JPH02129330A - High wear-resistant titanium alloy material - Google Patents

High wear-resistant titanium alloy material

Info

Publication number
JPH02129330A
JPH02129330A JP28243588A JP28243588A JPH02129330A JP H02129330 A JPH02129330 A JP H02129330A JP 28243588 A JP28243588 A JP 28243588A JP 28243588 A JP28243588 A JP 28243588A JP H02129330 A JPH02129330 A JP H02129330A
Authority
JP
Japan
Prior art keywords
titanium
phase
alloy material
dispersed
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28243588A
Other languages
Japanese (ja)
Other versions
JPH0762196B2 (en
Inventor
Wataru Takahashi
渉 高橋
Yoshihito Sugimoto
杉本 由仁
Mutsuo Nakanishi
中西 睦夫
Yoshiaki Shida
志田 善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63282435A priority Critical patent/JPH0762196B2/en
Priority to US07/433,963 priority patent/US5068003A/en
Priority to DE3937526A priority patent/DE3937526C2/en
Publication of JPH02129330A publication Critical patent/JPH02129330A/en
Priority to US07/739,442 priority patent/US5141574A/en
Publication of JPH0762196B2 publication Critical patent/JPH0762196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material exhibiting excellent wear resistance as it is or as subjected to cladding by welding without requiring particularly troublesome surface treatment by crystallizing out or precipitating and dispersing titanium carbide into a beta phase titanium matrix. CONSTITUTION:The Ti alloy material has a constitution having a cold micro structure of which TiC or TiC and alpha phase Ti are crystallized out or precipitated and dispersed in a beta phase matrix; or the Ti alloy material has a constitution having a cold micro structure of which TiC crystalloids and/or precipitates and hard ceramics or TiC crystalloids and/or precipitates and an alpha Ti precipitated phase and hard ceramics are dispersed in a beta phase Ti matrix; where the betaphase Ti matrix denotes the one contg. large amounts of Cr, Mo, etc., as betaphase stabilizing elements and showing a Ti beta phase of a body-centered cubic structure at an ordinary temp. To obtain the Ti alloy material, e.g., about 0.2 to 5wt.% C is incorporated into the components of the raw material to form a beta phase Ti alloy, which is melted and solidified.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、特に摺動摩耗や高速液滴エロージョンに対
する高い抵抗性が要求される耐摩耗性部材、例えば自動
車動弁部品(エンジンパルプ、スプリング、リテーナ−
)や蒸気タービン翼部材として好適な、軽量かつ熱間圧
延が可能で、しかもチタン部材への接合性にも優れた高
耐摩耗チタン合金材に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention is particularly applicable to wear-resistant members that require high resistance to sliding wear and high-speed droplet erosion, such as automobile valve train parts (engine pulp, springs, etc.). , retainer
The present invention relates to a highly wear-resistant titanium alloy material that is lightweight, can be hot-rolled, and has excellent bondability to titanium members, and is suitable for use as steam turbine blade members.

〈従来技術とその課題〉 近年、製造技術の著しい進展に伴って工業規模での量産
が比較的容易となったチタン合金は、比強度が高く耐食
性や耐熱性にも優れることから種々機械部品への適用が
進められてきたが、一方でドライな環境中での耐摩耗性
が十分でなく、そのままでは機械部品の摺動部に使用す
ることが困難であると言う問題点をも有していた。その
ため、耐摩耗性を要求される部材(例えばエンジンバル
ブのような自動車動弁部品)に適用する場合には、その
表面に耐摩耗処理を行うことが欠かせなかった。
<Conventional technology and its issues> Titanium alloys, which have become relatively easy to mass-produce on an industrial scale due to significant advances in manufacturing technology in recent years, are used in various mechanical parts due to their high specific strength and excellent corrosion resistance and heat resistance. However, it also has the problem that it does not have sufficient wear resistance in a dry environment, making it difficult to use it as is for sliding parts of mechanical parts. Ta. Therefore, when applied to members that require wear resistance (for example, automobile valve train parts such as engine valves), it is essential to perform wear-resistant treatment on the surface.

ところで、従来から優れた耐摩耗性を示す材料として“
ステライト〔商品名〕”の存在が知られており、耐摩耗
性を必要とする部材表面への肉盛材や接合材として広く
用いられている。そこで、チタン合金部材表面の耐摩耗
性改善にも上記ステライトの適用が有効であると考えら
れたが、このステライトは鉄系材料への肉盛や接合は可
能であるもののチタン合金部材に対しての同様処理は不
可能であり、従ってステライト適用による耐摩耗性改善
策はチタン合金部材には不適であった。
By the way, “
Stellite (trade name) is known to exist and is widely used as a build-up material and bonding material on the surfaces of parts that require wear resistance. However, although this stellite can be overlaid or bonded to iron-based materials, it is impossible to apply the same treatment to titanium alloy members, so the application of stellite was considered effective. Measures to improve wear resistance were not suitable for titanium alloy members.

そのため、チタン合金部材表面の耐摩耗性を改善するに
は、従来、“窒化処理”、“メツキ処理(Niメツキや
Crメツキ等)、“蒸着法(PVD法やCVD法)”或
いは“浸炭処理”によって該合金部材表面に耐摩耗性被
覆膜を形成させる方法が採用されていた。
Therefore, in order to improve the wear resistance of the surface of titanium alloy members, conventional methods include nitriding, plating (Ni plating, Cr plating, etc.), vapor deposition (PVD or CVD), or carburizing. ``A method was adopted in which a wear-resistant coating film was formed on the surface of the alloy member.

また、最近では、チタン製品の表面にTiO□等の金属
酸化物、金属炭化物、金属窒化物又は酸素等の硬質化物
質を付着させてから該付着部に高エネルギービームを照
射し、その表層部において硬質化物質を融合一体止させ
る方法(特開昭6l−231151)や、チタン製品の
表層部を高エネルギービーム照射により溶解し、その溶
融池中に便譬材(TiN等)や固溶強化材(酸素ガス等
)を噴射・混入させる方法(特開昭62−56561)
等の、一種の硬化肉盛によるチタン製品表面の耐摩耗性
向上手段も提案されている。
Recently, metal oxides such as TiO□, metal carbides, metal nitrides, or hardening substances such as oxygen are attached to the surface of titanium products, and then the attached portion is irradiated with a high-energy beam to remove the surface layer. (Japanese Patent Application Laid-Open No. 61-231151), in which the surface layer of a titanium product is melted by high-energy beam irradiation, and in the molten pool there is a method of fusion and solid solution strengthening of hardened materials (TiN, etc.). Method of injecting and mixing materials (oxygen gas, etc.) (Japanese Patent Application Laid-open No. 62-56561)
A method for improving the wear resistance of titanium product surfaces by a type of hardfacing has also been proposed.

しかしながら、従来の窒化処理や浸炭処理等を施す場合
には被処理材が高温に曝されるために熱歪を生じがちで
あると言う問題があり、またメツキ処理や蒸着処理等で
得られる硬質被覆膜では剥離等を生じやすいとの不都合
が指摘されていた。
However, when applying conventional nitriding or carburizing treatments, there is a problem in that the treated material is exposed to high temperatures, which tends to cause thermal distortion. It has been pointed out that the coating film is disadvantageous in that it tends to peel off.

そして、上述したチタン合金の硬化肉盛手段では肉盛部
の硬度は高くなるが、必ずしも相手材(例えば鉄系材料
)とのマツチラグ性は良くなく、肉盛材、相手材に摩耗
が認められることがあった。
Although the hard overlay method for titanium alloys described above increases the hardness of the overlay part, it does not necessarily have good matte-lag properties with the mating material (for example, iron-based materials), and wear is observed on the overlay material and the mating material. Something happened.

一方、ウェットな環境中では、チタン合金の耐摩耗性は
ドライな環境におけるほど問題になることはないが、そ
れでも厳しい摩耗条件(例えば発電用蒸気タービンのよ
うな高流速下での液滴エロージョン条件)の下では十分
な抵抗性を保持することはできず、やはり適当な摩耗対
策が不可欠であった。
On the other hand, in a wet environment, the wear resistance of titanium alloys is less of an issue than in a dry environment, but it is still subject to severe wear conditions (e.g. droplet erosion conditions at high flow rates such as in power generation steam turbines). ), it was not possible to maintain sufficient resistance, and appropriate measures against wear were still essential.

ところで、このような条件下で使用される鉄系材料製タ
ービン翼等の場合にはエロージョンシールド材としてス
テライト部材を肉盛又は接合する対策が採られているが
、前述したようにステライトはチタン合金に肉盛又は接
合することができず、そのため、例えばTi−6Aj!
−4V合金製蒸気タービン翼のエロージョンシールド材
としては、チタン合金の中でも比較的硬度の高いβ型チ
タン合金(Ti −15Mo −5Zr合金やTi −
15Mo −5Zr −3A1合金等)の時効材が使用
されていた。
By the way, in the case of turbine blades made of iron-based materials used under such conditions, countermeasures have been taken to build up or bond stellite members as erosion shield materials, but as mentioned above, stellite is made of titanium alloy. Therefore, for example, Ti-6Aj!
As erosion shielding materials for steam turbine blades made of -4V alloy, β-type titanium alloys (Ti-15Mo-5Zr alloy and Ti-15Mo-5Zr alloy and Ti-
15Mo-5Zr-3A1 alloy, etc.) was used.

しかし、β型チタン合金の時効材ではウェットな環境中
における液滴エロージョンに対してステライトと同程度
の高い耐エロージヨン性を期待することができず一1耐
エロージョン性の面がらもチタン合金に一段と優れた耐
摩耗性を付与し得る手段の開発が強(求められていた。
However, aging materials made of β-type titanium alloy cannot be expected to have the same high erosion resistance as stellite against droplet erosion in a wet environment. There was a strong demand for the development of a means that could provide excellent wear resistance.

そこで、このような状況を踏まえた本発明の目的は、ド
ライな環境においてもウェットな環境においても、格別
に面倒な表面処理を要することなくそのまま又は肉盛に
より優れた耐摩耗性を発揮するチタン合金材を提供する
ことにある。
In light of these circumstances, the purpose of the present invention is to develop titanium that exhibits excellent wear resistance in both dry and wet environments without the need for particularly troublesome surface treatments. Our goal is to provide alloy materials.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、特に各種のチタ
ン合金の特性に再検討を加えながら種々の観点からの研
究を重ねたところ、次に示すような知見を得るに至った
。即ち、 (al  従来、チタン合金としては室温で“α相単相
”、1α+β2相”及び“β相単相”の3通りの相組織
を呈するものが実用されてきたが、これらの中にあって
“β相チタン”は、そのまま又は時効状態での耐摺動摩
耗性並びに耐エロージヨン性が“α相チタンゝや“α+
β2相チタン”と比べ′C−C上段っていること。
<Means for Solving the Problems> In order to achieve the above object, the present inventors have conducted research from various viewpoints, particularly reconsidering the characteristics of various titanium alloys, and have found the following. We have obtained some knowledge. That is, (al) Conventionally, titanium alloys that exhibit three types of phase structures at room temperature: “α phase single phase,” 1α + β2 phase,” and “β phase single phase” have been put into practical use. "β-phase titanium" has sliding wear resistance and erosion resistance as it is or in the aged state, compared to "α-phase titanium" and "α+".
Compared to 'β2 phase titanium', 'C-C' is higher.

(bl  Lかしながら、β相チタンの耐摩耗性や耐エ
ロージヨン性はステライトと比較すればまだまだ低く、
そのままでは機械装置等の耐摩耗部材としての使用はお
ぼつかなかったが、該β相チタン中にTiC硬質粒子を
均一に析出・分散させた場合にはその耐摩耗性及び耐エ
ロージヨン性能は非常に向上し、ステライトと同等程度
の優れた特性が得られること。
(However, the wear resistance and erosion resistance of β-phase titanium are still lower than that of stellite.
As it was, it was doubtful that it could be used as a wear-resistant component in mechanical equipment, etc., but when TiC hard particles are uniformly precipitated and dispersed in the β-phase titanium, its wear resistance and erosion resistance performance are greatly improved. However, excellent properties comparable to those of Stellite can be obtained.

(C1β相チタン中に炭化チタン硬質粒子が均一に析出
・分散したチタン合金材は、β相チタン合金となる成分
中に0.2重量%以上の炭素を含有させて(従来の実用
チタン合金の炭素量は0.01重量%程度)溶解・凝固
させることにより容易かつ安定に製造することが可能で
あること。
(A titanium alloy material in which titanium carbide hard particles are uniformly precipitated and dispersed in C1 β-phase titanium is produced by containing 0.2% by weight or more of carbon in the component that becomes the β-phase titanium alloy. The amount of carbon is approximately 0.01% by weight) and can be easily and stably produced by melting and solidifying.

(d)  また、添加する炭素量の上限を5重量%に抑
えれば得られるチタン合金材の熱延性、靭性並びに延性
等の劣化を抑えることができ、実用合金としての格別な
不都合がもたらされないこと。
(d) In addition, if the upper limit of the amount of carbon added is suppressed to 5% by weight, it is possible to suppress deterioration of the hot ductility, toughness, ductility, etc. of the titanium alloy material obtained, which would cause special disadvantages as a practical alloy. not to be

(el  更に、β相チタン中に炭化チタン硬質粒子が
析出・分散したチタン合金材を350〜550℃の温度
で時効処理すると、β相中に微細α相チタンを析出して
時効硬化し、その耐摩耗性が一段と向上すること。
Furthermore, when a titanium alloy material in which titanium carbide hard particles are precipitated and dispersed in β-phase titanium is aged at a temperature of 350 to 550°C, fine α-phase titanium is precipitated in the β-phase and age-hardened. Further improvement in wear resistance.

(f)シかも、上記チタン合金の溶解時にW2C。(f) W2C may occur during melting of the titanium alloy.

NbC,TiN等の硬質セラミックス(150tan以
下が好ましい)を混入或いは形成させ、β相チタン中に
炭化チタン析出物と硬質セラミックス微粒とが分散した
チタン合金材とすれば、その耐摩耗性を更に向上させ得
ること。
If hard ceramics such as NbC and TiN (preferably 150 tan or less) are mixed or formed to create a titanium alloy material in which titanium carbide precipitates and hard ceramic fine particles are dispersed in β-phase titanium, its wear resistance will be further improved. What can be done.

(gl  加えて、β相チタン中に炭化チタン析出物と
硬質セラミックスとが分散したチタン合金材を、前記と
同様、350〜550℃の温度で時効処理すると、やは
りβ相中に微細α相チタンを析出して時効硬化し、その
耐摩耗性がより一層向上すること。
(gl) In addition, if a titanium alloy material in which titanium carbide precipitates and hard ceramics are dispersed in β-phase titanium is aged at a temperature of 350 to 550°C in the same manner as above, fine α-phase titanium will be present in β-phase. Precipitates and age hardens, further improving its wear resistance.

(h)  上述のようなチタン合金材は密度が小さく軽
量で、しかも他のチタン合金への溶接も容易であるので
、チタン合金表面に接合して耐摩耗性を改善するための
接合部材としても十分に適用が可能であること。
(h) Titanium alloy materials such as those mentioned above have low density and are lightweight, and can be easily welded to other titanium alloys, so they can also be used as joining materials to improve wear resistance by joining to titanium alloy surfaces. Must be fully applicable.

本発明は上記知見に基づいてなされたものであり、 [チタン合金材を、“β相チタン素地に炭化チタンが析
出・分散して成る常温ミクロ組織″、“β相チタン素地
に炭化チタンとα相チタンが析出・分散して成る常温ミ
クロ組織”、“β相チタン素地に炭化チタン析出物と硬
質セラミックスとが分散して成る常温ミクロ組織”或い
は“β相チタン素地に炭化チタン析出物とαチタン析出
相と硬質セラミックスとが分散して成る常温ミクロ組織
”の何れかの組織を有する構成とすることにより、優れ
た耐摩耗性・耐エロージヨン性を備えしめた点」に特徴
を有するものである。
The present invention has been made based on the above knowledge, and [the titanium alloy material has a room-temperature microstructure formed by precipitating and dispersing titanium carbide on a β-phase titanium base] and ``a microstructure consisting of titanium carbide and α-phase titanium base on a β-phase titanium base. ``room-temperature microstructure consisting of precipitated and dispersed titanium phase'', ``room-temperature microstructure consisting of titanium carbide precipitates and hard ceramics dispersed in β-phase titanium substrate'', or ``room-temperature microstructure consisting of titanium carbide precipitates and α-phase titanium substrate dispersing It is characterized by its excellent wear resistance and erosion resistance due to its structure having a room-temperature microstructure consisting of a dispersed titanium precipitate phase and hard ceramics. be.

なお、ここで言う “β相チタン素地”とは、β相安定
化元素であるCr、 Mo、 W、 Nb、 Ta、 
 V、 Fe。
Note that the "β-phase titanium base material" referred to here refers to β-phase stabilizing elements such as Cr, Mo, W, Nb, Ta,
V, Fe.

Mn等を多量に含有し、常温において体心立方構造のチ
タンβ相を呈している素地であって、β相チタン単相の
実用合金としては、例えばTi−3A1Ti−3A1−
8V−6Cr−4,Ti−15V−3A1−3Sn −
3Cr、 Ti −10V −2Fe −3Aj等があ
る。ただ、チタン合金のβ相安定化元素としては、特に
共析型β安定化元素であるWやCrが有効なようである
。従って、〔α+β〕系チタフチタフ合金Ti6 Al
 −4Vに例えば25重量%のWや10重四%のCrを
含有させることによりβ相チタン素地を有するチタン合
金を得ることができ、またα系である純チタンにW、C
rを多量に含有させてもβ相チタン素地が得られる。
A material that contains a large amount of Mn etc. and exhibits a titanium β phase with a body-centered cubic structure at room temperature, and examples of practical alloys with a single β phase titanium include, for example, Ti-3A1Ti-3A1-
8V-6Cr-4, Ti-15V-3A1-3Sn −
3Cr, Ti-10V-2Fe-3Aj, etc. However, W and Cr, which are eutectoid β-stabilizing elements, seem to be particularly effective as β-phase stabilizing elements for titanium alloys. Therefore, [α+β]-based titanium titanium alloy Ti6Al
For example, by adding 25% by weight of W or 10% by weight of Cr to -4V, a titanium alloy having a β-phase titanium matrix can be obtained.
Even if a large amount of r is contained, a β-phase titanium matrix can be obtained.

β相チタン素地中に炭化チタン硬質粒子が均一に析出し
たチタン合金を得るには、前述したようにβ相チタン合
金となる原料成分中に0.2〜5重量%の炭素を含有さ
せて溶解・凝固させれば良い。
In order to obtain a titanium alloy in which hard titanium carbide particles are uniformly precipitated in a β-phase titanium matrix, as mentioned above, 0.2 to 5% by weight of carbon is included in the raw material component for the β-phase titanium alloy and dissolved.・Just let it solidify.

また、チタン合金粉末に、溶融分塊してβチタン相を形
成する炭化物(例えばW2 C、Cr3 Cz)粉末を
混合した混合粉をチタン合金表面に肉盛して形成するこ
ともできる。この場合、炭素含有量を0.2重量%以上
とするのは、この値を下回る炭素量では炭素がβ相チタ
ン中に固溶してしまって炭化チタンとして析出しないか
らであり、また炭素含有量の上限を5重量%とするのは
、この値を超えて含有させると合金の凝固中に割れが生
じたり、熱延性、延性及び靭性を極端に劣化するように
なるからである。
Alternatively, the titanium alloy surface can be formed by overlaying a mixed powder obtained by mixing titanium alloy powder with carbide (for example, W2 C, Cr3 Cz) powder that melts and agglomerates to form a β-titanium phase. In this case, the reason why the carbon content is set to 0.2% by weight or more is that if the carbon content is less than this value, carbon will dissolve in the β-phase titanium and will not precipitate as titanium carbide. The reason why the upper limit of the amount is set to 5% by weight is that if the content exceeds this value, cracks will occur during solidification of the alloy, and the hot ductility, ductility, and toughness will be extremely deteriorated.

なお、合金中に炭素を混入させる手段としては、溶解の
際にWzC,Cr3C2,NbC等のTicよりも炭化
物としての安定性の乏しい炭化物粉末やバルりを添加し
て合金化する方法を採用することが望ましい。
In addition, as a means of mixing carbon into the alloy, a method is adopted in which alloying is performed by adding carbide powder or burr, which is less stable as a carbide than Tic such as WzC, Cr3C2, NbC, etc., during melting. This is desirable.

さて、第1図(alは本提案の第1発明に係わるチタン
合金材のミクロ組織を模式的に示した概略図で、β相チ
タンの素地(マトリックス)中に炭化チタン(TiC)
析出粒子が均一分散した組織を示している。炭化チタン
析出物の形状は、通常、楕円球状粒子1球状粒子或いは
網目状粒子となっているが、その大きさとしては、組織
均一性や耐摩耗均一性の観点から0.5〜5節程度の微
粒子であることが望ましい。
Now, FIG. 1 (al is a schematic diagram schematically showing the microstructure of a titanium alloy material according to the first invention of the present proposal, in which titanium carbide (TiC) is contained in the matrix of β-phase titanium.
This shows a structure in which precipitated particles are uniformly dispersed. The shape of titanium carbide precipitates is usually one elliptical spherical particle, one spherical particle, or a mesh particle, but the size is about 0.5 to 5 nodes from the viewpoint of uniformity of structure and uniformity of wear resistance. It is desirable that the particles be fine particles.

β相チタン素地中に炭化チタンとα相チタンが均一に析
出したチタン合金を得るには、β相チタン素地中に炭化
チタンを析出したチタン合金材を350〜550℃の温
度で時効処理すれば良い。
In order to obtain a titanium alloy in which titanium carbide and α-phase titanium are uniformly precipitated in a β-phase titanium base, the titanium alloy material in which titanium carbide is precipitated in a β-phase titanium base must be aged at a temperature of 350 to 550°C. good.

この処理によって、β相チタン素地中に炭化チタンを析
出したチタン合金材は微細α相チタンを析出して時効硬
化し、耐摩耗性が更に向上する。この場合、時効処理温
度が350℃未満では時効に長い時間を要したり時効硬
化が生じなかったりする恐れがあり、一方、550℃を
超える温度で時効処理すると過時効となり、時効硬化に
よる硬度アップが図れない懸念がある。
By this treatment, the titanium alloy material in which titanium carbide is precipitated in the β-phase titanium matrix precipitates fine α-phase titanium and is age-hardened, further improving the wear resistance. In this case, if the aging treatment temperature is lower than 350℃, aging may take a long time or age hardening may not occur.On the other hand, if the aging treatment temperature is higher than 550℃, overaging will occur and the hardness will increase due to age hardening. There are concerns that this may not be possible.

第1図(b)は、第1図(a)で示した本提案の第1発
明に係わるチタン合金材を350〜550℃の範囲で時
効したもののミクロ組織を模式的に示した概略図で、炭
化チタン析出物が分散したβ相チタンの素地中に非常に
微細なα相(0,1μm程度)が均一に析出・分散した
ものとなっている。
FIG. 1(b) is a schematic diagram showing the microstructure of the titanium alloy material according to the first invention shown in FIG. 1(a) aged in the range of 350 to 550°C. , a very fine α phase (about 0.1 μm) was uniformly precipitated and dispersed in a β phase titanium matrix in which titanium carbide precipitates were dispersed.

β相チタン素地中に炭化チタンが析出・分散し、かつ硬
質セラミックスも分散したチタン合金材を得るには、0
.2〜5重量%の炭素を含有するβ相チタン合金材を硬
質セラミックスの溶融温度以下で溶融し、その融解池に
硬質セラミックスを投入して凝固させれば良い。この場
合、硬質セラミックスの投入処理はβ相チタン合金材の
全部を熔融させて実施しても良いし、必要な表層部のみ
を溶融させて実施しても良い。なお、投入する硬質セラ
ミックスとしてはW C、W 2 C、T i N 、
 Cr 3 CzN b C+ S iC+ T iN
 + Al z Os等の150趨以下の微粒が好まし
い。なぜなら、硬質セラミックス粒子の大きさが150
卿より大きいと、該チタン合金材を摺動部材に適用した
場合、摺動中に硬質セラミックス粒子が脱落することが
あり、耐摩耗性の劣化が懸念されるようになるからであ
る。
In order to obtain a titanium alloy material in which titanium carbide is precipitated and dispersed in the β-phase titanium matrix and hard ceramics are also dispersed, it is necessary to
.. A β-phase titanium alloy material containing 2 to 5% by weight of carbon may be melted at a temperature below the melting temperature of the hard ceramic, and the hard ceramic may be introduced into the molten pool and solidified. In this case, the hard ceramic charging process may be carried out by melting the entire β-phase titanium alloy material, or may be carried out by melting only the necessary surface layer portion. In addition, the hard ceramics to be introduced include W C, W 2 C, T i N,
Cr 3 CzN b C+ S iC+ T iN
+ Fine particles of 150 or less grains such as Al z Os are preferred. This is because the size of the hard ceramic particles is 150
If the titanium alloy material is larger than 1, when the titanium alloy material is applied to a sliding member, hard ceramic particles may fall off during sliding, leading to concerns about deterioration of wear resistance.

第1図(C1は、第1図(alで示した本提案の第1発
明に係るチタン合金材に更に1501以下の硬質セラミ
ックスを分散して成るチタン合金材のミクロMi織を模
式的に示した概略図で、β相チタン素地中に炭化チタン
析出物か均一分散し、更に硬質セラミックス微粒子が均
一に分散したものとなっている。
Figure 1 (C1) schematically shows a micro-Mi weave of a titanium alloy material made by further dispersing hard ceramics of 1501 or less in the titanium alloy material according to the first invention of the present proposal shown in Figure 1 (al). This schematic diagram shows that titanium carbide precipitates are uniformly dispersed in the β-phase titanium matrix, and hard ceramic particles are further uniformly dispersed.

β相チタン素地中に炭化チタンとα相チタンが析出・分
散し、かつ硬質セラミックスも分散したチタン合金材を
得るには、β相チタン中に炭化チタン析出物と硬質セラ
ミックスが分散している合金材を350〜550℃の温
度で時効処理すれば良い。
In order to obtain a titanium alloy material in which titanium carbide and α-phase titanium are precipitated and dispersed in a β-phase titanium matrix and hard ceramics are also dispersed, an alloy in which titanium carbide precipitates and hard ceramics are dispersed in β-phase titanium is required. The material may be aged at a temperature of 350 to 550°C.

第1図(d)は、第1図(C1で示した本提案の第3発
明に係わるチタン合金材を350〜550℃の範囲で時
効したもののミクロU織を模式的に示した概略図で、炭
化チタン析出物と硬質セラミックス微粒子が分散したβ
相チタン素地中に極めて微細なα相(0,1q程度)が
均一に析出・分散したものとなっている。
FIG. 1(d) is a schematic view schematically showing the micro-U weave of the titanium alloy material according to the third invention of the present proposal shown in FIG. 1 (C1) aged in the range of 350 to 550°C. , β with titanium carbide precipitates and hard ceramic particles dispersed
The extremely fine α phase (approximately 0.1q) is uniformly precipitated and dispersed in the phase titanium matrix.

く作用〉 本発明に係わるチタン合金材は、耐摩耗性(耐摺動摩耗
性、耐エロージョン性)に優れたβ相チタン素地中にt
lvlooo以上の硬度を有する炭化チタンや硬質セラ
ミックスが微細分散した組織を有しており、更には微細
α相チタンが均一分散して時効硬化したものであるので
、これらによる作用が相乗され、チタン合金であるにも
係わらずドライ環境或いはウェット環境においてステラ
イトと同等以上の耐摩耗性を発揮することとなる。
Effects> The titanium alloy material according to the present invention has t
It has a finely dispersed structure of titanium carbide and hard ceramics that have a hardness of more than lvloooo, and furthermore, fine α-phase titanium is uniformly dispersed and age-hardened, so the effects of these are synergistic, and the titanium alloy Despite this, it exhibits wear resistance equal to or higher than that of Stellite in dry or wet environments.

また、上記チタン合金材はチタン基であるので、ステラ
イトとは異なり、チタン合金への溶接はTIG溶接等に
よって欠陥なく安定に行うことができる。しかも、本発
明チタン合金材は、溶製材を1000℃前後に加熱する
ことで容易に熱間圧延することができる。
Further, since the titanium alloy material is titanium-based, unlike stellite, welding to the titanium alloy can be stably performed without defects by TIG welding or the like. Moreover, the titanium alloy material of the present invention can be easily hot rolled by heating the ingot material to around 1000°C.

更に、本発明チタン合金材の密度は含有元素を調整する
ことで5以下にすることができ、チタン合金材に期待さ
れる軽量特性を損なうこともない。
Furthermore, the density of the titanium alloy material of the present invention can be made 5 or less by adjusting the contained elements, without impairing the lightweight properties expected of the titanium alloy material.

続いて、本発明の効果を実施例によって具体的に説明す
る。
Next, the effects of the present invention will be specifically explained using examples.

〈実施例〉 まず、第1表に示す成分組成のチタン合金をボタン溶解
で溶製し、201m厚×50關幅×100n長のインゴ
ットとした。なお、使用した合金原料はスポンジTi、
スポンジZr、電解Sn、Aj!−V母合金、^l−M
o母合金、純^f、W、C粉末、CrzCz粉末、Nb
C粉末、TiN粉末であった。
<Example> First, a titanium alloy having the composition shown in Table 1 was melted by button melting to form an ingot with a thickness of 201 m, a width of 50 mm, and a length of 100 nm. The alloy raw materials used were sponge Ti,
Sponge Zr, electrolytic Sn, Aj! -V master alloy, ^l-M
o Master alloy, pure^f, W, C powder, CrzCz powder, Nb
They were C powder and TiN powder.

次に、これらインゴットを1050℃に加熱してから1
0+*m厚の板にまで3パスで熱間圧延すると共に、熱
間圧延による割れ等の欠陥発生状況を調査した。
Next, these ingots were heated to 1050°C and then
The plate was hot rolled in three passes to a thickness of 0+*m, and the occurrence of defects such as cracks due to hot rolling was investigated.

更に、合金6. 7. 8.11.12.14.16.
17及び18については、熱間圧延後に時効を施しα相
を析出させた。
Furthermore, alloy 6. 7. 8.11.12.14.16.
Regarding Nos. 17 and 18, aging was performed after hot rolling to precipitate the α phase.

次いで、上述の如く得られた圧延板(10關厚)の常温
での硬度(ビッカース硬度)を測定すると共に、直径1
0龍φ×長さ40龍の摺動摩耗試験用試験片並びに10
11厚X10n幅×15鶴長のエロージョン用試験片を
採取し、それぞれの試験に供した。また、同材料よりX
線回折用試験片をも採取し、デイフラクトメーターによ
って“相”の同定を行った。
Next, the hardness (Vickers hardness) at room temperature of the rolled plate (10 mm thick) obtained as described above was measured, and the
0 dragon φ x length 40 dragon specimen for sliding wear test and 10
Erosion test pieces of 11 thickness x 10 nm width x 15 length were taken and used for each test. Also, from the same material
A specimen for linear diffraction was also collected, and the "phase" was identified using a diffractometer.

なお、これとは別に耐摩耗材料として使用されているス
テライトNo、6 (商品名〕についても同様の試験を
行った。
In addition, similar tests were also conducted on Stellite No. 6 (trade name), which is used as an abrasion-resistant material.

「摩耗試験」は第2図で示すようなビンオンディスク方
式によって実施したが、試験条件は試験片の押圧荷重:
2kg。
The "wear test" was conducted using the bin-on-disk method shown in Figure 2, and the test conditions were: Pressure load of the test piece:
2kg.

試験片と相手材(ディスク)との摺動速度=62.8m
/min。
Sliding speed between test piece and mating material (disk) = 62.8m
/min.

摺動距離: 2.5X 10 ’m。Sliding distance: 2.5X 10’m.

相手材(ディスク):60キロ級高張力鋼。Mating material (disc): 60 kg class high tensile strength steel.

摩擦面の潤滑:なし であり、このときの重M?J&少量で耐摩耗性を評価し
た。
Friction surface lubrication: None, and the weight M? Abrasion resistance was evaluated using a small amount of J&.

「エロージョン試験」には第3図で示したような水ジエ
ツト方式を採用し、予めパフ研磨にて鏡面研磨した試験
片表面に 水噴射ノズル径:1,2mmφ。
For the "erosion test," a water jet method as shown in Figure 3 was adopted, and a water jet nozzle diameter: 1.2 mmφ was sprayed onto the surface of the test piece, which had been mirror-polished by puff polishing in advance.

噴射水流速: 370 m/sec。Injection water flow rate: 370 m/sec.

ノズル−試験片間路M:65■l。Nozzle-test piece path M: 65 μl.

噴射角度:90゜ 噴射時間:600sec なる条件で高速水を噴射した後、高速水噴射にて生じた
痕跡の深さを測定し耐エロージヨン性を評価した。
After spraying high-speed water under the following conditions: spray angle: 90° spray time: 600 seconds, the depth of the traces produced by the high-speed water spray was measured to evaluate erosion resistance.

これらの結果を第1表に併せて示した。These results are also shown in Table 1.

第1表に示される結果からも、本発明に係わるチタン合
金材は熱間圧延性に優れる上、摺動摩耗量及びエロージ
ョン深さが共に十分に小さくて比較例であるステライト
No、6と同程度あり、ドライな環境においてもウェッ
トな環境においても優れた耐摩耗性を示すことが明らか
である。
The results shown in Table 1 also show that the titanium alloy material according to the present invention not only has excellent hot rollability, but also has sufficiently small sliding wear amount and erosion depth, which is the same as Stellite No. 6, which is a comparative example. It is clear that it exhibits excellent abrasion resistance in both dry and wet environments.

〈効果の総括〉 以上に示した如く、この発明によれば、ドライな環境中
においてもウェットな環境中においても優れた耐摩耗性
を発揮すると共に、熱間加工性が良好で、かつ軽量なチ
タン合金材を提供することができ、自動車の動弁部品や
人工骨等の摺動部材。
<Summary of Effects> As shown above, the present invention exhibits excellent wear resistance in both dry and wet environments, has good hot workability, and is lightweight. We can provide titanium alloy materials for sliding parts such as automobile valve train parts and artificial bones.

或いは蒸気タービン翼等に適用して優れた性能が■保さ
れる上、他のチタン及びチタン合金材への溶接も可能な
ためそれらの耐摩耗用シールド材としての使用も可能で
あるなど、産業上極めて有用な効果がもたらされる。
Alternatively, it can be applied to steam turbine blades, etc. to maintain excellent performance, and it can also be welded to other titanium and titanium alloy materials, so it can also be used as a wear-resistant shielding material. Above all, very useful effects are brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るチタン合金材のミクロ組織を模
式的に示した概略図であり、第1図(a)。 第1図(b)、第1図fc)及び第1図(d)はそれぞ
れ別の例を示している。 第2図は、摺動摩耗試験方法を説明した概念図である。 第3図は、エロージョン試験方法を説明した概念図であ
る。 第1図 手続ネ甫正書印発) 第2図 1、事件の表示 昭和63年特許願第282435号 2、発明の名称 高耐摩耗チタン合金材 3、補正をする者 事件との関係  特許出願人 第3図 4、代理人 明細書の「特許請求の範囲」並びに[発明の詳〈補正の
内容) 1)特許請求の範囲を別紙の通りに補正する。 2)明細書、第6頁第19行及び第7頁第3〜4行に「
均一に析出・分散」とあるを、何れも「均一に晶出及び
/又は析出・分散」 に訂正する。 3)明細書、第7頁、第14行に「析出・分散した」と
あるを、 [晶出及び/又は析出・分散した」 に訂正する。 4)明細書、第8頁、第1行及び第4行に「炭化チタン
析出物」とあるを、何れも 「炭化チタン晶出物及び/又は析出物」に訂正する。 5)明細書、第8頁、第18行及び第19〜20行に「
「析出・分散して」とあるを、何れも[晶出及び/又は
析出・分散して」 に訂正する。 6)明細書、第9頁、第1行及び第3行に「炭化チタン
析出物」とあるを、何れも 「炭化チタン晶出物及び/又は析出物」に訂正する。 7)明細書、第10頁、第7行に「熔融分塊」とあるを
、 「溶融分散」 に訂正する。 8)明細書、第10頁、第12〜13行に「炭化チタン
として析出しない」とあるを、 「炭化チタンとして晶出及び/又は析出しない」に訂正
する。 9)明細書、第11頁、第5〜6行に「炭化チタン(T
iC)析出粒子」とあるを、 「炭化チタン(TiC)晶出粒子及び/又は析出粒子」 に訂正する。 10)  明細書、第11頁、第7行に「炭化チタン析
出物」とあるを、 「炭化チタン晶出物及び/又は析出物」に訂正する。 11)  明細書、第11頁、第13行に[均一に析出
した」とあるを、 「均一に晶出及び/又は析出した」 に訂正する。 12)  明細書、第11頁、第14行及び第16〜1
7行に「炭化チタンを析出した」とあるを、何れも 「炭化チタンを晶出及び/又は析出した」に訂正する。 13)明細書、第12頁、第7行に「炭化チタン析出物
」とあるを、 「炭化チタン晶出物及び/又は析出物」に訂正する。 14)  明細書、第12頁、第10行に「炭化チタン
が析出・分散し」とあるを、 「炭化チタンが晶出及び/又は析出・分散し」に訂正す
る。 15)  明細書、第13頁、第10行及び第15〜1
6行に「炭化チタン析出物」とあるを、何れも「炭化チ
タン晶出物及び/又は析出物」に訂正する。 16)明細書、第13頁、第14行に「析出・分散し」
とあるを、 「晶出及び/又は析出・分散し」 に訂正する。 17)  明細書、第14頁、第2行に「炭化チタン析
出物」とあるを、 「炭化チタン晶出物及び/又は析出物」に訂正する。 以 上 「2、特許請求の範囲 (1)  β相チタン素地に炭化チタンが益塵反乏Zス
見析出・分散して成ることを特徴とする、高耐摩耗チタ
ン合金材。 (2)  β相チタン素地に炭化チタンとα相チタンが
益に又墓析出・分散して成ることを特徴とする、高耐摩
耗チタン合金材。 (3)  β相チタン素地に炭化チタン−8良貰u/又
ヰ析出物と硬質セラミックスとが分散して成ることを特
徴とする、高耐摩耗チタン合金材。 (4)  β相チタン素地に炭化チタン益■璽及グZ又
珪析出物とαチタン析出相と硬質セラミックスとが分散
して成ることを特徴とする、高耐摩耗チタン合金材。j
FIG. 1 is a schematic diagram schematically showing the microstructure of a titanium alloy material according to the present invention, and FIG. FIG. 1(b), FIG. 1fc) and FIG. 1(d) each show different examples. FIG. 2 is a conceptual diagram illustrating the sliding wear test method. FIG. 3 is a conceptual diagram explaining the erosion test method. Figure 1: Procedure (Authentic seal) Figure 2: 1. Display of the case 1988 Patent Application No. 282435 2. Name of the invention: High wear-resistant titanium alloy material 3. Person making the amendment. Relationship with the case. Patent application. Figure 3, Figure 4, "Claims" in the attorney's specification and [Details of the invention (contents of amendment) 1) Amend the claims as shown in the attached sheet. 2) In the specification, page 6, line 19 and page 7, lines 3-4, “
The phrase "uniformly precipitated and dispersed" should be corrected to "uniformly crystallized and/or precipitated and dispersed." 3) In the description, page 7, line 14, the phrase "precipitated and dispersed" should be corrected to "crystallized and/or precipitated and dispersed." 4) In the specification, page 8, lines 1 and 4, the words "titanium carbide precipitates" are corrected to "titanium carbide crystals and/or precipitates." 5) In the specification, page 8, line 18 and lines 19-20, “
The phrase "by precipitation and dispersion" should be corrected to "by crystallization and/or precipitation and dispersion." 6) In the specification, page 9, lines 1 and 3, the words "titanium carbide precipitates" are corrected to "titanium carbide crystals and/or precipitates." 7) In the specification, page 10, line 7, "melt blooming" is corrected to "melting dispersion." 8) In the specification, page 10, lines 12-13, the phrase "does not precipitate as titanium carbide" is corrected to "does not crystallize and/or precipitate as titanium carbide." 9) Specification, page 11, lines 5-6: “Titanium carbide (T
iC) "Precipitated particles" is corrected to "Titanium carbide (TiC) crystallized particles and/or precipitated particles." 10) In the specification, page 11, line 7, the phrase "titanium carbide precipitates" should be corrected to "titanium carbide crystals and/or precipitates." 11) In the specification, page 11, line 13, the phrase "uniformly precipitated" should be corrected to "uniformly crystallized and/or precipitated." 12) Specification, page 11, line 14 and lines 16-1
In line 7, the statement "Titanium carbide was precipitated" is corrected to "Titanium carbide was crystallized and/or precipitated." 13) In the specification, page 12, line 7, the phrase "titanium carbide precipitates" is corrected to "titanium carbide crystals and/or precipitates." 14) In the specification, page 12, line 10, the phrase "titanium carbide is precipitated and dispersed" is corrected to "titanium carbide is crystallized and/or precipitated and dispersed." 15) Specification, page 13, line 10 and lines 15-1
In line 6, the words "titanium carbide precipitates" should be corrected to "titanium carbide crystals and/or precipitates." 16) “Precipitated and dispersed” in the specification, page 13, line 14
The statement has been corrected to "crystallization and/or precipitation/dispersion." 17) In the specification, page 14, line 2, the phrase "titanium carbide precipitates" is corrected to "titanium carbide crystals and/or precipitates." 2. Claims (1) A highly wear-resistant titanium alloy material characterized by titanium carbide precipitated and dispersed in a β-phase titanium matrix. (2) β-phase A highly wear-resistant titanium alloy material characterized by titanium carbide and α-phase titanium precipitated and dispersed on a titanium base. (3) Titanium carbide-8 grade u/or on a β-phase titanium base. A highly wear-resistant titanium alloy material characterized by a dispersion of di-precipitates and hard ceramics. (4) Titanium carbide, silicon precipitates, and α-titanium precipitates on a β-phase titanium matrix. A highly wear-resistant titanium alloy material characterized by a dispersion of hard ceramics and hard ceramics.j

Claims (4)

【特許請求の範囲】[Claims] (1)β相チタン素地に炭化チタンが析出・分散して成
ることを特徴とする、高耐摩耗チタン合金材。
(1) A highly wear-resistant titanium alloy material characterized by titanium carbide precipitated and dispersed in a β-phase titanium matrix.
(2)β相チタン素地に炭化チタンとα相チタンが析出
・分散して成ることを特徴とする、高耐摩耗チタン合金
材。
(2) A highly wear-resistant titanium alloy material characterized by titanium carbide and α-phase titanium precipitated and dispersed in a β-phase titanium base.
(3)β相チタン素地に炭化チタン析出物と硬質セラミ
ックスとが分散して成ることを特徴とする、高耐摩耗チ
タン合金材。
(3) A highly wear-resistant titanium alloy material characterized by having titanium carbide precipitates and hard ceramics dispersed in a β-phase titanium matrix.
(4)β相チタン素地に炭化チタン析出物とαチタン析
出相と硬質セラミックスとが分散して成ることを特徴と
する、高耐摩耗チタン合金材。
(4) A highly wear-resistant titanium alloy material, characterized in that titanium carbide precipitates, α titanium precipitates, and hard ceramics are dispersed in a β-phase titanium matrix.
JP63282435A 1988-11-10 1988-11-10 High wear resistance titanium alloy material Expired - Lifetime JPH0762196B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63282435A JPH0762196B2 (en) 1988-11-10 1988-11-10 High wear resistance titanium alloy material
US07/433,963 US5068003A (en) 1988-11-10 1989-11-09 Wear-resistant titanium alloy and articles made thereof
DE3937526A DE3937526C2 (en) 1988-11-10 1989-11-10 Wear-resistant titanium alloy, process for its production and its use
US07/739,442 US5141574A (en) 1988-11-10 1991-08-02 Process of forming dispersions in titanium alloys by melting and precipitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282435A JPH0762196B2 (en) 1988-11-10 1988-11-10 High wear resistance titanium alloy material

Publications (2)

Publication Number Publication Date
JPH02129330A true JPH02129330A (en) 1990-05-17
JPH0762196B2 JPH0762196B2 (en) 1995-07-05

Family

ID=17652378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282435A Expired - Lifetime JPH0762196B2 (en) 1988-11-10 1988-11-10 High wear resistance titanium alloy material

Country Status (1)

Country Link
JP (1) JPH0762196B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549656A (en) * 1991-06-24 1993-03-02 Sumitomo Metal Ind Ltd Artificial joint made of titanium alloy having excellent wear resistance
US5409518A (en) * 1990-11-09 1995-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same
US5545248A (en) * 1992-06-08 1996-08-13 Nippon Tungsten Co., Ltd. Titanium-base hard sintered alloy
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2013087852A (en) * 2011-10-17 2013-05-13 Minebea Co Ltd Unlubricated sliding member
JP2014530958A (en) * 2011-10-14 2014-11-20 シーメンス アクティエンゲゼルシャフト Method for applying a wear protection layer to a turbomachine component
JP2020536175A (en) * 2017-10-06 2020-12-10 モナッシュ ユニバーシティ Improved heat treatable titanium alloy
CN115287559A (en) * 2022-07-14 2022-11-04 武汉大学 Preparation method of titanium alloy material gradient micro-nano structure by using high-pressure water jet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231151A (en) * 1985-04-08 1986-10-15 Kobe Steel Ltd Surface hardening treatment for titanium or titanium alloy
JPS6256561A (en) * 1985-09-06 1987-03-12 Honda Motor Co Ltd Method for hardening surface of ti or ti alloy
JPS62180026A (en) * 1986-02-03 1987-08-07 Hitachi Ltd Low pressure turbine moving vane for steam turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231151A (en) * 1985-04-08 1986-10-15 Kobe Steel Ltd Surface hardening treatment for titanium or titanium alloy
JPS6256561A (en) * 1985-09-06 1987-03-12 Honda Motor Co Ltd Method for hardening surface of ti or ti alloy
JPS62180026A (en) * 1986-02-03 1987-08-07 Hitachi Ltd Low pressure turbine moving vane for steam turbine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409518A (en) * 1990-11-09 1995-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same
JPH0549656A (en) * 1991-06-24 1993-03-02 Sumitomo Metal Ind Ltd Artificial joint made of titanium alloy having excellent wear resistance
US5545248A (en) * 1992-06-08 1996-08-13 Nippon Tungsten Co., Ltd. Titanium-base hard sintered alloy
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP4493029B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP2014530958A (en) * 2011-10-14 2014-11-20 シーメンス アクティエンゲゼルシャフト Method for applying a wear protection layer to a turbomachine component
US9370795B2 (en) 2011-10-14 2016-06-21 Siemens Aktiengesellschaft Method for applying a wear-resistant layer to a turbomachine component
JP2013087852A (en) * 2011-10-17 2013-05-13 Minebea Co Ltd Unlubricated sliding member
JP2020536175A (en) * 2017-10-06 2020-12-10 モナッシュ ユニバーシティ Improved heat treatable titanium alloy
CN115287559A (en) * 2022-07-14 2022-11-04 武汉大学 Preparation method of titanium alloy material gradient micro-nano structure by using high-pressure water jet

Also Published As

Publication number Publication date
JPH0762196B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US5068003A (en) Wear-resistant titanium alloy and articles made thereof
Farahmand et al. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3
Sun et al. Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb) C/Ni coating
JP6093168B2 (en) Nickel-based alloy cold spray
Thawari et al. Influence of buffer layer on surface and tribomechanical properties of laser cladded Stellite 6
EP0511318B1 (en) Plasma spraying of rapidly solidified aluminum base alloys
Shahroozi et al. Microstructure and mechanical properties investigation of stellite 6 and Stellite 6/TiC coating on ASTM A105 steel produced by TIG welding process
JP6904690B2 (en) Covered article and manufacturing method
DE2829369B2 (en) Process for forming hard, wear-resistant coatings containing metallic carbides
Sexton et al. Alloy development by laser cladding: an overview
JPH02129330A (en) High wear-resistant titanium alloy material
US5980659A (en) Surface-treated metallic part and processing method thereof
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
Shahbazkhan et al. Investigation of bonding strength and hot corrosion behavior of NiCoCrAlSi high entropy alloy applied on IN-738 superalloy by SPS method
JPS6256561A (en) Method for hardening surface of ti or ti alloy
GB1579349A (en) Components resistant to corrosion at high temperatures
Wang et al. Effect of heat treatment on microstructure, corrosion resistance, and interfacial characteristics of Inconel 625 laser cladding layer
Zhang et al. Effect of high entropy alloy as the interlayer on the interfacial microstructure and mechanical property of Al/steel bimetal by compound casting
Kirik et al. Properties of different TIG coatings of Stellite on the Hardox 450 and St 52 steel
Mazur et al. Graded Inconel 625 coatings with in-situ processing of Ni3Al
Mirazizi et al. Fabrication of FexCoCrAlNi medium and high entropy layers on a carbon steel through TIG cladding
US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel
He et al. Carbide reinforced Ni–Cr–B–Si–C composite coating on 4Cr5MoSiV1 steel by comprehensive plasma melt injection method
Taheri Development of a novel method for measuring the interfacial creep strength of laser cladding coatings
JPH04308068A (en) Parts made of titanium alloy having high wear resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 14