemented carbide 6m
The respective wall thicknesses can also be arbitrarily changed by adjusting the high-energy beam irradiation conditions and the amount of hardening material deposited.

第3図は、チタン合金との合金化が比較的困難な硬質化
物質を使用したときに得られる表面硬質化部の縦断面模
式図であり、この場合は、基材表層部のチタン合金マド
IJックス中に超硬質の硬質化物質Cが均−且つ緻密に
分散してなる超硬質混合層Eが、チタン合金基材りの表
面に形成されている。即ち硬質化物質がチタン合金との
間で合金を形成し難い場合であっても、高エネルギービ
ームによる融合一体化後の急冷段階でチタン合金中に硬
質化物質Cが微細な結晶状となって融合層全体に均一に
析出Tる為、表層部の硬度は大幅に高まり、また急冷凝
固による組織の微細1ヒによって表層部の靭性も著しく
向上する。
FIG. 3 is a schematic vertical cross-sectional view of a surface hardened area obtained when using a hardening material that is relatively difficult to alloy with a titanium alloy. An ultra-hard mixed layer E, in which an ultra-hard hardening substance C is uniformly and densely dispersed in IJx, is formed on the surface of the titanium alloy base material. In other words, even if it is difficult for the hardened substance to form an alloy with the titanium alloy, the hardened substance C becomes fine crystals in the titanium alloy during the quenching stage after fusion and integration using a high-energy beam. Since T is uniformly precipitated over the entire fusion layer, the hardness of the surface layer is greatly increased, and the toughness of the surface layer is also significantly improved due to the microstructure created by rapid solidification.

上記の様な表面硬化層を形成する為には、基材表面に付
着させた硬質化物質(超硬質で一般に融点が非常に高い
〕を、基材表層部のチタン合金と共に溶融させることが
必要であり、しかも基材自体にあまり熱影響(熱劣化及
び熱歪等〕を与えることがなく、更番ζは硬質化処理後
の表面仕上げ加工を考えるとできるだけ平滑な硬質化面
を得ることのできる様な加熱法を採用しなければならず
、こうした要請に答えることのできる熱源は、レーザ光
線や電子ビームの様な高エネルギービームである。しか
してこれらの高エネルギービームは非常に高い集中性を
有しており、しかも焦点距離を調整することによってエ
ネルギーを任意の一点に集中させることができる。従っ
てこのビームを。
In order to form the above-mentioned surface hardening layer, it is necessary to melt the hardening substance (super hard and generally has a very high melting point) attached to the surface of the base material together with the titanium alloy on the surface layer of the base material. Moreover, it does not have much thermal influence (thermal deterioration, thermal distortion, etc.) on the base material itself, and Saraban ζ is suitable for obtaining the smoothest possible hardened surface when considering the surface finishing after hardening treatment. The heat source that can meet these demands is a high-energy beam such as a laser beam or an electron beam.However, these high-energy beams have a very high concentration. Moreover, by adjusting the focal length, the energy can be concentrated at any one point.Therefore, this beam.

硬質化物質の付着したチタン合金基材表層部の一点に集
中させなから該基材の表層部に沿って走査させることに
より、深部にあまり熱影響を及ぼすことなく表層部だけ
を部分的に溶融させることができる。またこの加熱法で
あれば、焦点距離を調ち 節Tることによって溶融深さく一一化深さ〕を自由にコ
ントロールし得るばかりでなく、該ビームの走査領域を
予め設定しておくことによって、チタン合金基材の任意
の表面位置だけを超硬質化するといった方法を実施し得
るという利点も享受Tることができる。
By scanning along the surface layer of the titanium alloy base material, rather than concentrating it on a single point on the surface layer of the titanium alloy base material to which the hardening substance has adhered, only the surface layer can be partially melted without much heat affecting the deeper parts. can be done. Moreover, with this heating method, not only can the melting depth and unification depth be freely controlled by adjusting the focal length, but also by setting the scanning area of the beam in advance. It is also possible to enjoy the advantage of being able to carry out a method of making only an arbitrary surface position of the titanium alloy base material ultrahard.

本発明で使用されるチタン合金とは、チタンを主たる構
成元素とする軽量高強度の合金を総称Tるものであり、
用途に応じた要求特性により合金元素の種類は様々であ
るが、強度、靭性等の物性を高めるうえで好ましいもの
としてはアルミニウム、モリブデン、バナジウム、ジル
コニウム、りo ミ’) ム、 亜鉛、rf、鉄、マン
ガン、シリコン。
The titanium alloy used in the present invention is a lightweight, high-strength alloy whose main constituent element is titanium.
There are various types of alloying elements depending on the required properties depending on the application, but the preferred ones for improving physical properties such as strength and toughness are aluminum, molybdenum, vanadium, zirconium, aluminum, zinc, rf, iron, manganese, silicon.

二オビ年つム等が挙げられ、これらは単独或は2種以上
を併用することができる。上記の様な合金元素を含むよ
り具体的なチタン合金としては、1−5AI−4V、T
i −15Mo −5z r −3AI 。
Examples include Niobinen Tsum and the like, and these can be used alone or in combination of two or more kinds. More specific titanium alloys containing the above alloying elements include 1-5AI-4V, T
i-15Mo-5zr-3AI.

r;−15M0−5Zr、Ti −5A、1−2−5s
n。
r;-15M0-5Zr, Ti-5A, 1-2-5s
n.

Ti −5AI −2Cr −IFe 、 Ti −1
3AI −IM。
Ti-5AI-2Cr-IFe, Ti-1
3AI-IM.

−1V等が挙げられる。また純チタンが本発明における
表面硬質化の対象となり得ることも先に述べた通りであ
る。
-1V etc. are mentioned. Further, as described above, pure titanium can be the object of surface hardening in the present invention.

次に上記チタン合金の表面に付着される硬質化物質とし
ては%Alρ1.Crρ3.ZrO,,SiO,、Ti
O,。
Next, the hardening substance attached to the surface of the titanium alloy is %Alρ1. Crρ3. ZrO,,SiO,,Ti
O.

Two等(7)金I[(F、 物、VC,TiC,WC
,NbC。
Two etc. (7) Gold I [(F, material, VC, TiC, WC
, NbC.

CrC,3,Mo、C、HfC、S iC、Tic  
等の金属炭化物、BN、TiN、Cr、N、NbN、Z
rN、Mo、N、HEN、TaN等の窒化物、TiB、
、VB、、CrB、、ZrB、、Mo、S i 。
CrC, 3, Mo, C, HfC, SiC, Tic
Metal carbides such as BN, TiN, Cr, N, NbN, Z
rN, Mo, N, HEN, nitrides such as TaN, TiB,
,VB,,CrB,,ZrB,,Mo,S i.

N i T i等の硬質金属間化合物、Mo、W、Nb
、Ni。
Hard intermetallic compounds such as N i Ti, Mo, W, Nb
, Ni.

Fe 、AI 、Zr 、Cr 、Ta、Sn、C,B
、N、O等の硬化性合金元素等が挙げられる。本発明で
はこれら硬質化物質の1種又は2種以上の混合物を、チ
タン合金部材の硬質比処理すべき表面位置に付着させ、
前述の様な方法で硬質化が行なわれる。尚硬質化物質を
付着させる方法は特に限定されないが、最も一般的なの
は塗料用ビヒクルに微粉状の硬質化物質を分散させて塗
布Tる方法である。
Fe, AI, Zr, Cr, Ta, Sn, C, B
, N, O, and other hardenable alloying elements. In the present invention, one type or a mixture of two or more of these hardening substances is attached to the surface position of the titanium alloy member to be hardened,
Hardening is performed in the same manner as described above. The method for applying the hardening substance is not particularly limited, but the most common method is to disperse a finely powdered hardening substance in a paint vehicle and apply it.

〔実施例〕〔Example〕

Al:6.25%、V:4.45%、ys部: T t
 及び不可避不純物からなるチタン合金板(厚さ8餌)
の表面に、第1表に示す硬質化物質微粉末を塗料用ビヒ
クルに均一に分散したものを塗布し、乾燥後第1表に示
す条件でレーザ光線を照射し表層部の超硬質化処理を行
なった。得られた各超硬質化物の表面硬さ及び硬化深さ
、並びに硬質化部の断面構造を調べたところ、第1表に
併記する結果が得られた。尚用いたTi −5AI −
4vの表面硬さはHv420  であった。
Al: 6.25%, V: 4.45%, ys part: T t
Titanium alloy plate (8 pieces thick) consisting of and inevitable impurities
A fine powder of the hardening substance shown in Table 1 is uniformly dispersed in a paint vehicle on the surface of the paint, and after drying, the surface layer is ultra-hardened by irradiating it with a laser beam under the conditions shown in Table 1. I did it. When the surface hardness, hardening depth, and cross-sectional structure of the hardened portion of each of the obtained ultrahardened products were investigated, the results shown in Table 1 were obtained. The Ti-5AI-
The surface hardness of 4v was Hv420.

第1表からも明らかな様に、レーザ光線の照射条件を適
正に調整することによって、チタン合金の表面硬さをH
V100O以上に高めることができる。また何れの場合
もチタン合金自体の熱劣化及び熱変形は殆んど認められ
ず、硬質化処理後の表面は凹凸のない平滑なものであっ
た。
As is clear from Table 1, by appropriately adjusting the laser beam irradiation conditions, the surface hardness of titanium alloy can be increased to H.
It can be increased to more than V100O. Further, in all cases, almost no thermal deterioration or thermal deformation of the titanium alloy itself was observed, and the surface after the hardening treatment was smooth and free of irregularities.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており、その効果を要約子
れば次の通りである。
The present invention is constructed as described above, and its effects can be summarized as follows.

(1)チタン又はチタン合金表面を容易に超硬質化する
ことができ、耐摩耗性を飛躍的に高めることができる。
(1) The surface of titanium or titanium alloy can be easily made superhard, and its wear resistance can be dramatically improved.

(2)高エネルギービームの焦点距離を調整することに
よって硬化層を十分な厚さとすることができ、しかも硬
化層とチタン合金母材との密着性も極めて良好である。
(2) By adjusting the focal length of the high-energy beam, the hardened layer can be made sufficiently thick, and the adhesion between the hardened layer and the titanium alloy base material is also extremely good.

(3)集束性の高い高エネルギービームで表層部のみを
加熱することができるので、チタン合金母材が熱劣化を
起こしたり熱歪を生ずることがない。
(3) Since only the surface layer can be heated with a highly focused high-energy beam, the titanium alloy base material will not undergo thermal deterioration or thermal strain.

(4)硬質化物質の付着量を変えることによって。(4) By changing the amount of hardening material attached.

任意の表面硬さを得ることができる。Any desired surface hardness can be obtained.

(5)硬質化Tべきチタン合金部材の表面に硬質化物質
を付着させて高エネルギービームを照射するだけである
から操作が簡単であり、またどの様な形状のものにでも
容易に適用することができ、チタン合金部材の一部だけ
を超硬質化するといったことも簡単に実施することがで
きる。
(5) It is easy to operate because it only involves attaching a hardening substance to the surface of the titanium alloy member to be hardened and irradiating it with a high-energy beam, and it can be easily applied to any shape. It is also possible to easily make only a part of the titanium alloy member super hard.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明によって得られる超硬質化部の断面
構造を示す模式図である。 A・・・超硬物質層 B・・・超硬質合金属 C・・・硬質化物質 D・・・チタン合金基材
1 to 3 are schematic diagrams showing the cross-sectional structure of the ultra-hardened portion obtained by the present invention. A...Superhard material layer B...Superhard alloy metal C...Hardening substance D...Titanium alloy base material

Claims (2)

【特許請求の範囲】[Claims] (1)チタン又はチタン合金製機械構造用部品の表面に
硬質化物質を付着させて該付着部に高エネルギービーム
を照射し、表層部において硬質化物質とチタン又はチタ
ン合金とを融合一体化することを特徴とするチタン又は
チタン合金の表面硬化処理方法。
(1) A hardening substance is attached to the surface of a mechanical structural part made of titanium or a titanium alloy, and a high-energy beam is irradiated to the attached part, and the hardening substance and titanium or titanium alloy are fused and integrated in the surface layer. A method for surface hardening treatment of titanium or titanium alloy, characterized in that:
(2)硬質化物質が、金属酸化物、金属窒化物、金属炭
化物、硬質金属間化合物及び硬化性合金元素よりなる群
から選択される少なくとも1種である特許請求の範囲第
1項に記載の表面硬化処理方法。
(2) The hardening substance according to claim 1, wherein the hardening substance is at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, hard intermetallic compounds, and hardenable alloy elements. Surface hardening treatment method.
JP7369485A 1985-04-08 1985-04-08 Surface hardening treatment for titanium or titanium alloy Pending JPS61231151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7369485A JPS61231151A (en) 1985-04-08 1985-04-08 Surface hardening treatment for titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7369485A JPS61231151A (en) 1985-04-08 1985-04-08 Surface hardening treatment for titanium or titanium alloy

Publications (1)

Publication Number Publication Date
JPS61231151A true JPS61231151A (en) 1986-10-15

Family

ID=13525581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7369485A Pending JPS61231151A (en) 1985-04-08 1985-04-08 Surface hardening treatment for titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JPS61231151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156457A (en) * 1987-12-11 1989-06-20 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
JPH02129330A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd High wear-resistant titanium alloy material
DE3937526A1 (en) * 1988-11-10 1990-05-23 Sumitomo Metal Ind WEAR-RESISTANT TITANIUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE
JP2006095589A (en) * 2004-09-30 2006-04-13 Teigu:Kk Surface hardening method for titanium material
CN102560479A (en) * 2012-03-19 2012-07-11 苏州大学 Laser oxidizing hardening method for titanium alloy
EP3202950A4 (en) * 2014-09-30 2018-03-28 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling, and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156457A (en) * 1987-12-11 1989-06-20 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
JPH02129330A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd High wear-resistant titanium alloy material
DE3937526A1 (en) * 1988-11-10 1990-05-23 Sumitomo Metal Ind WEAR-RESISTANT TITANIUM ALLOY, PROCESS FOR THEIR PRODUCTION AND THEIR USE
US5068003A (en) * 1988-11-10 1991-11-26 Sumitomo Metal Industries, Ltd. Wear-resistant titanium alloy and articles made thereof
DE3937526C2 (en) * 1988-11-10 1998-01-22 Sumitomo Metal Ind Wear-resistant titanium alloy, process for its production and its use
JP2006095589A (en) * 2004-09-30 2006-04-13 Teigu:Kk Surface hardening method for titanium material
CN102560479A (en) * 2012-03-19 2012-07-11 苏州大学 Laser oxidizing hardening method for titanium alloy
EP3202950A4 (en) * 2014-09-30 2018-03-28 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling, and production method therefor
US10350658B2 (en) 2014-09-30 2019-07-16 Nippon Steel Corporation Titanium casting product for hot rolling and method for producing the same

Similar Documents

Publication Publication Date Title
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
US20100297432A1 (en) Article and method of manufacturing related to nanocomposite overlays
JP7018603B2 (en) Manufacturing method of clad layer
CA2949389C (en) Layered construction of metallic materials
JPS60238489A (en) Formatin of metallic coating layer on surface
CA1240479A (en) Wear-proofing a mold for continuous casting
JP2017154159A (en) Intermetallic compound alloy, metal member and manufacturing method of clad layer
JPS61231151A (en) Surface hardening treatment for titanium or titanium alloy
US3819364A (en) Welding hard metal composition
GB2260600A (en) Armour plate
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JPH0762196B2 (en) High wear resistance titanium alloy material
JP2769339B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769335B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
RU2205094C2 (en) Method for electron-beam surfacing
JP2769337B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2597105B2 (en) Copper member surface hardening method
JPH0584363A (en) Scissors and manufacture thereof
JPH04120280A (en) Production of surface-hardened aluminum material
JP2942299B2 (en) Additive for surface hardening of aluminum
JP2954258B2 (en) Method of manufacturing filler metal for surface hardening of aluminum material
JPS60230986A (en) Method for highly alloying metal of metallic surface
JPS646273B2 (en)