JPH0418956B2 - - Google Patents

Info

Publication number
JPH0418956B2
JPH0418956B2 JP60025946A JP2594685A JPH0418956B2 JP H0418956 B2 JPH0418956 B2 JP H0418956B2 JP 60025946 A JP60025946 A JP 60025946A JP 2594685 A JP2594685 A JP 2594685A JP H0418956 B2 JPH0418956 B2 JP H0418956B2
Authority
JP
Japan
Prior art keywords
particles
layer
filler rod
overlay
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60025946A
Other languages
Japanese (ja)
Other versions
JPS61186190A (en
Inventor
Hisashi Hiraishi
Minoru Hineno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2594685A priority Critical patent/JPS61186190A/en
Publication of JPS61186190A publication Critical patent/JPS61186190A/en
Publication of JPH0418956B2 publication Critical patent/JPH0418956B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、金属とセラミツクからなる溶接肉盛
層を形成するための溶加棒に関する。 〔従来の技術〕 肉盛溶接は、耐摩耗性を必要とする部材の代表
的な表面改質法である。その肉盛溶接における溶
加材(肉盛材料)として、金属と硬質粒子の混合
物を使用し、金属マトリツクス硬質粒子が均一に
分散混在した複合組織を有する肉盛層(複合肉盛
層)を形成することは公知である。この複合肉盛
層は、硬質粒子の分散強化作用により、金属単相
の肉盛層を凌ぐ高強度・高耐摩耗性を得ようとす
るものである。その溶加材として、金属と硬質粒
子の混合粉末を焼結したものを使用することも知
られており、例えば炭化チタン粒子を鋼合金に配
合して焼結したもの、あるいは超硬合金に通常使
用される炭化タングステン、炭化チタン、炭化タ
ンタル等の硬質粒子をニツケル自溶合金と混合し
て焼結したもの等が提案されている(特開昭48−
45450号、特開昭57−76104号等)。 〔発明が解決しようとする課題〕 表面改質のための肉盛溶接が行われる部材は多
岐に亘るが、例えば製鉄、製鋼における圧延ロー
ルやハースロール等は、高温度に加熱された状態
で大きな荷重が繰返し加わるので、その表面を被
覆保護する肉盛層は、高温での圧縮強度(圧縮変
形抵抗性)や摩耗抵抗性にすぐれたものであるこ
とが要求される。 本発明は上記に鑑み、ロール類のように高温で
の高荷重や摩擦が反復作用する部材に要求される
高温圧縮強度や耐摩耗性を備えた肉盛層を形成す
るための溶接肉盛用複合溶加棒を提供する。 〔課題を解決するための手段および作用〕 本発明の溶接肉盛用複合溶加棒は、 Cr:25〜60%、Mo:0.5〜3%、Ni:4〜8
%、残部実質的にCoであるCo基合金と、20〜80
%を占める炭化珪素セラミツクの均一粉末混合物
の焼結体であることを特徴としている。 本発明の溶加棒を使用して形成される溶接肉盛
層は上記Co基合金をマトリツクスとし、炭化珪
素セラミツク粒子が分散混在した複合組織を有し
ている。 以下、本発明について詳しく説明する。明細書
中の「%」は「重量%」である。 肉盛層のマトリツクスとなるCo基合金の成分
限定理由は次のとおりである。 Cr:25〜60% Crは耐熱性、耐酸化性等の確保に欠かせない
元素であり、十分な耐熱性、耐酸化性を得るため
には25%以上が必要である。しかし、60%をこえ
ると、溶接性が悪くなり、また靭性が低下する。 Mo:0.5〜3% Moは高温圧縮強度を高める効果を有する。高
温圧縮強度を十分なものとするには少なくとも
0.5%が必要であり、3%までで十分である。 Ni:4〜8% Niは溶接性および靭性の向上のために、少な
くとも4%を必要とするが、8%をこえると、合
金の高融点化の点で好ましくない。 Co:Balance Coは高温圧縮強度の確保に不可欠の元素であ
り、合金の基本成分として29〜70.5%を占める。 マトリツクスとなる前記Co基合金と組合わさ
れる分散相粒子として本発明は炭化珪素セラミツ
ク粒子(SiC)を使用することとしている。前記
Co基合金溶湯と炭化珪素セラミツク粒子とは界
面における濡れ性が良好であり、かつ適度の相互
作用(拡散・融着)を有している。マトリツクス
金属との濡れ性が良いことにより、肉盛溶接施工
時の粒子の凝集が回避され、マトリツクス中での
均一な分散が確保され、また適度の相互作用によ
りマトリツクスと粒子との強固な結合関係が形成
される。なお、上記Co基合金と組合わされる炭
素珪素セラミツクと他の代表的な硬質粒子である
炭化タングステン(WC)、炭化タンタル(Ta)、
炭化チタン(TiC)等を比較すると、TiCやTaC
は金属との濡れ性や界面における相互作用が低
く、WCはSiCよりも濡れ性にすぐれてはいるが、
金属との相互作用が過大で、粒子の分解・変質
(特にWCからW2Cへの変化や粒成長粗大化)に
より粒子分散強化機能が損なわれ易いという難点
がある。 本発明の溶加棒は、マトリツクス金属と分散相
粒子の材質の好適な選択・組合せの効果として、
後記実施例に示したように、圧延ロールやハース
ロール等の表面改質層として望まれる改良された
高温圧縮強度や耐摩耗性等を備えた肉盛層の形成
を可能としている。また、炭化珪素セラミツク粉
末は、硬質粒子として使用されるWC、TiC、
TaC等に比べて安価である点でも有利である。 本発明の溶加棒は、Co基合金の粉末と炭化珪
素セラミツク粉末との均一な混合物を、棒状に成
形し焼結処理することにより製造される。金属粉
末とセラミツク粉末との単なる混合物として使用
せず、焼結体とすることにより、肉盛溶接施工時
のアーク部に対する金属分とセラミツク粒子の供
給を所定の比率を保つて安定に行うことができる
と共に、両者の比重差による分離が効果的に回避
され、肉盛層の全体にセラミツク粒子が所定の濃
度で分散した均一な複合組織が形成される。 溶加棒における炭化珪素セラミツク粒子の割合
を20%以上としたのは、その粒子の分散強化作用
による肉盛層の高温圧縮強度や耐摩耗性の改善を
十分なものとするためであり、好ましくは50%以
上である。80%を上限とするのは、それ以上の配
合を必要としないだけでなく、その増量によるマ
トリツクス金属量の相対的減少とそれに伴う肉盛
層の延靭性不足を回避し、熱的・機械的衝撃に対
する耐亀裂・剥離性を確保するためである。な
お、炭化珪素セラミツク粒子の粒度は、分散相粒
子として使用される一般的な粒径(例えば0.01〜
3.5μm程度)であればよい。溶加棒のサイズは任
意であるが、溶接施工上、直径約4〜8mm程度の
ものが適当である。 本発明の溶加棒を用いる肉盛溶接は、マトリツ
クスとなるCo基合金の酸化防止や溶接能率等の
点からタグステン不活性ガスアーク溶接(TIG溶
接)法により行うのが好ましい。その溶接施工に
特別の条件や制限は付加されず、常法に従つて行
えばよい。 〔実施例〕 マトリツクスとなる金属の粉末(粒径2:μm
以下)と分散相となるセラミツク粉末(粒径3.5μ
m以下)との均一な混合物をカーボン電極モール
ド内に充填し、加圧力1500Kg/cm2、焼結温度1400
℃で焼結処理して供試複合溶加棒(直径:6mm)
を製作した。 各溶加棒を使用し、TIG溶接(溶液電流:
250A)により、耐熱鋼板(材質:0.4C−20Ni−
25Cr−Fe、SCH22相当)の表面に3層肉盛を行
い、層厚7mm(機械加工後)の肉盛層を形成し
た。 各肉盛層について、高温圧縮試験(試験温度:
1250℃)および摩耗試験(試験温度:800℃)を
行つた。なお、摩耗試験は、鈴木式摩耗試験機に
より、相手材押付荷重(面圧)60Kg/cm2(相手
材々質:SUJ2、硬度Hv600)、摺接速度2m/
秒、摺接距離1000mとし、試験後の肉盛層表面の
摩耗量(mm3)を測定した。 各供試溶加棒の組成および肉盛層の材料特性を
第1表に示す。No.1〜4は発明例、No.11〜15は比
較例である。比較例のうち、No.11、No.12およびNo.
15は、WC粒子、TaC粒子、またはTiCとCr3C2
の混合粒子を発明例と同じマトリツクス金属であ
るCo基合金と複合した例、No.13とNo.14は、Cr−
Ni−Fe合金にTiC粒子またはWC粒子を複合した
例である。 発明例の溶加棒を用いて形成される肉盛層は、
各比較例(No.11〜15)と比べて、著しく高い高温
圧縮強度と耐摩耗性を有している。なお、発明例
No.1〜4の肉盛層と基板との界面の密着強度はい
ずれも5000Kg/cm2以上と十分な強度である。
[Industrial Application Field] The present invention relates to a filler rod for forming a weld build-up layer made of metal and ceramic. [Prior Art] Overlay welding is a typical surface modification method for members that require wear resistance. A mixture of metal and hard particles is used as the filler metal (overlay material) in the overlay welding to form a overlay layer (composite overlay layer) with a composite structure in which hard particles are uniformly dispersed in the metal matrix. It is known to do so. This composite overlay is intended to achieve higher strength and wear resistance than single-phase metal overlays due to the dispersion-strengthening effect of hard particles. It is also known to use a sintered mixed powder of metal and hard particles as a filler material. For example, titanium carbide particles are blended into a steel alloy and sintered, or cemented carbide is usually mixed with a sintered powder. It has been proposed to mix hard particles of tungsten carbide, titanium carbide, tantalum carbide, etc. with a nickel self-fluxing alloy and sinter it (Japanese Patent Laid-Open No. 1973-1999).
No. 45450, JP-A-57-76104, etc.). [Problems to be Solved by the Invention] There are a wide variety of members that are subjected to overlay welding for surface modification, but for example, rolling rolls and hearth rolls in iron and steel manufacturing are heated to high temperatures and are Since loads are applied repeatedly, the build-up layer that covers and protects the surface is required to have excellent compressive strength (compressive deformation resistance) and abrasion resistance at high temperatures. In view of the above, the present invention has been developed for use in weld overlays for forming overlay layers with high-temperature compressive strength and wear resistance required for members such as rolls that are subject to repeated high-temperature loads and friction. A composite filler rod is provided. [Means and effects for solving the problem] The composite filler rod for weld overlay of the present invention contains: Cr: 25-60%, Mo: 0.5-3%, Ni: 4-8
%, the balance being essentially Co, a Co-based alloy, 20-80
% of silicon carbide ceramic. The weld build-up layer formed using the filler rod of the present invention has a composite structure in which the above Co-based alloy is used as a matrix and silicon carbide ceramic particles are dispersed therein. The present invention will be explained in detail below. "%" in the specification is "% by weight". The reasons for limiting the composition of the Co-based alloy that forms the matrix of the overlay layer are as follows. Cr: 25-60% Cr is an essential element for ensuring heat resistance, oxidation resistance, etc., and 25% or more is required to obtain sufficient heat resistance and oxidation resistance. However, when it exceeds 60%, weldability deteriorates and toughness decreases. Mo: 0.5-3% Mo has the effect of increasing high-temperature compressive strength. To obtain sufficient high temperature compressive strength, at least
0.5% is required, up to 3% is sufficient. Ni: 4-8% Ni is required to be at least 4% in order to improve weldability and toughness, but if it exceeds 8%, it is not preferable in terms of increasing the melting point of the alloy. Co: Balance Co is an essential element for ensuring high-temperature compressive strength, and accounts for 29 to 70.5% as a basic component of the alloy. The present invention uses silicon carbide ceramic particles (SiC) as the dispersed phase particles that are combined with the Co-based alloy that forms the matrix. Said
Co-based alloy molten metal and silicon carbide ceramic particles have good wettability at the interface and have appropriate interaction (diffusion and fusion). Good wettability with the matrix metal prevents particle agglomeration during overlay welding, ensures uniform dispersion in the matrix, and maintains a strong bond between the matrix and particles due to appropriate interaction. is formed. In addition, the carbon silicon ceramic combined with the above Co-based alloy and other typical hard particles such as tungsten carbide (WC), tantalum carbide (Ta),
When comparing titanium carbide (TiC), etc., TiC and TaC
has low wettability with metals and interaction at the interface, and although WC has better wettability than SiC,
The problem is that the interaction with metals is excessive, and the ability to enhance particle dispersion is easily impaired due to particle decomposition and alteration (particularly, change from WC to W 2 C and coarsening of particle growth). The filler rod of the present invention has the following effects as a result of the suitable selection and combination of the materials of the matrix metal and the dispersed phase particles:
As shown in the Examples below, it is possible to form a built-up layer with improved high-temperature compressive strength, abrasion resistance, etc., which is desired as a surface-modified layer for rolling rolls, hearth rolls, etc. In addition, silicon carbide ceramic powder is used as hard particles such as WC, TiC,
It is also advantageous in that it is cheaper than TaC and the like. The filler rod of the present invention is manufactured by forming a homogeneous mixture of Co-based alloy powder and silicon carbide ceramic powder into a rod shape and sintering the mixture. By using a sintered body instead of simply using a mixture of metal powder and ceramic powder, it is possible to stably supply the metal and ceramic particles to the arc part during overlay welding by maintaining a predetermined ratio. At the same time, separation due to the difference in specific gravity between the two is effectively avoided, and a uniform composite structure in which ceramic particles are dispersed at a predetermined concentration is formed throughout the build-up layer. The reason why the proportion of silicon carbide ceramic particles in the filler rod is set to 20% or more is to sufficiently improve the high temperature compressive strength and wear resistance of the build-up layer due to the dispersion strengthening effect of the particles, and it is preferable. is more than 50%. Setting the upper limit to 80% not only eliminates the need for a higher proportion, but also avoids a relative decrease in the amount of matrix metal due to the increased amount and the resulting lack of ductility of the built-up layer, and improves thermal and mechanical properties. This is to ensure crack resistance and peelability against impact. Note that the particle size of the silicon carbide ceramic particles is a typical particle size used as dispersed phase particles (for example, 0.01~
3.5 μm) is sufficient. The size of the filler rod is arbitrary, but a diameter of about 4 to 8 mm is suitable for welding work. Overlay welding using the filler rod of the present invention is preferably carried out by tagsten inert gas arc welding (TIG welding) from the viewpoint of preventing oxidation of the Co-based alloy serving as the matrix and welding efficiency. No special conditions or restrictions are imposed on the welding process, and it may be carried out according to conventional methods. [Example] Metal powder (particle size 2: μm) to serve as a matrix
below) and ceramic powder (particle size 3.5μ) as the dispersed phase.
Fill a homogeneous mixture of carbon dioxide (less than m) into a carbon electrode mold, apply a pressure of 1500 kg/cm 2 , and sinter at a temperature of 1400 kg/cm 2 .
Sample composite filler rod (diameter: 6 mm) sintered at ℃
was produced. Using each filler rod, TIG welding (solution current:
250A), heat-resistant steel plate (Material: 0.4C−20Ni−
25Cr-Fe, equivalent to SCH22) was deposited in three layers to form a deposit layer with a layer thickness of 7 mm (after machining). For each build-up layer, high temperature compression test (test temperature:
1250℃) and abrasion test (test temperature: 800℃). The wear test was conducted using a Suzuki type abrasion tester, with a pressing load (surface pressure) of the mating material of 60 kg/cm 2 (material of the mating material: SUJ2, hardness Hv600), and a sliding contact speed of 2 m/cm2.
The amount of wear (mm 3 ) on the surface of the built-up layer after the test was measured at a sliding contact distance of 1000 m. Table 1 shows the composition of each sample filler rod and the material properties of the build-up layer. Nos. 1 to 4 are invention examples, and Nos. 11 to 15 are comparative examples. Among the comparative examples, No. 11, No. 12 and No.
15, WC particles, TaC particles, or TiC and Cr3C2
Examples No. 13 and No. 14, in which the mixed particles of Cr-
This is an example of Ni-Fe alloy combined with TiC particles or WC particles. The build-up layer formed using the filler rod of the invention example is
It has significantly higher high temperature compressive strength and wear resistance than each comparative example (No. 11 to 15). In addition, invention examples
The adhesion strength of the interface between the overlay layer and the substrate in Nos. 1 to 4 is all 5000 Kg/cm 2 or more, which is sufficient strength.

〔発明の効果〕〔Effect of the invention〕

本発明の溶加棒を用いて形成される肉盛層は、
高温度域における圧縮強度が極めて高く、かつ耐
摩耗性にもすぐれているので、これらの特性が要
求される部材、特に製鉄・製鋼関係の圧延用ロー
ルやハースロール等の表面改質のための肉盛層の
形成に好適であり、これらの部材の耐久性や安定
性の向上に大きな効果を有している。
The build-up layer formed using the filler rod of the present invention is
It has extremely high compressive strength in the high temperature range and excellent wear resistance, so it is suitable for surface modification of parts that require these properties, especially rolling rolls and hearth rolls related to iron and steel manufacturing. It is suitable for forming a built-up layer and has a great effect on improving the durability and stability of these members.

Claims (1)

【特許請求の範囲】[Claims] 1 Cr:25〜60%、Mo:0.5〜3%、Ni:4〜
8%、残部実質的にCoであるCo基合金と、20〜
80%を占める炭化珪素セラミツクの均一粉末混合
物の焼結体であることを特徴とする溶接肉盛用複
合溶加棒。
1 Cr: 25-60%, Mo: 0.5-3%, Ni: 4-
8%, the balance being essentially Co, and 20~
A composite filler rod for weld overlay, characterized by being a sintered body of a uniform powder mixture of silicon carbide ceramic, which accounts for 80% of the content.
JP2594685A 1985-02-13 1985-02-13 Composite filter rod for building up by welding Granted JPS61186190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2594685A JPS61186190A (en) 1985-02-13 1985-02-13 Composite filter rod for building up by welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2594685A JPS61186190A (en) 1985-02-13 1985-02-13 Composite filter rod for building up by welding

Publications (2)

Publication Number Publication Date
JPS61186190A JPS61186190A (en) 1986-08-19
JPH0418956B2 true JPH0418956B2 (en) 1992-03-30

Family

ID=12179919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2594685A Granted JPS61186190A (en) 1985-02-13 1985-02-13 Composite filter rod for building up by welding

Country Status (1)

Country Link
JP (1) JPS61186190A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260619A (en) * 1987-04-15 1988-10-27 Kubota Ltd Side guide member for hot rolling line
JPH069755B2 (en) * 1987-09-30 1994-02-09 特殊電極株式会社 Welding material for forming a structure in which carbide is crystallized on the entire surface of the weld metal
JPH0191997A (en) * 1987-09-30 1989-04-11 Kubota Ltd Composite build-up electrode
JP6397618B2 (en) * 2013-11-26 2018-09-26 株式会社戸畑製作所 Abrasion rod for wear-resistant coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845450A (en) * 1971-10-06 1973-06-29
JPS5776104A (en) * 1980-10-30 1982-05-13 Nippon Tungsten Co Ltd Manufacture of hard carbide welding rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845450A (en) * 1971-10-06 1973-06-29
JPS5776104A (en) * 1980-10-30 1982-05-13 Nippon Tungsten Co Ltd Manufacture of hard carbide welding rod

Also Published As

Publication number Publication date
JPS61186190A (en) 1986-08-19

Similar Documents

Publication Publication Date Title
EP0320195B1 (en) Wear resisting copper base alloys
CA2556132C (en) Abrasion-resistant weld overlay
CA1276843C (en) Composite hard chromium compounds for thermal spraying
EP0223202B1 (en) Iron alloy containing molybdenum, copper and boron
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
US4003715A (en) Copper-manganese-zinc brazing alloy
US8795448B2 (en) Wear resistant materials
US3329487A (en) Sintered three-phase welding alloy of fe3w3c, wc, and fe
JPH0418956B2 (en)
Techel et al. Production of hard metal-like wear protection coatings by CO 2 laser cladding
JPS62134193A (en) Composite powder welding material for building up by welding
JP4170273B2 (en) Die casting mold repair powder and die casting mold repair method using the same
JP4018308B2 (en) Composite material for sliding member and sliding member
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JP2562445B2 (en) Abrasion resistant composite roll
Knotek et al. Nickel-based wear-resistant coatings by vacuum melting
JPH06122076A (en) Cladding by welding method of oxide dispersion strengthened alloy
JPS63256275A (en) Sliding member with excellent seizure resistance and wear resistance
JP2597105B2 (en) Copper member surface hardening method
JPH0230800B2 (en) PURAZUMAFUNTAIYOSETSUNIKUMORYOFUKUGOYOSETSUZAI
JPH0768600B2 (en) Compound boride sintered body
JPH1136037A (en) Hard molybdenum alloy, wear resistant alloy, and wear resistant sintered alloy, and their production
JPH02205294A (en) Overplaying alloy having excellent high-temperature tensile creep characteristic
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace
CN114083176A (en) High-entropy alloy/ceramic surfacing flux-cored wire and preparation method thereof