JPS62180026A - Low pressure turbine moving vane for steam turbine - Google Patents

Low pressure turbine moving vane for steam turbine

Info

Publication number
JPS62180026A
JPS62180026A JP2012486A JP2012486A JPS62180026A JP S62180026 A JPS62180026 A JP S62180026A JP 2012486 A JP2012486 A JP 2012486A JP 2012486 A JP2012486 A JP 2012486A JP S62180026 A JPS62180026 A JP S62180026A
Authority
JP
Japan
Prior art keywords
alloy
pressure turbine
low
moving vane
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012486A
Other languages
Japanese (ja)
Inventor
Tetsuo Kuroda
哲郎 黒田
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012486A priority Critical patent/JPS62180026A/en
Publication of JPS62180026A publication Critical patent/JPS62180026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide a low-pressure turbine moving vane for a steam turbine having excellent resistance to cavitation erosion by constituting the top end of the vane of a Ti alloy formed by dispersing >=1 kinds among a carbide, nitride, boride, and intermetallic compd. into a substrate. CONSTITUTION:The top end of the above-mentioned low-pressure turbine moving vane is constituted of the Ti alloy contg. >=1 kinds among the carbide, nitride, boride, and intermetallic compd. under the reduced pressure of gaseous Ar. For example, a roll method, etc., are used in order to uniformly disperse the above-mentioned carbide, nitride, etc., having the high hardness into the Ti alloy in this case. The melt of the above-mentioned alloy is quickly dropped onto the surface of a single roll or passed between twin rolls to obtain alloy foil. The Ti alloy foil is diffusively joined to the top end of the low-pressure turbine moving vane by hot hydrostatic press welding (HIP), by which the objective low-pressure turbine moving vane is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐キャビテーション・エロージヨン性にすぐれ
た蒸気タービンの低圧タービン動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-pressure turbine rotor blade for a steam turbine that has excellent cavitation and erosion resistance.

〔従来の技術〕[Conventional technology]

蒸気タービンの低圧タービン翼は現在、12Cr鋼が使
用されているが1国内外において12Cr 3fjの次
の材料としてTi合金翼の実用化が検討されているsT
i合金はl 2 Cr鋼より軽量のためプラント運転性
能が改善された効率向上に寄与できる。Ti合金翼にお
いても12CrfRタービン動翼と同様に蒸気粒子によ
るキャビテーション・二ローションを抑制するために翼
先端部を保護する必要がある。
Currently, 12Cr steel is used for the low-pressure turbine blades of steam turbines, but the practical application of Ti alloy blades is being considered domestically and internationally as a material to replace 12Cr 3fj.
Since i-alloy is lighter than l 2 Cr steel, it can contribute to increased efficiency with improved plant operating performance. Similarly to the 12CrfR turbine rotor blade, in the case of a Ti alloy blade, it is necessary to protect the tip of the blade in order to suppress cavitation caused by steam particles.

米国特許第3802939号には、Ti基合金動翼の翼
先端部の耐キャビテーション・エロージヨン性を改善す
るためにT i −15M o −5Z r系合金が適
切であると指摘している。しかし、このTi合金に炭化
物、窒化物あるいは硼化物のような硬質の粒子を含有し
ていないため、長時間運転の場合には翼先端部の耐潰食
性が劣化する難点がある。
US Pat. No. 3,802,939 points out that a Ti-15Mo-5Z r-based alloy is suitable for improving the cavitation and erosion resistance of the tip of a Ti-based alloy rotor blade. However, since this Ti alloy does not contain hard particles such as carbides, nitrides, or borides, there is a problem in that the crushing corrosion resistance of the blade tips deteriorates during long-term operation.

金属材料の耐キャビテーション・エロージヨン性を高め
るには基質の強度と靭性を増大させる必要があり、この
ためには靭性のある基質中に高硬度の微細な化合物を比
較的多足にかつ均一に分散させるのが肝要であるが、通
常の溶解→鍛造→加工→熱処理のプロセスではTi合金
の耐潰食性を大幅に改善することは極めて困難である。
To improve the cavitation and erosion resistance of metal materials, it is necessary to increase the strength and toughness of the matrix, and to achieve this, it is necessary to uniformly disperse a relatively large number of fine compounds with high hardness in a tough matrix. However, it is extremely difficult to significantly improve the corrosion resistance of Ti alloys using the normal melting → forging → processing → heat treatment process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は蒸気タービンの低圧タービンTi基合金
動翼において耐キャビテーション・エロージヨン性にす
ぐれた翼先端部を提供することにある。
An object of the present invention is to provide a blade tip portion with excellent cavitation and erosion resistance in a low-pressure turbine Ti-based alloy rotor blade for a steam turbine.

c問題点を解決するための手段〕 上記目的を達成するため、本発明の著者等が挿作検討し
た結果、溶湯急冷凝固法としてプラズマ溶射で形成した
Ti合金皮膜あるいはロール法によるTi合金箔を翼先
端部に使用すると耐キャビテーション・二ローション性
が改善されることを思い出した。
c) Means for Solving the Problems] In order to achieve the above object, the authors of the present invention have conducted a study and found that a Ti alloy film formed by plasma spraying as a molten metal rapid solidification method or a Ti alloy foil formed by a roll method is used. I remembered that cavitation resistance and two-lotion properties are improved when used on the wing tips.

すなわち、耐キャビテーション・二ローション性を向上
させるにはTi合金基質中に高硬度の炭化物、窒化物、
硼化物、金属間化合物を比較的多砒に分散させる必要が
あるが、鋳造法では合金組成の制約のために凝固中に晶
出する炭化物、窒化物、硼化物、金属間化合物は限定さ
れ、また晶出するこれらの化合物は凝集、成長して巨大
になる難点がある。これに対してロール法による合金箔
は溶湯をごく短時間に単ロールの表面に落下あるい双ロ
ールの間を通過せしめて製造するのが特徴であり、だ同
速度が約10δ℃/ sec以上と通常のU進法の場合
よりも著るしく高いため、得られる紡造組織は微細化す
る。
In other words, in order to improve cavitation resistance and lotion resistance, high hardness carbides, nitrides,
It is necessary to disperse borides and intermetallic compounds in a relatively highly arsenic manner, but in the casting method, carbides, nitrides, borides, and intermetallic compounds that crystallize during solidification are limited due to constraints on alloy composition. Furthermore, these crystallized compounds have the disadvantage of agglomerating and growing to become large. On the other hand, alloy foil produced by the roll method is characterized in that the molten metal is produced by falling onto the surface of a single roll or passing between two rolls in a very short time, and the rolling speed is approximately 10 δ℃/sec or more. Since this is significantly higher than that in the case of the normal U-adic system, the resulting texture becomes finer.

プラズマ溶射は数1000℃以上の高温プラズマ炎中に
金属あるいは化合物粉を投入して溶融し、金属溶湯粒子
を高速で基材に衝突せしめて堆積させ、皮膜を形成させ
る技術である。この技術の特徴は金属基質中に比較的容
易に各種の化合物を微細にかつ均一に分散できることで
、特に本発明においては低圧タービンTi合金動翼に直
接、プラズマ溶射で翼先端部を形成させることができる
メリットがある。
Plasma spraying is a technology in which metal or compound powder is placed in a high-temperature plasma flame of several thousand degrees centigrade or more and melted, and the molten metal particles collide with a base material at high speed and are deposited to form a film. A feature of this technology is that various compounds can be dispersed finely and uniformly in a metal matrix with relative ease.In particular, in the present invention, the blade tips are formed directly on low-pressure turbine Ti alloy rotor blades by plasma spraying. It has the advantage of being able to

Ti合金基質中に分散せしめる化合物としては炭化物、
窒化物、硼化物、金属間化合物の内、通常は種類で十分
であるが、状況に応じてこれらの化合物を適宜、選択し
て2種類以上の化合物を分散させることもできる。これ
に対して溶湯凝固により得られるTi合金箔を翼先端部
に使用する場合には、HI P (Hot 1sost
atic pressing :熱間静水圧圧接)によ
りTi合金箔を動翼の先端部に拡散接合できる。
Compounds to be dispersed in the Ti alloy matrix include carbides,
Among nitrides, borides, and intermetallic compounds, one type is usually sufficient, but depending on the situation, these compounds can be selected as appropriate and two or more types of compounds can be dispersed. On the other hand, when Ti alloy foil obtained by solidifying molten metal is used for the blade tip, HI P (Hot 1st
Ti alloy foil can be diffusion bonded to the tip of the rotor blade by atic pressing (hot isostatic pressing).

本発明の著者等によりTi合金と同様にNi基あるいは
Co基合金中に炭化物、窒化物、硼化物。
According to the authors of the present invention, carbides, nitrides, and borides are contained in Ni-based or Co-based alloys as well as Ti alloys.

金属間化合物を少なくとも1種類以上分散されたプラズ
マ溶射皮膜、合金箔をTi合金動翼にはりつけると耐キ
ャビテーション・二ローション性が格段に改善されるこ
とがわかった。
It has been found that when a plasma sprayed coating or alloy foil in which at least one type of intermetallic compound is dispersed is attached to a Ti alloy rotor blade, cavitation resistance and two-lotion properties are significantly improved.

また、表面処理によりTi合金の耐潰食性を高める方法
としてプラズマ溶射あるいはイオンビーム処理により炭
化物、窒化物、硼化物の単独皮膜あるいはこれらの複合
皮膜の形成することも効果があることも明らかにされた
It has also been revealed that forming a single film of carbide, nitride, or boride or a composite film of these by plasma spraying or ion beam treatment is also effective as a method of improving the crushing corrosion resistance of Ti alloys through surface treatment. Ta.

〔作用〕[Effect]

金属材料の耐キャビテーション・二ローション性を高め
るには、靭性のある基質中に高硬度な化合物を微細にか
つ均一に分散させるのが肝要である。Ti合金は基本的
に靭性のある材料であるが。
In order to improve the cavitation resistance and resistance of metal materials, it is important to finely and uniformly disperse a highly hard compound in a tough matrix. Although Ti alloy is basically a tough material.

その結晶粒を鋳造法で得られる場合よりも微細化されれ
ば、さらに改善される。これを達成するには急速凝固が
特徴であるプラズマ溶射による皮膜形成及び溶湯急冷に
よる合金箔の製造が効果的で、これらの方法により結晶
粒が最小で数μmに微細化されて靭性は向上する。
Further improvement can be achieved if the crystal grains are made finer than those obtained by casting. To achieve this, it is effective to form a film by plasma spraying, which is characterized by rapid solidification, and to manufacture alloy foil by rapid cooling of the molten metal.These methods refine the crystal grains to a minimum of several micrometers and improve toughness. .

靭性を高める基質に分散する化合物としては炭化物、窒
化物及び硼化物が適切である。すなわち、これらの化合
物の硬度はいずれも高く耐キャビテーション・二ローシ
ョン性を高める重要な強化因子である。また高硬度の金
属間化合物も分散剤として利用できる。
Carbides, nitrides and borides are suitable as toughness-enhancing compounds dispersed in the matrix. That is, the hardness of these compounds is high and is an important reinforcing factor for improving cavitation resistance and lotion resistance. Furthermore, intermetallic compounds with high hardness can also be used as dispersants.

プラズマ溶射技術はプラズマ炎に各種の金属・化合物粉
末を投入して、溶湯粒子を基材に高速で衝突・堆積させ
て皮膜を形成させるのが特徴であり、基質の組成及びこ
れに分散させる化合物の種類と量を比較的容易にコント
ロールしてその分布状態を調整することにより、耐キャ
ビテーション・二ローション性のすぐれた翼先端部を直
接、形成させることができる。プラズマ溶射法は大気中
で あるいは減圧中槌施工できる。大気中プラズマ溶射では
、溶射においてプラズマジェット中で加熱に 溶融した溶湯粒子の表面が酸化さ積るため皮膜中に酸化
皮膜が混入し、積層される溶射皮膜に空孔等の欠陥が生
じやすくなり、従って耐キャビテーション・二ローショ
ン性が劣化することになる。
Plasma spraying technology is characterized by injecting various metal and compound powders into a plasma flame, causing the molten metal particles to collide and deposit on the substrate at high speed to form a film. By relatively easily controlling the type and amount and adjusting its distribution state, it is possible to directly form a blade tip with excellent cavitation and two-lotion resistance. Plasma spraying can be performed in the atmosphere or under reduced pressure. In atmospheric plasma spraying, oxidation builds up on the surface of the molten metal particles heated in the plasma jet during thermal spraying, resulting in an oxide film being mixed into the coating, which tends to cause defects such as pores in the laminated thermal spray coating. Therefore, cavitation resistance and two-lotion properties deteriorate.

この欠点を克服するにはプラズマ溶射を減圧Arガス(
50〜300Torn)下で実施すると酸化膜フリーの
溶湯粒子が基材に堆積されるため、欠陥のほとんどない
緻密な皮膜が得られる。
To overcome this drawback, plasma spraying can be performed using reduced pressure Ar gas (
50 to 300 Torn), oxide film-free molten metal particles are deposited on the base material, resulting in a dense film with almost no defects.

溶湯急冷による合金箔は、溶湯をノズルから噴出させて
、片ロールの表面に落下あるいは双ロールの間を通過せ
しめて急速凝固させて厚さが約50〜300μmのもの
が得られる。この合金箔の結晶粒は微細でかつ晶出する
化合物も微細化される。
The alloy foil produced by rapid cooling of the molten metal is obtained by jetting the molten metal from a nozzle and letting it fall onto the surface of one roll or pass between two rolls to rapidly solidify it to a thickness of about 50 to 300 μm. The crystal grains of this alloy foil are fine and the crystallized compound is also fine.

Ni基合金及びCo基合金のプラズマ溶射皮膜と合金皮
膜も前述したTi合金の場合と同様に製作でき、Ti合
金動翼の翼先端部として利用できる。プラズマ溶射皮膜
は直接、翼先端部に溶射すれば皮膜と動翼との密着性は
良好である。合金箔の場合は適正なHI P処理により
動翼と強固に拡散接合される。
Plasma sprayed coatings and alloy coatings of Ni-based alloys and Co-based alloys can also be produced in the same manner as in the case of Ti alloys described above, and can be used as the blade tips of Ti alloy rotor blades. If the plasma spray coating is directly sprayed onto the tip of the blade, the adhesion between the coating and the rotor blade will be good. In the case of alloy foil, it can be firmly diffusion bonded to the rotor blade by proper HIP treatment.

硬質皮膜をTi合金に形成させる方法としてはプラズマ
溶射とイオンビーム処理である。プラズマ溶射の場合は
Arガスの減圧下で炭化物、窒化物、硼化物皮膜を形成
できる。炭化物、硼化物皮膜の場合はこれらの化合物粉
末をAr高温プラズマ炎中に投入、溶融させ、高速の溶
湯粒子をTi合金基材に堆積させる。窒化物の場合には
、窒化物粉末をAr  Nz高温プラズマ炎中に投入す
る。
Plasma spraying and ion beam treatment are methods for forming a hard coating on a Ti alloy. In the case of plasma spraying, carbide, nitride, and boride films can be formed under reduced pressure of Ar gas. In the case of a carbide or boride film, these compound powders are put into an Ar high temperature plasma flame and melted, and high-speed molten metal particles are deposited on the Ti alloy base material. In the case of nitrides, the nitride powder is placed in an Ar Nz hot plasma flame.

このようにいずれの場合も適正な溶射条件を設定すれば
、硬質で緻密な皮膜が得られる。
In either case, if the thermal spraying conditions are set appropriately, a hard and dense coating can be obtained.

イオンビーム処理による表面処理としてイオンプランテ
ィング等が半湛体産業で利用されているが、皮膜を高速
度で形成できる方法としてイオンビームミキシング法が
効果的である。この方法は大出力イオン源からの出力イ
オンビームを被表面処理材(本発明においてはTi合金
動翼)に照射し基材中に注入する。この場合のイオンビ
ームとしてはC,N及びBが利用できる。電子ビーム蒸
着装置より各種材料を蒸着させて被表面処理材に蒸着さ
せ、表面にある種の合金を作ることによって耐熱性や耐
摩耗性を向上できる。すなわちイオン注入と電子ビーム
蒸着を併用することにより任TiC,TiN及びTix
B の硬質皮膜をTi合金!FII翼表面に形成でき、
耐キャビテーション・二ローション性を改善することが
できる。
Ion planting is used as a surface treatment by ion beam treatment in the semi-filled industry, but ion beam mixing is an effective method for forming a film at high speed. In this method, an output ion beam from a high-power ion source is irradiated onto the material to be surface treated (in the present invention, a Ti alloy rotor blade) and injected into the base material. In this case, C, N, and B can be used as ion beams. Heat resistance and abrasion resistance can be improved by depositing various materials on the surface-treated material using an electron beam evaporation device and creating a certain type of alloy on the surface. That is, by using ion implantation and electron beam evaporation in combination, TiC, TiN and Tix
The hard coating of B is made of Ti alloy! It can be formed on the FII wing surface,
Cavitation resistance and lotion properties can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

〔実施例1〕 第1表に示す組成(%+t10)の混合粉末を減圧溶射
て約2mmの皮膜を形成した。溶射の雰囲気はArガス
でブI囲気圧力は5QTorrで、プラズマは(A r
 + H2)ガスでプラズマ電流は800Aである。溶
射後に皮膜の内部応力を除去するために1000℃で3
0m1n加熱した。被覆の組織を観察した結果、結晶粒
は数μm、酸化物のまきこみは認められず、各種化合物
の大きさは約1μmであり、均一に分散していることが
明らかにされた。
[Example 1] A mixed powder having the composition (%+t10) shown in Table 1 was sprayed under reduced pressure to form a film of about 2 mm. The atmosphere for thermal spraying was Ar gas, the ambient pressure was 5QTorr, and the plasma was (Ar
+H2) gas and the plasma current is 800A. 3 at 1000℃ to remove the internal stress of the coating after thermal spraying.
It was heated for 0mln. As a result of observing the structure of the coating, it was revealed that the crystal grains were several μm in size, no oxide particles were observed, and the various compounds were approximately 1 μm in size and uniformly dispersed.

本発明材との比較材として現在、低圧タービンの翼先端
部に使用されている比較例1のTi合金の耐キャビテー
ション・二ローション性も評価した。
As a comparison material with the material of the present invention, the cavitation resistance and two-lotion properties of the Ti alloy of Comparative Example 1, which is currently used in the blade tips of low-pressure turbines, were also evaluated.

耐キャビテーション・エロージヨン性の評価は磁歪振動
式キャビテーション試験機を用い、6.5Hz 、出力
0.7KW 、振幅120μm、試験温度25℃の条件
下で120分試験後の重量減により評価した。重量減も
第1表にあわせて示す。
Cavitation/erosion resistance was evaluated using a magnetostrictive vibration type cavitation tester based on the weight loss after a 120-minute test under the conditions of 6.5 Hz, output 0.7 KW, amplitude 120 μm, and test temperature 25°C. Weight loss is also shown in Table 1.

第1表から明らかなように比較例1の重量減よりも本発
明材1〜10の場合の方が小さく、耐キャビテーション
・二ローション性がすぐ九でいることがわかる。
As is clear from Table 1, the weight loss of Inventive Materials 1 to 10 is smaller than that of Comparative Example 1, and it can be seen that the cavitation resistance and lotion resistance are just 9.

〔実施例2〕 第2表に示す合金組成(wtlo)を高周波溶解炉で溶
製後に双ロール法にて合金箔を製作した。得られた合金
箔の厚さは約100μmである。耐キャビテーション・
二ローション性評価用試料は次のようにして作った。す
なわち、各組成について20枚の合金箔を積層してHI
 Pにより拡散接合して約1.5〜1.7mm厚みの板
状試験片を得て評価試験に供した。耐キャビテーション
・エロージヨン性試験は実施例1の場合と同様である。
[Example 2] After melting the alloy composition (wtlo) shown in Table 2 in a high-frequency melting furnace, alloy foil was produced by a twin roll method. The thickness of the obtained alloy foil is about 100 μm. Cavitation resistance
Samples for evaluation of lotion properties were prepared as follows. That is, 20 sheets of alloy foil for each composition were laminated and HI
A plate-shaped test piece having a thickness of approximately 1.5 to 1.7 mm was obtained by diffusion bonding using P, and was subjected to an evaluation test. The cavitation and erosion resistance test was the same as in Example 1.

第2表から明らかなようにTi基、Co基及びNi基基
金金箔耐キャビテーション・二ローション性は比較例1
のTi合金よりもすぐれていることがわかる。
As is clear from Table 2, the Ti-based, Co-based, and Ni-based gold foil cavitation resistance and lotion properties of Comparative Example 1
It can be seen that this is superior to the Ti alloy.

〔実施例3〕 低圧タービン動翼用Ti合金(Ti−6,3wt/。[Example 3] Ti alloy for low pressure turbine rotor blades (Ti-6, 3wt/.

AΩ−3,9wt10V)にプラズマ溶射及びイオンビ
ームミキシング法により各種皮膜を形成した実施例1.
2と同じ方法で耐キャビテーション・エロ表 一ジョン性を評価した。この結果を第3困に示す。
Example 1 in which various coatings were formed on AΩ-3,9wt10V) by plasma spraying and ion beam mixing method.
Cavitation resistance and corrosion resistance were evaluated using the same method as in 2. This result is shown in the third problem.

プラズマ溶射及びイオンミキシングによる皮膜の重量減
は比較例1の場合よりも小さく耐潰食が第  3  表 すぐれていることがわかる。イオンミキシング皮膜の耐
キャビテーション・二ローション性がプラズマ溶射皮膜
よりすぐれているのは、イオンミキシング皮膜の方がプ
ラズマ溶射皮膜よりもより緻密であるためである。
It can be seen from Table 3 that the weight loss of the coating due to plasma spraying and ion mixing was smaller than that of Comparative Example 1, and the crushing corrosion resistance was excellent. The reason why the ion mixing coating has better cavitation and two-lotion resistance than the plasma sprayed coating is because the ion mixing coating is more dense than the plasma sprayed coating.

以上の実施例から明らかなように、Ti基合金の耐キャ
ビテーション・エロージヨン性が大幅に改善され蒸気タ
ービンプラントの信頼性及び稼動率向上に寄与できる。
As is clear from the above examples, the cavitation and erosion resistance of the Ti-based alloy is significantly improved and can contribute to improving the reliability and operating rate of a steam turbine plant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば蒸気タービンの低圧タービンTi基合金
動翼の翼先端部の耐キャビテーション・二ローション性
が改善され、プラントをより効率的に運転できる。蒸気
プラントの運転において低圧タービン動翼同志が状況に
よって接触して摩耗腐食(フレッティング・コロ−ジョ
ン)する場合があり、これを防止するために動翼のミツ
ドスパンの先端に耐フレツテング・コロ−ジョン性のす
ぐれた材料をはかりつけ、あるいは表面硬化処理が必要
であるが、本発明の各種プロセス技術はこのフレッティ
ング・コロ−ジョンを大幅に抑制する方法としても極め
て効果的である。
According to the present invention, the cavitation resistance and rotor resistance of the tip of the low-pressure turbine Ti-based alloy rotor blade of a steam turbine are improved, and the plant can be operated more efficiently. In the operation of a steam plant, low-pressure turbine rotor blades may come into contact with each other depending on the situation, causing wear and corrosion (fretting corrosion). To prevent this, fretting corrosion-resistant coatings are installed at the tips of the midspan of the rotor blades. Although it is necessary to use a material with excellent properties or to perform a surface hardening treatment, the various process techniques of the present invention are extremely effective as methods for greatly suppressing this fretting corrosion.

Claims (1)

【特許請求の範囲】 1、蒸気タービンの低圧タービン動翼において、炭化物
、窒化物、硼化物、金属間化合物の少なくとも1種類以
上を基質中に分散させたTi基合金により翼先端部を構
成したことを特徴とする蒸気タービンの低圧タービン動
翼。 2、特許請求の範囲第1項において、前記Ti基合金に
よる翼先端部を溶射皮膜あるいは合金箔で構成すること
を特徴とする蒸気タービンの低圧タービン動翼。 3、特許請求の範囲第1項において、前記翼先端部表面
にプラズマ溶射あるいはイオンビーム処理により炭化物
、窒化物、硼化物の単独皮膜あるいはこれらの複合皮膜
を形成させたことを特徴とする蒸気タービンの低圧ター
ビン動翼。
[Claims] 1. In a low-pressure turbine rotor blade of a steam turbine, the blade tip is made of a Ti-based alloy in which at least one of carbides, nitrides, borides, and intermetallic compounds is dispersed in a matrix. A low-pressure turbine rotor blade for a steam turbine characterized by: 2. A low-pressure turbine rotor blade for a steam turbine according to claim 1, wherein the tip of the blade made of the Ti-based alloy is made of a thermally sprayed coating or an alloy foil. 3. A steam turbine according to claim 1, characterized in that a single film of carbide, nitride, or boride or a composite film of these is formed on the surface of the blade tip by plasma spraying or ion beam treatment. low pressure turbine rotor blades.
JP2012486A 1986-02-03 1986-02-03 Low pressure turbine moving vane for steam turbine Pending JPS62180026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012486A JPS62180026A (en) 1986-02-03 1986-02-03 Low pressure turbine moving vane for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012486A JPS62180026A (en) 1986-02-03 1986-02-03 Low pressure turbine moving vane for steam turbine

Publications (1)

Publication Number Publication Date
JPS62180026A true JPS62180026A (en) 1987-08-07

Family

ID=12018371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012486A Pending JPS62180026A (en) 1986-02-03 1986-02-03 Low pressure turbine moving vane for steam turbine

Country Status (1)

Country Link
JP (1) JPS62180026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129330A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd High wear-resistant titanium alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129330A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd High wear-resistant titanium alloy material

Similar Documents

Publication Publication Date Title
US7479299B2 (en) Methods of forming high strength coatings
US5068003A (en) Wear-resistant titanium alloy and articles made thereof
EP1403397B1 (en) Cobalt-based alloy for the coating of components subject to erosion by liquid
EP1951932B1 (en) Method of coating metal sheet
EP0511318B1 (en) Plasma spraying of rapidly solidified aluminum base alloys
KR20080063449A (en) Method for treating organs subject to erosion by liquids and anti-erosion coating alloy
CN105671545B (en) A kind of single-phase high-entropy alloy coating of high rigidity and its preparation method and application
TWI422694B (en) Method of improving surface properties of the metal and metal with coating layer prepared by the same
US6309699B2 (en) Method of producing a metallic part exhibiting excellent oxidation resistance
JP2003301278A (en) Method for manufacturing complex metal and complex metallic member
JPH0778273B2 (en) Wing member surface treatment method
JPS62180026A (en) Low pressure turbine moving vane for steam turbine
Dewald et al. Cubic titanium trialuminide thermal spray coatings—a review
JPS63255357A (en) Turbine moving blade and its production
JPH0762196B2 (en) High wear resistance titanium alloy material
JP2792379B2 (en) Ti alloy member excellent in wear resistance and method of manufacturing the same
JP2638327B2 (en) High wear-resistant titanium alloy parts
JPS62180052A (en) Co alloy having resistance to cavitation erosion
Paton et al. Production of protective coatings by electron beam evaporation
CN113862662B (en) High-temperature self-hardening composite side guide plate lining plate and processing method thereof
JPS62180053A (en) Ni alloy having resistance to cavitation erosion
JPH06287770A (en) Method for treating surface of turbine moving blade
Yao et al. Supersonic Laser Deposition of Metals
JPS61113741A (en) High strength corrosion resistant nickel base alloy and its production
TW202144180A (en) Wear-resistant plate and manufacturing method thereof adding the ceramic particles into the wear-resistant composite layer to increase the overall joint strength and service life