JP2638327B2 - High wear-resistant titanium alloy parts - Google Patents

High wear-resistant titanium alloy parts

Info

Publication number
JP2638327B2
JP2638327B2 JP7330591A JP7330591A JP2638327B2 JP 2638327 B2 JP2638327 B2 JP 2638327B2 JP 7330591 A JP7330591 A JP 7330591A JP 7330591 A JP7330591 A JP 7330591A JP 2638327 B2 JP2638327 B2 JP 2638327B2
Authority
JP
Japan
Prior art keywords
titanium alloy
wear
resistant
alloy
high wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7330591A
Other languages
Japanese (ja)
Other versions
JPH04308068A (en
Inventor
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7330591A priority Critical patent/JP2638327B2/en
Publication of JPH04308068A publication Critical patent/JPH04308068A/en
Application granted granted Critical
Publication of JP2638327B2 publication Critical patent/JP2638327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、摺動摩耗や高速液滴
エロージョンに対する高い抵抗性が要求される耐摩耗性
部品、例えば自動車用動弁部品 (エンジンバルブ、リテ
ーナー、リフター) や蒸気タービン翼部品として好適
な、軽量高耐摩耗チタン合金製部品に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant component requiring high resistance to sliding abrasion and high-speed droplet erosion, such as valve train parts for automobiles (engine valves, retainers, lifters) and steam turbine blades. The present invention relates to a lightweight and highly wear-resistant titanium alloy component suitable as a component.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐食性や耐
熱性にも優れることから種々の機械部品への適用が進め
られてきたが、耐摩耗性が十分ではなく、そのままでは
機械部品の摺動部には使用できないという問題点があっ
た。そのため耐摩耗性が要求される部品 (例えばエンジ
ンバルブのような自動車動弁部品) にチタン合金を適用
することは難しかった。
2. Description of the Related Art Titanium alloys have been applied to various mechanical parts because of their high specific strength and excellent corrosion resistance and heat resistance. There was a problem that it could not be used for moving parts. Therefore, it has been difficult to apply a titanium alloy to parts requiring wear resistance (for example, automotive valve parts such as engine valves).

【0003】チタン合金部品表面の耐摩耗性を改善する
方法として従来は、ガス窒化処理、メッキ処理 (Ni、Cr
メッキ等) 、PVD、CVD 法 (蒸着法) あるいは浸炭処理
によってその部品表面に耐摩耗性被覆膜を形成させる方
法が採用されていたが、被覆が薄く密着性が悪いことか
ら、長期間の安定した耐摩耗性は見られなかった。
Conventionally, gas nitriding treatment, plating treatment (Ni, Cr
Plating), PVD, CVD (evaporation) or carburizing to form a wear-resistant coating on the surface of the component.However, because the coating is thin and has poor adhesion, No stable wear resistance was observed.

【0004】それゆえ、本発明者らは、チタン合金自身
に耐摩耗性を保有させるという考えから、特開平2−12
9330号において「高耐摩耗チタン合金材」を提案した。
この材料はβ相チタン素地に炭化チタンが晶出および/
または析出・分散してなることを特徴とする複合材料で
あり、鉄鋼材料の耐摩耗性を改善するために溶射材とし
てしばしば用いられるCo基の“ステライト(商品名)"と
同等以上の優れた耐摩耗性を示すものである。
[0004] Therefore, the inventors of the present invention, based on the idea of imparting wear resistance to the titanium alloy itself, disclosed in JP-A-2-12.
No. 9330 proposed "High wear resistant titanium alloy material".
In this material, titanium carbide is crystallized on the β-phase titanium base and / or
It is a composite material characterized by being precipitated and dispersed, and is superior to or higher than Co-based "Stellite (trade name)" which is often used as a thermal spraying material to improve the wear resistance of steel materials. It shows abrasion resistance.

【0005】この高耐摩耗チタン合金材は、主にVAR 溶
解法でインゴットを作成し、熱間鍛伸・圧延により、各
種形状となし、切削加工により最終形状として各種耐摩
耗用途 (例えばエンジンバルブ、リフター、インペラ
ー、ナット、水車等) に使用される。またインゴットか
らそのまま溶解・鋳造する方法で最終製品とする使用例
も考えられる。
[0005] This high wear-resistant titanium alloy material is mainly made into an ingot by the VAR melting method, is formed into various shapes by hot forging / rolling, and is formed into a final shape by cutting to obtain various wear-resistant applications (eg, engine valves). , Lifters, impellers, nuts, water turbines, etc.). In addition, there is a case where a final product is obtained by directly melting and casting the ingot.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、その後
の詳細な研究の結果、VAR 溶解またはプラズマアーク溶
解等で、Ti合金とβ相安定化元素を含む炭化物(Cr3C2
W2C 等) とを混合溶解して製造した高耐摩耗Ti合金イン
ゴットは、凝固冷却速度がPTA 肉盛やレーザー肉盛のよ
うな肉盛法に比べ小さいので、晶出TiC 粒子の大きさが
10μm 以上となり、耐摩耗性および機械的特性が肉盛法
に比べて少しく劣ることが判明した。
However, as a result of detailed research, carbides containing a Ti alloy and a β-phase stabilizing element (Cr 3 C 2 ,
(W 2 C, etc.) is mixed and melted to produce a wear-resistant Ti alloy ingot, since the solidification cooling rate is lower than that of the overlay method such as PTA overlay or laser overlay. But
It was 10 μm or more, and it was found that the abrasion resistance and mechanical properties were slightly inferior to those of the overlay method.

【0007】つまり、同一TiC 量であっても、TiC 粒径
が大きいために、TiC 粒間隔が大となり、相手材との密
着防止効果が減じ、凝着摩耗が大きくなる。さらに、大
きなTiC 粒子があることで、それが破壊の起点となり、
疲労強度の低下が見られる。
That is, even if the amount of TiC is the same, since the TiC particle size is large, the spacing between the TiC particles becomes large, the effect of preventing adhesion to the counterpart material is reduced, and the cohesive wear increases. In addition, the presence of large TiC particles is the starting point for fracture,
A decrease in fatigue strength is seen.

【0008】そこで、この発明の目的は、高耐摩耗Ti合
金材のさらなる耐摩耗性向上、疲労強度向上を図るべ
く、表面部に微細晶出TiC 粒子層を有する高耐摩耗Ti合
金製部品を提供することにある。
Accordingly, an object of the present invention is to provide a high wear resistant Ti alloy component having a finely crystallized TiC particle layer on the surface in order to further improve the wear resistance and fatigue strength of the high wear resistant Ti alloy material. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者は、高耐摩耗Ti
合金インゴットから製造した部品の耐摩耗性および疲労
強度を向上させるには、この合金の摺動表面部の晶出お
よび/または析出TiC粒子の粒径を小さくすればよいと
の上述の知見に基づきさらに検討を重ねた結果、合金表
面部をTIG 、レーザー、プラズマ等の高エネルギービー
ムで急速溶解・凝固させれば、新たに晶出/ 析出したTi
C 粒子は微細化し、耐摩耗性および疲労強度が一層改善
されることを知り、本発明を完成した。
SUMMARY OF THE INVENTION The present inventors have developed a high wear resistant Ti.
Based on the above-mentioned knowledge that the wear resistance and fatigue strength of parts manufactured from an alloy ingot can be improved by reducing the crystal size of the crystallization and / or precipitated TiC particles on the sliding surface of the alloy. As a result of further studies, if the alloy surface was rapidly melted and solidified with a high energy beam such as TIG, laser, or plasma, newly crystallized / precipitated Ti
The present inventors have found that the C particles have been refined and have further improved wear resistance and fatigue strength, and have completed the present invention.

【0010】例えば、VAR 法で製造した高耐摩耗Ti合金
インゴット中のTiC の粒径は約15〜25μm(凝固冷却速度
約0.3 ℃/秒) であるが、この合金の表面を上述の高エ
ネルギービームにより急速溶解・凝固させると凝固冷却
速度は約400 ℃/秒程度となり、TiC粒径は約1〜2μ
m になる。かかる急速凝固によりTiC粒子はきわめて小
さくなるのである。
For example, the particle size of TiC in a high wear-resistant Ti alloy ingot manufactured by the VAR method is about 15 to 25 μm (solidification cooling rate of about 0.3 ° C./sec). When rapidly melted and solidified by the beam, the solidification cooling rate becomes about 400 ° C / sec, and the TiC particle size is about 1-2μ.
m. Such rapid solidification makes the TiC particles extremely small.

【0011】よって、この発明の要旨とするところは、
チタン合金の表面部を高エネルギービームによって再溶
解・凝固させて得た再溶解・凝固層を有し、該再溶解・
凝固層がβTi相素地に炭化チタンが晶出および/または
析出分散したものである高耐摩耗チタン合金製部品であ
る。
Therefore, the gist of the present invention is as follows.
It has a remelted and solidified layer obtained by remelting and solidifying the surface of the titanium alloy with a high energy beam.
The solidified layer is a high wear-resistant titanium alloy part in which titanium carbide is crystallized and / or precipitated and dispersed in a βTi phase matrix.

【0012】本発明の好適態様によれば、上述の高耐摩
耗チタン合金の化学成分は、重量%で、Al:2〜8 %、
V:2〜8 %、Cr:6〜15%、C:0.5〜2.0 %、残部Tiおよ
び不可避的不純物である。
According to a preferred embodiment of the present invention, the chemical composition of the above-mentioned high wear-resistant titanium alloy is 2 to 8% by weight of Al,
V: 2 to 8%, Cr: 6 to 15%, C: 0.5 to 2.0%, balance Ti and inevitable impurities.

【0013】特にそれに制限されるのではないが、再溶
解・凝固層である表面層の厚さは、100 μm 以上であ
り、かつ晶出および/または析出した炭化チタンの粒径
が5μm 以下とすることによって、本発明にかかるるチ
タン合金製部品の耐摩耗性は一層改善される。
Although not particularly limited, the thickness of the surface layer, which is the re-dissolved / solidified layer, is 100 μm or more, and the crystallized and / or precipitated titanium carbide has a particle size of 5 μm or less. By doing so, the wear resistance of the titanium alloy part according to the present invention is further improved.

【0014】時効処理は必ずしも必要ではないが、それ
を行う場合、350 〜600 ℃の温度範囲で時効処理する。
The aging treatment is not always necessary, but when it is performed, the aging treatment is performed in a temperature range of 350 to 600 ° C.

【0015】このように、この発明によれば、TiC粒子
が小さくなることで相手材との密着防止効果が増大し、
耐摩耗性の著しい向上が図れる。さらに疲労強度の向上
も認められる。
As described above, according to the present invention, the effect of preventing adhesion to a counterpart material is increased by reducing the size of TiC particles,
The wear resistance can be significantly improved. Further improvement in fatigue strength is also observed.

【0016】したがって、この発明にかかるチタン合金
製製品を、自動車用エンジンバルブ等の動弁部品の摺動
部並びにバルブフェースに適用することで、耐摩耗性が
さらに一層改善される。
Accordingly, the wear resistance is further improved by applying the titanium alloy product according to the present invention to a sliding portion of a valve operating part such as an engine valve for an automobile and a valve face.

【0017】[0017]

【作用】この発明によれば、βTi層素地に炭化チタンが
晶出および/または析出分散された表面層を備えること
により、耐摩耗チタン合金製部品の耐摩耗性がさらに改
善されるのである。
According to the present invention, the wear resistance of the wear-resistant titanium alloy component is further improved by providing the βTi layer substrate with the surface layer in which titanium carbide is crystallized and / or precipitated and dispersed.

【0018】図1は、チタン合金10の表面部をプラズマ
アーク12などの高エネルギービームによって再溶解・凝
固させて得た再溶解・凝固層14の生成の様子を模式的に
示す説明図である。図1(a) は高エネルギービームによ
るチタン合金表面の再溶解の様子を、図1(b) は再溶解
・凝固後の様子をそれぞれ示す。
FIG. 1 is an explanatory view schematically showing a state of formation of a remelted / solidified layer 14 obtained by remelting / solidifying a surface portion of a titanium alloy 10 with a high energy beam such as a plasma arc 12. . FIG. 1A shows the state of remelting of the titanium alloy surface by the high energy beam, and FIG. 1B shows the state after remelting and solidification.

【0019】すなわち、この発明における高耐摩耗チタ
ン合金製部品10は、図1(b) に示すように、その表面摺
動部がβTi相素地16に微細TiC(2μm 以下) 18が晶出/
析出してなる再溶解・凝固層14からなり、芯部20はβTi
相素地16' に10μm 程度の大きなTiC粒子22が分散した
組織からなる。芯部20のTiC粒子22は例えばVAR 溶解に
て作成した際のTiC粒子の大きさのまま維持されたもの
である。
That is, as shown in FIG. 1 (b), the surface-sliding portion of the high wear-resistant titanium alloy part 10 according to the present invention has fine TiC (2 μm or less) 18 crystallized on the βTi phase base 16.
The core 20 is composed of βTi
It has a structure in which large TiC particles 22 of about 10 μm are dispersed in the phase matrix 16 ′. The TiC particles 22 of the core portion 20 are maintained at the size of the TiC particles when produced by, for example, VAR melting.

【0020】この発明において耐摩耗チタン合金製部品
の表面に再溶解・凝固層を生成させるのは、微細TiC粒
子を晶析出させることで耐摩耗性をさらに向上させるた
めであり、その方法として高エネルギービームを用い
る。これは特定のものに制限されないが、例えばプラズ
マアーク (プラズマトーチ) 、TIG 、レーザー法等溶接
作業に用いられる方法が望ましい。これらの方法では凝
固速度は極めて大きく(400℃/秒程度) 、微細なTiC粒
子が得られる。
In the present invention, the reason why the remelted / solidified layer is formed on the surface of the wear-resistant titanium alloy part is to further improve the wear resistance by crystallizing fine TiC particles, and as a method therefor, a high-performance method is used. Use an energy beam. The method is not limited to a specific one, but a method used in a welding operation such as a plasma arc (plasma torch), TIG, or a laser method is preferable. In these methods, the solidification rate is extremely high (about 400 ° C./second), and fine TiC particles can be obtained.

【0021】この時の表面の再溶解・凝固層の厚さは10
0 μm 以上が望ましく、この値より小さいと再溶解・凝
固層が薄すぎて、耐摩耗性向上効果が小さい。またこの
時TiC粒子は5μm 以下が望ましく、5μm 超では耐摩
耗性向上効果が小さくなるので、凝固速度を早くする必
要がある。
At this time, the thickness of the remelted / coagulated layer on the surface is 10
0 μm or more is desirable. If it is smaller than this value, the remelted / solidified layer is too thin, and the effect of improving the wear resistance is small. At this time, the TiC particles are desirably 5 μm or less, and if it exceeds 5 μm, the effect of improving the abrasion resistance is reduced. Therefore, it is necessary to increase the solidification rate.

【0022】表面に再溶解・凝固層を有する本発明部品
を必要に応じさらに350 〜600 ℃の範囲で時効処理する
のは、時効によりα相を析出させ高硬度化し、さらに耐
摩耗性を向上させるためであり、350 ℃未満では時効硬
化せず、600 ℃超では過時効となってかえって軟化し、
耐摩耗性が劣化するためである。
The aging treatment of the component of the present invention having a re-dissolved / solidified layer on the surface, if necessary, at a temperature in the range of 350 to 600 ° C. is performed by precipitating the α phase by aging to increase the hardness and further improving the wear resistance. This is because age hardening does not occur at temperatures lower than 350 ° C, and overaging occurs at temperatures higher than 600 ° C.
This is because the wear resistance deteriorates.

【0023】この発明における耐摩耗Ti合金の合金成分
は、βTi相合金であるなら、例えばTi−Al−V−Cr−Mo
−Zr系、Ti−Al−V−Cr−Sn系、Ti−Al−V−W系、Ti
−Al−V−Cr系、Ti−Al−Mo−Zr系、Ti−Al−V−Sn
系、Ti−Al−V系、Ti−Al−V−Fe系等どのような成分
であってもよいが、特にこの発明ではAl:2〜8twt%、
V:2〜8 wt%、Cr:6〜15wt%で、C:0.5〜2.0 wt%、残
部Tiおよび不可避不純物から成るチタン合金が望まし
い。
If the alloy component of the wear-resistant Ti alloy in the present invention is a β-Ti phase alloy, for example, Ti-Al-V-Cr-Mo
-Zr, Ti-Al-V-Cr-Sn, Ti-Al-V-W, Ti
-Al-V-Cr, Ti-Al-Mo-Zr, Ti-Al-V-Sn
System, a Ti-Al-V system, a Ti-Al-V-Fe system, or any other component. In particular, in the present invention, Al: 2 to 8 twt%,
V: 2 to 8 wt%, Cr: 6 to 15 wt%, C: 0.5 to 2.0 wt%, and a titanium alloy comprising Ti and unavoidable impurities is desirable.

【0024】この発明における好適合金組成の成分限定
理由を以下に述べる。
The reasons for limiting the components of the preferred alloy composition in the present invention are described below.

【0025】Al:2wt%未満では合金の固溶硬化が小さ
く、時効硬化が小さく、耐摩耗性が劣る。またω相が出
現しやすい。8wt%超ではTi3Al(α" 相) が生成し、靱
性が劣化するため望ましくない。それゆえ2〜8wt%と
した。
If the content of Al is less than 2 wt%, the solid solution hardening of the alloy is small, the age hardening is small, and the wear resistance is poor. In addition, the ω phase is likely to appear. If it exceeds 8% by weight, Ti 3 Al (α ″ phase) is formed and the toughness is deteriorated, which is not desirable.

【0026】V:Vはβ相安定化元素であるため、適量
添加する。この発明の合金はTi−6Al−4V合金をベース
としてクロム炭化物を添加溶解することで、βTi相中に
TiCを晶析出させ製造しているため、通常Ti−6Al−4V
合金に使用するV量に近い成分範囲として2〜8wt%に
限定した。
V: Since V is a β-phase stabilizing element, it is added in an appropriate amount. The alloy of the present invention is based on a Ti-6Al-4V alloy and added and dissolved with chromium carbide to form a βTi phase in the βTi phase.
Since TiC is crystallized and manufactured, Ti-6Al-4V
The component range close to the V content used in the alloy was limited to 2 to 8 wt%.

【0027】Cr:この発明の合金で最も重要な元素であ
る。Crは少量でTi合金をβ相単相とし、かつ固溶硬化も
大きく、耐摩耗性向上効果が大きい。添加形態はクロム
炭化物 (例えばCr3C2)として行うのが望ましい。Cr3C2
は融点が1890℃とTiの融点とあまり差がなく、VAR 溶解
等で簡単に溶解し、Cr3C2 中のCはTiと化合し、TiCと
して晶析出する。さらにCrはTi中に固溶し、βTi相単相
とする。
Cr: The most important element in the alloy of the present invention. A small amount of Cr turns the Ti alloy into a single β-phase, has a high solid solution hardening, and has a large effect of improving wear resistance. The addition form is desirably performed as chromium carbide (for example, Cr 3 C 2 ). Cr 3 C 2
Has a melting point of 1890 ° C., which is not so different from the melting point of Ti, and is easily dissolved by VAR melting or the like, and C in Cr 3 C 2 is combined with Ti and crystallized as TiC. Further, Cr forms a solid solution in Ti to form a single phase of βTi.

【0028】Cr量は6wt%未満ではβ相単相とならず、
15wt%超ではTiCr2 を生成し、靱性が劣化するので好ま
しくない。
If the Cr content is less than 6 wt%, the β phase does not become a single phase,
If it exceeds 15% by weight, TiCr 2 is generated and the toughness is deteriorated, which is not preferable.

【0029】C:CはTiCを生成することで耐摩耗性を
向上させるが、Cが0.5 wt%未満ではTiC量が少なく、
耐摩耗性向上効果が小さく、2.0 wt%超ではTiC量が多
くなって、靱性が劣化するので好ましくない。
C: C improves abrasion resistance by forming TiC, but when C is less than 0.5 wt%, the amount of TiC is small,
The effect of improving the wear resistance is small, and if it exceeds 2.0 wt%, the amount of TiC increases, and the toughness is deteriorated.

【0030】その他不可避不純物として、O、N、H等
があり、例えば合計量として1%以下程度は許容され
る。
Other unavoidable impurities include O, N, H, and the like. For example, a total amount of about 1% or less is allowable.

【0031】次に、実施例によってこの発明をさらに具
体的に説明する。
Next, the present invention will be described more specifically with reference to examples.

【0032】[0032]

【実施例1】Ti−6.0Al−4.0V−11.0Cr−1.5C成分の耐
摩耗Ti合金を炭素源としてCr3C2 粉末を用いVAR 溶解に
より、直径300 mmのインゴットに溶製した。続いて1100
℃にて熱間鍛伸し、直径90mmの鍛伸材とした。
The VAR dissolved with Cr 3 C 2 powder Example 1 Ti-6.0Al-4.0V-11.0Cr- 1.5C component wear Ti alloy as a carbon source, was melted into an ingot with a diameter of 300 mm. Then 1100
It was hot forged at ℃ to obtain a forged material having a diameter of 90 mm.

【0033】次にこの鍛伸材より直径90×長さ40mmの試
験材を切り出し、この表面部をアルゴン雰囲気下でTIG
およびレーザーにより深さ0.5 mm、幅20mmの再溶解・凝
固層を作成した。表面溶解条件を表1に示す。
Next, a test material having a diameter of 90 and a length of 40 mm was cut out from the forged material, and its surface was subjected to TIG in an argon atmosphere.
Then, a remelted and solidified layer having a depth of 0.5 mm and a width of 20 mm was formed by laser and laser. Table 1 shows the surface dissolution conditions.

【0034】本例における再溶解・凝固層は厚さ1mm、
TiC粒子の大きさは1μm 、芯部のTiC粒子の大きさは
20μm であった。
The remelted / solidified layer in this example has a thickness of 1 mm,
The size of the TiC particles is 1 μm, and the size of the TiC particles in the core is
It was 20 μm.

【0035】[0035]

【表1】 [Table 1]

【0036】表面溶解部より、φ10×40 Lの摺動摩耗試
験片および10W ×10H ×15L エロージョン試験片を切り
出した。さらに比較試験片として、表面を再溶解してい
ない部分より同じ摩耗試験片とエロージョン試験片を切
り出し、それぞれ試験に供した。
From the surface melting portion, a sliding abrasion test piece of φ10 × 40 L and an erosion test piece of 10 W × 10H × 15 L were cut out. Further, as a comparative test piece, the same wear test piece and erosion test piece were cut out from a portion where the surface was not re-dissolved, and each was subjected to a test.

【0037】「摩耗試験」はピンオンディスク方式によ
って実施したが、試験条件は 試験片の押圧荷重 : 2 kg 試験片と相手材 (ディスク) との摺動速度 : 62.
8m/min 摺動距離 : 2.5×104m 相手材 (ディスク) : 60キロ級高張力鋼 摩擦面の潤滑 : なし であり、このときの重量減少量で耐摩耗性を評価した。
The "wear test" was carried out by a pin-on-disk method. The test conditions were as follows: Pressing load of the test piece: 2 kg Sliding speed between the test piece and the mating material (disk): 62.
8 m / min Sliding distance: 2.5 × 10 4 m Counterpart material (disk): 60 kg high-strength steel Lubrication of friction surface: None, and the wear resistance was evaluated based on the weight loss at this time.

【0038】「エロージョン試験」には図2で示したよ
うな形状寸法を有する水ジェット方式を採用し、予めバ
フ研磨にて鏡面研磨した試験片表面に 水噴射ノズル径 : 1.2mmφ 噴射水流速 : 370 m/sec ノズル−試験片間距離 : 6.5 mm 噴射角度 : 90° 噴射時間 : 600 sec なる条件で高速水を噴射した後、高速水噴射にて生じた
痕跡の深さを測定し耐エロージョン性を評価した。
In the "erosion test", a water jet system having the shape and dimensions as shown in FIG. 2 was adopted, and a water jet nozzle diameter: 1.2 mmφ jet water flow rate was applied to the surface of a test piece which had been mirror-polished in advance by buffing. 370 m / sec Nozzle-specimen distance: 6.5 mm Injection angle: 90 ° Injection time: After injecting high-speed water under the condition of 600 sec, measure the depth of the traces generated by the high-speed water injection and measure the erosion resistance Was evaluated.

【0039】これらの結果を表2に併せて示した。同表
中には時効処理の効果も示している。また一部について
は、直径8mm×平行部40mmの小野式試験片表面をレーザ
ーで再溶解し、疲労試験を実施する小野式疲労テストも
行った。
The results are shown in Table 2. The table also shows the effect of the aging treatment. For some parts, the surface of an Ono-type test piece having a diameter of 8 mm and a parallel portion of 40 mm was re-melted with a laser, and an Ono-type fatigue test for performing a fatigue test was also performed.

【0040】表2に示される結果より、本発明の表面再
溶解処理をしたチタン合金製部品は摺動摩耗製およびエ
ロージョン性が表面再溶解処理をしない耐摩耗チタン合
金製部品より優れていることは明らかである。また疲労
強度も優れている。
From the results shown in Table 2, it can be seen that the titanium alloy part subjected to the surface remelting treatment of the present invention is superior in sliding wear and erosion property to the wear resistant titanium alloy part not subjected to the surface remelting treatment. Is clear. Also, the fatigue strength is excellent.

【0041】[0041]

【実施例2】表3に示す成分の炭化物分散チタン合金を
ボタン溶解で溶製し20mm厚×50mm幅×100 mm長のインゴ
ットとし、1100℃にて10mm厚×50mm幅×200 mm長に熱間
圧延したのち、φ6×GL30の引張試験片およびφ10×40
L 試験片を切り出し、引張試験および摺動摩耗試験を行
った。結果を表3中に示す。これよりこの発明の前述の
好適合金組成範囲が望ましいことがわかる。
Example 2 A carbide-dispersed titanium alloy having the components shown in Table 3 was melted by button melting to form an ingot of 20 mm thickness x 50 mm width x 100 mm length, and was heated at 1100 ° C to 10 mm thickness x 50 mm width x 200 mm length. After rolling, a tensile test piece of φ6 × GL30 and φ10 × 40
An L test piece was cut out and subjected to a tensile test and a sliding wear test. The results are shown in Table 3. This indicates that the preferred alloy composition range of the present invention is desirable.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】本発明によれば、耐摩耗Ti合金の耐摩耗
性をさらに高めることができ、自動車動弁部品 (エンジ
ンバルブ、レテーナー、リフター) や蒸気タービン翼部
品として好適な軽量耐摩耗チタン合金製部品が製造可能
となり、産業上極めて有用である。
According to the present invention, the wear resistance of a wear-resistant Ti alloy can be further enhanced, and the light-weight wear-resistant titanium alloy is suitable as an automobile valve part (engine valve, retainer, lifter) or a steam turbine blade part. Alloy parts can be manufactured, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a) はこの本発明に係るチタン合金製部品
の表面の再溶解の様子を、図1(b) は、再溶解・凝固層
を有するこの発明にかかるチタン合金製部品のミクロ組
織をそれぞれ模式的に示す説明図である。
FIG. 1 (a) shows the state of remelting of the surface of the titanium alloy part according to the present invention, and FIG. 1 (b) shows the titanium alloy part according to the present invention having a remelted and solidified layer. It is explanatory drawing which shows each microstructure typically.

【図2】エロージョン試験方法を示した概念図である。FIG. 2 is a conceptual diagram showing an erosion test method.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタン合金の表面部を高エネルギービー
ムによって再溶解・凝固させて得た再溶解・凝固層を有
し、該再溶解・凝固層がβTi相素地に炭化チタンが晶出
および/または析出分散したものである高耐摩耗チタン
合金製部品。
1. A titanium alloy having a remelted / solidified layer obtained by remelting / solidifying a surface portion of a titanium alloy with a high energy beam, wherein the remelted / solidified layer is formed by depositing titanium carbide on a βTi phase base material and / or Or a component made of titanium alloy with high wear resistance that is precipitated and dispersed.
【請求項2】 請求項1における高耐摩耗チタン合金の
化学成分が重量%で、Al:2〜8 %、V:2〜8 %、Cr:6〜
15%、C:0.5〜2.0 %、残部Tiおよび不可避的不純物か
ら成ることを特徴とする高耐摩耗チタン合金製部品。
2. The chemical composition of the high wear-resistant titanium alloy according to claim 1 is 2 to 8% by weight, V: 2 to 8%, and Cr: 6 to 8% by weight.
A part made of high wear resistant titanium alloy, characterized by comprising 15%, C: 0.5-2.0%, balance Ti and unavoidable impurities.
【請求項3】 前記再溶解・凝固層の厚さが100 μm 以
上であり、かつ晶出および/または析出した炭化チタン
の粒径が5μm 以下であることを特徴とする請求項1記
載の高耐摩耗チタン合金製部品。
3. The method according to claim 1, wherein the thickness of the re-dissolved / solidified layer is 100 μm or more, and the particle size of crystallized and / or precipitated titanium carbide is 5 μm or less. Parts made of wear-resistant titanium alloy.
【請求項4】 350 〜600 ℃の温度範囲で時効処理され
ていることを特徴とする請求項1記載の高耐摩耗チタン
合金製部品。
4. The high wear-resistant titanium alloy part according to claim 1, which has been subjected to aging treatment in a temperature range of 350 to 600 ° C.
JP7330591A 1991-04-05 1991-04-05 High wear-resistant titanium alloy parts Expired - Fee Related JP2638327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330591A JP2638327B2 (en) 1991-04-05 1991-04-05 High wear-resistant titanium alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330591A JP2638327B2 (en) 1991-04-05 1991-04-05 High wear-resistant titanium alloy parts

Publications (2)

Publication Number Publication Date
JPH04308068A JPH04308068A (en) 1992-10-30
JP2638327B2 true JP2638327B2 (en) 1997-08-06

Family

ID=13514318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330591A Expired - Fee Related JP2638327B2 (en) 1991-04-05 1991-04-05 High wear-resistant titanium alloy parts

Country Status (1)

Country Link
JP (1) JP2638327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139656A (en) * 1995-07-10 2000-10-31 Ford Global Technologies, Inc. Electrochemical hardness modification of non-allotropic metal surfaces
JP4493029B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
CN105177479B (en) * 2015-07-31 2017-01-04 辽宁工业大学 The photoimpact compounding method of Ti 6Al 4V alloy composite microstructure

Also Published As

Publication number Publication date
JPH04308068A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
Ezugwu et al. The machinability of nickel-based alloys: a review
US4873150A (en) High water-resistant member, and valve gear using the same for use in internal combustion engine
US5068003A (en) Wear-resistant titanium alloy and articles made thereof
TW201446969A (en) Thermal spraying powder for highly stressed sliding systems
Liu et al. Characterization of wear properties of the functionally graded material deposited on cast iron by laser-aided additive manufacturing
EP1521859A1 (en) Wear-resistant, corrosion-resistant cobalt-based alloys
JPS6256561A (en) Method for hardening surface of ti or ti alloy
JP2638327B2 (en) High wear-resistant titanium alloy parts
JP2006526711A (en) Nanoprecipitation strengthened ultra high strength corrosion resistant structural steel
JP2792379B2 (en) Ti alloy member excellent in wear resistance and method of manufacturing the same
US20200407830A1 (en) Articles with nitrogen alloy protective layer and methods of making same
JPH0762196B2 (en) High wear resistance titanium alloy material
Behera et al. Superalloys
JP3196389B2 (en) Ni-base alloy for metallurgy
EP1662019B1 (en) Method of producing defect free deposited titanium alloys
Smolina et al. Characterization of Wear and Corrosion Resistance of Stellite 6 Laser Surfaced Alloyed (LSA) with Rhenium. Coatings 2021, 11, 292
JPH0375385A (en) Parts for machine sliding part made of tial-base alloy
JPH08176709A (en) Ti-al base alloy material excellent in wear resistance, manufacture thereof and method for hardening surface of such alloy
Wei et al. Cold Spray in Practical and Potential Applications
Straumal et al. Grain Boundary Wetting by the Second Solid Phase: 20 Years of History. Metals 2023, 13, 929
Butts Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy: Gamma Met PX
Washburn Heat Treatment Optimization of Inconel 718 Cladded H13 Forging Dies
JP2005519203A (en) Nanocarbide precipitation strengthened ultra high strength corrosion resistant structural steel
JPH02243777A (en) Production of engine valve
JP2639053B2 (en) Surface hardening method of titanium or titanium alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees