JPH0233915A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0233915A
JPH0233915A JP63184021A JP18402188A JPH0233915A JP H0233915 A JPH0233915 A JP H0233915A JP 63184021 A JP63184021 A JP 63184021A JP 18402188 A JP18402188 A JP 18402188A JP H0233915 A JPH0233915 A JP H0233915A
Authority
JP
Japan
Prior art keywords
oxide film
resist
film
nitride film
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63184021A
Other languages
Japanese (ja)
Other versions
JP2705124B2 (en
Inventor
Tomoharu Mametani
豆谷 智治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63184021A priority Critical patent/JP2705124B2/en
Publication of JPH0233915A publication Critical patent/JPH0233915A/en
Application granted granted Critical
Publication of JP2705124B2 publication Critical patent/JP2705124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the adhesion strength of resist and obtain a high quality semiconductor device by a method wherein a process in which the resist is applied and patterned is performed after a process in which a field isolation oxide film is formed by using a nitride film as an oxidization-resistant mask. CONSTITUTION:A field isolation oxide film 2 is formed on a semiconductor substrate 1. Foundation oxide films 3 are formed on both the sides of the oxide film 7 with beak-shape oxide films 6 between. The part of a nitride film 4 not covered with resist 5 is removed. In order to remove the unnecessary part of the oxide film 2, the oxide film 2 is etched with fluoric acid system solution. The resist 5 is removed and, further, the remaining nitride film 4 is removed. With this constitution, the adhesion strength of the resist can be improved and a high quality semiconductor device can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置の製造方法におけるレジストの付
着力強化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to strengthening the adhesion of a resist in a method of manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

第2図は、L OCOS法などによる従来のフィールド
分離酸化膜の断面図である。半導体基板1内の所定領域
−Fには、耐酸化性のある酸化マスク用膜として例えば
シリコン窒化膜Si3N4なとを、下敷酸化膜3上に積
層する。またフィールド分m酸化膜2を形成覆る領域に
は下敷酸化膜3を露出させておく。この状態で酸化を行
うと、マスクされた下敷酸化膜3はほとんど厚さが変わ
らないが、露出された下敷酸化膜3は厚く成長してノイ
ールド分1m酸化膜2となる。さらにその境界にはくち
ばし状の酸化膜6が左右対濠に形成される。
FIG. 2 is a cross-sectional view of a conventional field isolation oxide film formed by the LOCOS method or the like. In a predetermined region -F in the semiconductor substrate 1, an oxidation-resistant oxidation mask film such as a silicon nitride film Si3N4 is laminated on the underlying oxide film 3. In addition, the underlying oxide film 3 is exposed in the area covered by the field m oxide film 2. When oxidation is performed in this state, the thickness of the masked underlying oxide film 3 hardly changes, but the exposed underlying oxide film 3 grows thicker and becomes a no yield oxide film 2 of 1 m. Furthermore, a beak-shaped oxide film 6 is formed on the boundary between the left and right moats.

また、フィールド分Ii1酸化膜2が形成さ゛れ4(い
領域の一部は素子形成領域7となる。フィールド分離酸
化膜2が厚いと、素子分離の耐圧は高(7Jり良い分離
特性が得られるが酸化膜6も大きく成Iqする。
In addition, a part of the area where the field isolation oxide film 2 is not formed becomes the element formation region 7. If the field isolation oxide film 2 is thick, the withstand voltage for element isolation is high (7J), and better isolation characteristics can be obtained. However, the oxide film 6 also grows to a large Iq.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のフィールド分離酸化膜2は以上のように構成され
ているので、高い分離耐圧を得るためにフィールド分離
酸化膜2を厚く成長させると酸化膜6も大きくなってし
まう。そのため、例えば素子形成領域7にキ1?バシタ
なとを形成してす、酸化膜6が大きいため素子形成領域
7の実効面積が減少し、キャパシタ容量が減ってしまう
なという問題点があった。
Since the conventional field isolation oxide film 2 is constructed as described above, if the field isolation oxide film 2 is grown thickly in order to obtain a high isolation voltage, the oxide film 6 will also become large. Therefore, for example, if there is a hole in the element formation region 7? However, since the oxide film 6 is large, the effective area of the element forming region 7 is reduced, resulting in a reduction in capacitor capacity.

上記のような問題点を解消するために本願出願人は以下
に述べるような技術を提案している。第3図は上記提案
によるフィールド分離酸化膜の断面図である。第2図に
示した従来のフィールド分111f酸化膜2に接して形
成された酸化膜6のうち、キャパシタなとを形成する素
子形成領域7側だけを例えばフッ酸系溶液などでエツチ
ングする。この時、キVパシタ容吊に寄与しない側を含
むフィールド分離酸化膜2はレジストなどで保護し、厚
さを保つ。このようにして非対称フィールド分離酸化膜
2aを形成する。なお、フッ酸系溶液としては15:I
B+−(Fや10:1HFなとを用い、それぞれ数分間
の処理を行う。
In order to solve the above-mentioned problems, the applicant of the present application has proposed the following technology. FIG. 3 is a cross-sectional view of the field isolation oxide film proposed above. Of the oxide film 6 formed in contact with the conventional field 111f oxide film 2 shown in FIG. 2, only the element formation region 7 side where the capacitors and the like are to be formed is etched using, for example, a hydrofluoric acid solution. At this time, the field isolation oxide film 2 including the side that does not contribute to the capacitance reduction is protected with a resist or the like to maintain its thickness. In this way, an asymmetric field isolation oxide film 2a is formed. In addition, as a hydrofluoric acid solution, 15:I
Using B+-(F or 10:1 HF), perform treatment for several minutes each.

第4図は第3図に示す非対称フィールド分子fl酸化膜
2aを用いて形成したメモリセルキャパシタの平面図で
あり、第5図は第4図に示すA−A’線に沿った断面図
である。第5図において、半導体基板1上に非対称フィ
ールド分離酸化膜2aによって分離された素子形成領域
7およびその間の分離領域8が存在する。素子形成領域
71には第1層ポリシリコン9および絶縁膜10を介し
て第2層ポリシリコン11が積層される。第1層ポリシ
リコン9、絶縁1110および第2層ポリシリコン11
はキャパシタを形成している。その対向面積は、非対称
フィールド分!IHQ化FJ2aの素子形成領域7側が
エツチングされているので増大している。また第2層ポ
リシリコン11はトランス77ゲートとじても動作し、
下敷酸化膜3を介しC分離領域8上にも連続的に形成さ
れている。さらにその上に層間絶縁膜12およびポリシ
リコンなどで形成された第1層配線13が形成される。
4 is a plan view of a memory cell capacitor formed using the asymmetric field molecule fl oxide film 2a shown in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line A-A' shown in FIG. be. In FIG. 5, on a semiconductor substrate 1 there are element formation regions 7 separated by an asymmetric field isolation oxide film 2a and isolation regions 8 therebetween. A second layer polysilicon 11 is laminated in the element formation region 71 with a first layer polysilicon 9 and an insulating film 10 interposed therebetween. First layer polysilicon 9, insulation 1110 and second layer polysilicon 11
forms a capacitor. The opposing area is equivalent to an asymmetric field! It increases because the element formation region 7 side of the IHQ FJ 2a is etched. In addition, the second layer polysilicon 11 also operates with the transformer 77 gate,
It is also continuously formed on the C isolation region 8 with the underlying oxide film 3 interposed therebetween. Furthermore, an interlayer insulating film 12 and a first layer wiring 13 made of polysilicon or the like are formed thereon.

居間絶縁l912上にはアルミニウムなどで形成された
第2層配線14が形成され、さらにその上には全面にわ
たってシリコン窒化膜15が形成される。
A second layer wiring 14 made of aluminum or the like is formed on the living room insulation 1912, and a silicon nitride film 15 is further formed over the entire surface.

非対称フィールド分離酸化膜2aは、素子形成領域7(
Illlは薄く、分離領148側は厚く形成されている
。そのため素子形成領域7の実効面積を増大させ、キャ
パシタを形成する時などはキャパシタの極板間の対向面
積が広くなり容量を増大させることができる。
The asymmetric field isolation oxide film 2a is formed in the element formation region 7 (
Ill is thin and the separation region 148 side is thick. Therefore, the effective area of the element forming region 7 can be increased, and when forming a capacitor, the opposing area between the electrode plates of the capacitor is widened, and the capacitance can be increased.

また、非対称フィールド分!酸化膜2aの分離領域8側
は充分に厚いので分離耐圧も充分高くなる。
Also, asymmetrical field minutes! Since the oxide film 2a is sufficiently thick on the isolation region 8 side, the isolation breakdown voltage is also sufficiently high.

第6図は、第2図に示す非対称フィールド分離酸化膜2
aを得るためのフィールド分離酸化膜エッチバック法に
おける問題点を示した工程断面図である。第6図(a)
において、半導体基板1上にフィールド分Il!i酸化
IF12およびその両側に下敷酸化膜3が形成されてい
る。また、片側の下敷酸化膜3の上にはレジスト5が塗
布されている。
FIG. 6 shows the asymmetric field isolation oxide film 2 shown in FIG.
FIG. 3 is a process cross-sectional view showing a problem in the field isolation oxide film etch-back method for obtaining a. Figure 6(a)
, a field portion Il! is formed on the semiconductor substrate 1. An underlying oxide film 3 is formed on the i-oxide IF 12 and both sides thereof. Further, a resist 5 is applied on the underlying oxide film 3 on one side.

第6図(b)において、キャパシタなとを形成する素子
形成領域7上の下敷酸化膜3およびその側部のフィール
ド分111化膜2を例えば10 : 11−IF’>ど
のフッ酸系溶液などでエツチングする。この時フッ酸系
溶液が付着度の低いレジスト5とフィールド分11[化
膜2の界面にしみこみレジスト5がはがれはじめること
がある。
In FIG. 6(b), the underlying oxide film 3 on the element formation region 7 that forms the capacitor and the field 111 film 2 on the side thereof are treated with a hydrofluoric acid solution such as 10:11-IF'> Etching with. At this time, the hydrofluoric acid solution may seep into the interface between the resist 5 and the field film 2, which have a low degree of adhesion, and the resist 5 may begin to peel off.

第6図(C)において、さらにエツチングが進むとレジ
スト5がさらに大きくはがれ、もはやパターンを保持で
きなくなることがある。
In FIG. 6(C), as the etching progresses further, the resist 5 may peel off to a greater extent and may no longer be able to hold the pattern.

以上のようにフィールド分離酸化膜2エツチング時など
にレジスト5がはがれやすく安定したパターンを保持で
きなくなることがある。
As described above, the resist 5 tends to peel off during etching of the field isolation oxide film 2, and a stable pattern may not be maintained.

この発明は上記のような問題点を解消するためになされ
たもので、エツチング処理なとを行なう時にも安定した
レジストパターンを保持し、高歩留り、高品質の装置を
1ワることができる半導体装置の製造方法を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and it is a semiconductor that can maintain a stable resist pattern even when performing etching processing, and can achieve high yield and high quality equipment. The purpose is to obtain a method for manufacturing the device.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明に係る半導体装置の製造方法は、半導体基板上
に窒化膜を所定のパターンに形成Jる工程と、前記窒化
膜を耐酸化マスクとしてフィールド分ll!を酸化膜を
形成する工程と、前記窒化股上にレジストを塗布しパタ
ーニングする工程とを備えたものである。
The method for manufacturing a semiconductor device according to the present invention includes the steps of forming a nitride film in a predetermined pattern on a semiconductor substrate, and using the nitride film as an oxidation-resistant mask to cover a field. The method includes a step of forming an oxide film, and a step of applying and patterning a resist on the nitrided layer.

(作用) この発明におけるレジス1〜を塗布しパターニングする
工程は、半導体基板上に窒化膜を所定のパターンに形成
し、窒化膜を耐酸化マスクとしてフイールド分Il!!
酸化膜を形成する工程のあとに行なわれるので、レジス
トの付着強度が増す。
(Function) The step of applying and patterning the resists 1 to 1 in this invention involves forming a nitride film in a predetermined pattern on a semiconductor substrate, and using the nitride film as an oxidation-resistant mask to form a field portion Il! !
Since it is performed after the step of forming an oxide film, the adhesion strength of the resist increases.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるフィールド分!!tM化
膜エッヂバック法を示した工程断面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a field according to an embodiment of this invention! ! FIG. 3 is a process cross-sectional view showing a tM film edge-back method.

第1図(a)において、半導体基板1上にフィールド分
離酸化膜2およびその両側に、くちばし状ブ)酸化膜6
を介して下敷酸化膜3が形成される。
In FIG. 1(a), a field isolation oxide film 2 is formed on a semiconductor substrate 1, and a beak-shaped oxide film 6 is formed on both sides of the field isolation oxide film 2.
An underlying oxide film 3 is formed through the oxide film 3.

下敷酸化膜3−トには、フィールド分11酸化膜2を形
成する峙の耐酸化膜である窒化膜4が残っている。さら
に素子形成領域7と反対側の窒化膜4上にはレジスト5
が塗布され、パターニングされている。
In the underlying oxide film 3--t, a nitride film 4, which is an oxidation-resistant film opposite to the field oxide film 2, remains. Furthermore, a resist 5 is formed on the nitride film 4 on the side opposite to the element formation region 7.
is coated and patterned.

第1図(b)において、レジスト5で覆われていない窒
化膜4を除去する。なお図において、左側は全面にレジ
スト5が付着しているが、窒化膜4に開口部を設けるこ
ともあり、その時は図示されないパターンに応じて、レ
ジスト5がパターニングされている。窒化膜4はレジス
ト5のパターンに応じて除去されるので、その2層膜を
マスクとして、下敷酸化膜3のエツチングやさらにその
下の半導体基板1にイオン注入を行なうことができる。
In FIG. 1(b), the nitride film 4 not covered with the resist 5 is removed. In the figure, the resist 5 is attached to the entire surface on the left side, but an opening may be provided in the nitride film 4, and in that case, the resist 5 is patterned according to a pattern not shown. Since the nitride film 4 is removed according to the pattern of the resist 5, using the two-layer film as a mask, it is possible to perform etching of the underlying oxide film 3 and implant ions into the semiconductor substrate 1 therebelow.

第1図(C)において、フィールド分離酸化膜2の内、
余分な部分を除去するため例えば10:1HFなどのフ
ッ酸系溶液でフィールド分離酸化膜2のエツチングを行
なう。この処理により素子形成領域7の実効面積を増加
させる。窒化膜4どレジスト5の付着力は充分強く、こ
の段階でフッ酸系溶液がその界面にしみこむことはほと
んどない。
In FIG. 1(C), in the field isolation oxide film 2,
In order to remove the excess portion, the field isolation oxide film 2 is etched using a hydrofluoric acid solution such as 10:1 HF. This process increases the effective area of the element formation region 7. The adhesion of the resist 5 to the nitride film 4 is sufficiently strong, and the hydrofluoric acid solution hardly penetrates into the interface at this stage.

そのため、レジスト5のリフトオフは発生じずパターン
を安定して保持できる。
Therefore, lift-off of the resist 5 does not occur and the pattern can be stably maintained.

第1図(d)においてレジスト5を除去し、ざらに第1
図(e)において残りの窒化!I!4を除去する。
In FIG. 1(d), the resist 5 is removed and the first
In figure (e) the remaining nitridation! I! Remove 4.

なお、先に第1図(C)に示すフィールド分離酸化膜2
のエツチングを行なってから、第1図fb)に示す工程
において行なわれるエツチングやイオン注入を行なって
もよい。またその場合、レジメト5を先に除去し窒化膜
4のみをマスクとして使用してもよい。
Note that the field isolation oxide film 2 shown in FIG.
After performing this etching, the etching or ion implantation performed in the step shown in FIG. 1 fb) may be performed. In that case, the regimen 5 may be removed first and only the nitride film 4 may be used as a mask.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、レジスhを塗布しパタ
ーニングする工程は、半導体基板上に窒化膜を所定のパ
ターンに形成し、窒化膜を耐酸化マスクとしてフィール
ド分子n酸化膜を形成する工程のあとに行なわれるので
、レジストの付着強度が増し、エツチング処理なとを行
なう時にも安定したレジストパターンを保持し、高歩留
り、高品質の装置を得ることができる半導体装置の!F
J造方決方法7ることができる。
As described above, according to the present invention, the step of applying and patterning the resist h is a step of forming a nitride film in a predetermined pattern on a semiconductor substrate, and forming a field molecule n oxide film using the nitride film as an oxidation-resistant mask. Because it is carried out after etching, the adhesion strength of the resist increases, and a stable resist pattern is maintained even during etching processes, making it possible to obtain high-yield, high-quality devices! F
J construction method 7 can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるフィールド分離酸化
膜のエッチバック法を示す工程断面図、第2図は従来の
フィールド分離酸化膜の断面図、第3図は非対称フィー
ルド分+m酸化膜の断面図、第4図は第3図に示す非対
称フィールド分I11酸化膜を用いて形成したメモリセ
ルキャパシタの平面図、第5図は第4図に示すメモセル
キャパシタの断面図、第6図はフィールド分離酸化膜の
エッチバック法における問題点を示した工程断面図であ
る。 図において、1は半導体基板、2はフィールド分111
11i!2化膜、4は窒化膜、5はレジメ1へである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a process cross-sectional view showing an etch-back method of a field isolation oxide film according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional field isolation oxide film, and FIG. 3 is a cross-sectional view of an asymmetric field + m oxide film. 4 is a plan view of a memory cell capacitor formed using the asymmetric field I11 oxide film shown in FIG. 3, FIG. 5 is a sectional view of the memory cell capacitor shown in FIG. 4, and FIG. FIG. 3 is a process cross-sectional view showing a problem in the etch-back method of a field isolation oxide film. In the figure, 1 is the semiconductor substrate, 2 is the field 111
11i! 2 is a nitride film, 4 is a nitride film, and 5 is a regimen 1. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置の製造方法であつて、 半導体基板上に窒化膜を所定のパターンに形成する工程
と、 前記窒化膜を耐酸化マスクとしてフィールド分離酸化膜
を形成する工程と、 前記窒化膜上にレジストを塗布しパターニングする工程
とを備えた半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device, comprising: forming a nitride film in a predetermined pattern on a semiconductor substrate; forming a field isolation oxide film using the nitride film as an oxidation-resistant mask; and on the nitride film. A method for manufacturing a semiconductor device, comprising the steps of applying a resist to the surface and patterning the resist.
JP63184021A 1988-07-22 1988-07-22 Method for manufacturing semiconductor device Expired - Lifetime JP2705124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184021A JP2705124B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184021A JP2705124B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0233915A true JPH0233915A (en) 1990-02-05
JP2705124B2 JP2705124B2 (en) 1998-01-26

Family

ID=16145955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184021A Expired - Lifetime JP2705124B2 (en) 1988-07-22 1988-07-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2705124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234859A (en) * 1988-06-28 1993-08-10 Mitsubishi Denki Kabushiki Kaisha LOCOS type field isolating film and semiconductor memory device formed therewith
US5538917A (en) * 1993-10-07 1996-07-23 Nec Corporation Fabrication method of semiconductor integrated circuit device
US5861339A (en) * 1995-10-27 1999-01-19 Integrated Device Technology, Inc. Recessed isolation with double oxidation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296438A (en) * 1986-06-16 1987-12-23 Oki Electric Ind Co Ltd Device for manufacturing semiconductor integrated circuit
JPS6379371A (en) * 1986-09-24 1988-04-09 Hitachi Vlsi Eng Corp Manufacture of semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296438A (en) * 1986-06-16 1987-12-23 Oki Electric Ind Co Ltd Device for manufacturing semiconductor integrated circuit
JPS6379371A (en) * 1986-09-24 1988-04-09 Hitachi Vlsi Eng Corp Manufacture of semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234859A (en) * 1988-06-28 1993-08-10 Mitsubishi Denki Kabushiki Kaisha LOCOS type field isolating film and semiconductor memory device formed therewith
US5538917A (en) * 1993-10-07 1996-07-23 Nec Corporation Fabrication method of semiconductor integrated circuit device
US5861339A (en) * 1995-10-27 1999-01-19 Integrated Device Technology, Inc. Recessed isolation with double oxidation

Also Published As

Publication number Publication date
JP2705124B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US5807660A (en) Avoid photoresist lifting by post-oxide-dep plasma treatment
JPH0799189A (en) Manufacture of semiconductor device
US4916087A (en) Method of manufacturing a semiconductor device by filling and planarizing narrow and wide trenches
JPH0233915A (en) Manufacture of semiconductor device
JPH0214784B2 (en)
KR100303225B1 (en) Semiconductor device and method of producing the same
JPH0786595A (en) Semiconductor device and manufacture thereof
JP2616519B2 (en) Method for manufacturing semiconductor device
US6417110B1 (en) Method for constructing heat resistant electrode structures on silicon substrates
KR100486109B1 (en) Manufacturing Method of Analog Semiconductor Device
JPS62211935A (en) Formation of interconnection layer
JPH02110934A (en) Formation of window for contact electrode
JP2001053229A (en) Manufacture of capacitor element
JPH03179770A (en) Semiconductor integrated circuit and manufacture thereof
JPS6278853A (en) Manufacture of semiconductor device
JPH0217931B2 (en)
JPH11307649A (en) Manufacture of semiconductor device
JPS62290127A (en) Manufacture of semiconductor device
JPH0799745B2 (en) Method for manufacturing semiconductor device
JPS6181665A (en) Formation of semiconductor region
JPH08330419A (en) Wiring structure, manufacture of wiring and semiconductor device
JPS60262444A (en) Manufacture of semiconductor device
JPH04152655A (en) Manufacture of semiconductor device
JPH01105560A (en) Semiconductor device and manufacture thereof
KR20040021374A (en) Method for forming shallow trench isolation of semiconductor element