JPH0233807A - Metallized paste composition - Google Patents

Metallized paste composition

Info

Publication number
JPH0233807A
JPH0233807A JP18200988A JP18200988A JPH0233807A JP H0233807 A JPH0233807 A JP H0233807A JP 18200988 A JP18200988 A JP 18200988A JP 18200988 A JP18200988 A JP 18200988A JP H0233807 A JPH0233807 A JP H0233807A
Authority
JP
Japan
Prior art keywords
powder
paste
copper
manganese
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18200988A
Other languages
Japanese (ja)
Inventor
Kenichi Hoshi
健一 星
Yoshiyuki Tsumita
積田 義之
Shoichi Tosaka
正一 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP18200988A priority Critical patent/JPH0233807A/en
Publication of JPH0233807A publication Critical patent/JPH0233807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a less expensive metallized paste by applying the constitution wherein an organic binder is included in a mixture containing the predetermined amount of a Cu powder, a CuO powder, a Mn compound and a glass powder to such an extent as suitable for obtaining a paste. CONSTITUTION:1 to 50 pts.wt. of a Cu powder (mean grain size: 2.4mum) and 100 pts.wt. of a Cu2O powder (mean grain size: 2.8mum) as a rest are mixed with 2 to 10 pts.wt. of a MnO powder (means grain size: 3.2mum) or Mn2O3 on the bases of conversion into MnO and 4 to 20 pts.wt. of a glass powder (mean grain size: 2.1mum). In addition, ethanol and olein acid are added thereto and the solidified portion thereof is crushed. An organic binder comprising ethyl cellulose completely solved into butyl carbithol acetate is added to such an extent as suitable for obtaining a paste. According to the aforesaid constitution, it is possible to reduce the cost of a metallized paste and it is easy to remove an organic binder. Also, the properties of Cu become stable.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はセラミック配線基板に、電極や配線パターンを
印刷するのに使用するメタライズペースト組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a metallizing paste composition used for printing electrodes and wiring patterns on ceramic wiring boards.

[従来の技術] セラミック配線基板用メタライズペースト組成物は、導
電性を賦与する金B粒子成分と、基板への固着剤成分と
、ペーストとしての物理的属性を与える有機バインダー
成分とから成っている。従来に於て、メタライズペース
ト中の前記全屈粒子成分には、基板を焼成する際の酸化
を防ぐため、銀、銀−パラジウム、金、白金等の貴金属
粒子が用いられている。また、固着剤成分には、ガラス
粉末が用いられ、有機バインダーには、樹脂と溶剤と分
散剤等から成るものが用いられている。
[Prior Art] A metallizing paste composition for a ceramic wiring board consists of a gold B particle component that imparts conductivity, an adhesive component to the substrate, and an organic binder component that imparts physical attributes as a paste. . Conventionally, noble metal particles such as silver, silver-palladium, gold, and platinum have been used as the total refractive particle component in the metallization paste in order to prevent oxidation during baking of the substrate. In addition, glass powder is used as the adhesive component, and a resin, a solvent, a dispersant, etc. is used as the organic binder.

全屈粉末成分として貴金属粉末を用いた前記従来のメタ
ライズペーストは、配線基板を大気中で焼成できる利点
はあるものの、導電材料に貴金属を使用するため、価格
変動が大きく、且つ高価であるという問題があった。
The conventional metallizing paste using noble metal powder as the total bending powder component has the advantage that the wiring board can be fired in the atmosphere, but because the noble metal is used as the conductive material, the price fluctuation is large and it is expensive. was there.

そこで、これらの問題を解消するため、導電粒子に銅粉
末を用いたメタライズベースl−1いわゆる銅ペースト
も提案されている。銅は貴金属に比べて安価であり、電
気抵抗が銀に次いて低いことと、銀とは異なり、マイグ
レーシロンが生じ難い点が着目され、配線基板を非酸化
雰囲気中で焼成する手段を採用することにより、セラミ
ック配線基板用のメタライズペーストとして使用されて
いる。
In order to solve these problems, a metallized base 1-1 so-called copper paste has also been proposed in which copper powder is used as the conductive particles. Copper was noted for its low cost compared to precious metals, its second-lowest electrical resistance after silver, and its resistance to migration, which led to the adoption of a method of firing wiring boards in a non-oxidizing atmosphere. As a result, it is used as a metallizing paste for ceramic wiring boards.

[発明が解決しようとする問題点コ しかし、このような銅ペーストには次のような二つの問
題点がある。
[Problems to be solved by the invention] However, such copper paste has the following two problems.

一つに、銅の素材そのものは、貴金属に比して安価では
あるが、メタライズペースト用材料に適した2〜4μm
の球状粒子は、容易に得られず、高価である。これは、
球形銅粉末の一般的な製造法である化学析出法によって
得られる銅粉は、微粉末であるが、生産効率が悪く、多
くの時間と労力を費やしても、僅かな生産量しか得られ
ないためである。
For one thing, although the copper material itself is cheaper than precious metals, it is suitable for metallizing paste materials.
Spherical particles are not easily obtained and are expensive. this is,
Copper powder obtained by the chemical precipitation method, which is a common method for producing spherical copper powder, is a fine powder, but the production efficiency is low, and even if a lot of time and effort are spent, only a small amount can be produced. It's for a reason.

他の一つは、メタライズペーストに用いる有機バインダ
ー成分を、非酸化雰囲気中で完全に除去することは困難
で、特に銅の融点以下の温度では熱力学的に分解しない
といわれている。
Another problem is that it is difficult to completely remove the organic binder component used in the metallizing paste in a non-oxidizing atmosphere, and it is said that it does not decompose thermodynamically, especially at temperatures below the melting point of copper.

このため、配線基板の焼成工程に於て、非酸化雰囲気中
に若干の酸素を含ませるといった微妙な雰囲気コントロ
ールが必要とされ、焼成条件が極めて難しい。
Therefore, in the process of baking the wiring board, delicate atmosphere control is required, such as including a small amount of oxygen in the non-oxidizing atmosphere, and the baking conditions are extremely difficult.

本発明の目的は、このような問題を解消することのでき
るメタライズペースト組成物を提供することにある。
An object of the present invention is to provide a metallizing paste composition that can solve these problems.

[問題を解決するための手段] 即ち、前記目的を達成するため、本発明において採用し
た手段の要旨は、金属銅粉末が1〜50重量部で、残部
が酸化第一銅からなる銅成分粉末を100重量部と、マ
ンガン化合物粉末を一酸化マンガン換算で2〜10重M
部と、ガラス粉末を4〜20重量部と、lv機バインダ
ーをペースト化に適したm含有することを特徴とするメ
タライズペースト組成物である。
[Means for solving the problem] That is, the gist of the means adopted in the present invention in order to achieve the above object is to use a copper component powder consisting of 1 to 50 parts by weight of metallic copper powder and the remainder being cuprous oxide. 100 parts by weight, and 2 to 10 parts by weight of manganese compound powder in terms of manganese monoxide.
This is a metallizing paste composition characterized in that it contains 4 to 20 parts by weight of glass powder, and m of an lv machine binder suitable for paste formation.

[実 施 例] 次ぎに、本発明の実施例とその使用例について、以下具
体的に説明する。
[Example] Next, examples of the present invention and usage examples thereof will be specifically described below.

(実施例1) 酸化第一銅(Cu20)  粉末(平均粒径2.8μm
)80gと、金属銅(Cu)粉末(平均粒径2.4μm
>20gと、−酸化マンガン(MnO)粉末(平均粒径
3.2μm)4gと、ガラス粉末(日本電気硝子社製G
A−12、平均粒径2.1μm)】Ogと、エタノール
200m1と、オレイン酸(分散剤)0.5gとを計量
し、これらをボールミルに16時間かけて混合した。次
いで、該混合物を加熱乾燥してエタノールを蒸発させ、
固形分を解砕して混合粉末を得た。
(Example 1) Cuprous oxide (Cu20) powder (average particle size 2.8 μm
) 80g and metallic copper (Cu) powder (average particle size 2.4μm
>20g, -4g of manganese oxide (MnO) powder (average particle size 3.2μm), and glass powder (G made by Nippon Electric Glass Co., Ltd.)
A-12, average particle size 2.1 μm)] Og, 200 ml of ethanol, and 0.5 g of oleic acid (dispersant) were weighed and mixed in a ball mill for 16 hours. Then, the mixture was heated and dried to evaporate the ethanol,
The solid content was crushed to obtain a mixed powder.

これとは別に、ブチルカルピトールアセテート100g
−中に、エチルセルローズ12gを投入し、これを攪拌
しながら温度70℃まで加熱して、エチルセルローズを
完溶させ、さらに室温まで自然冷却することにより、有
機バインダーを作った。
Separately, 100g of butylcarpitol acetate
- 12 g of ethyl cellulose was put into the solution, heated to a temperature of 70° C. while stirring to completely dissolve the ethyl cellulose, and then naturally cooled to room temperature to prepare an organic binder.

前記混合粉末100 gと有機バインダー25gとオレ
イン酸0.5gとを皿潰機に入れて混合した後、三本ロ
ールミルで混練し、メタライズペーストを製作した。
100 g of the mixed powder, 25 g of the organic binder, and 0.5 g of oleic acid were mixed in a dish crusher, and then kneaded in a three-roll mill to produce a metallized paste.

次に、該ペーストを使用し、別々のアルミナ基板(縦5
0111%  横120■、厚さ0.8mm)上に、−
辺1.5mgの正方形パターン、−辺8■の正方形パタ
ーン、及び巾0 、31m、長さ100mmの複数の線
状パターンをそれぞれスクリーン印刷し、これらを 1
20℃の温度で10分間乾燥した。乾燥後のメタライズ
ペーストの塗布厚は、約35μmであった。
Next, using the paste, separate alumina substrates (vertical 5
0111% width 120cm, thickness 0.8mm) on top, -
A square pattern with a side of 1.5 mg, a square pattern with a side of 8 cm, and multiple linear patterns with a width of 0, 31 m and a length of 100 mm were screen printed, and these were printed as 1.
It was dried for 10 minutes at a temperature of 20°C. The coating thickness of the metallized paste after drying was approximately 35 μm.

次いで、該アルミナ基板を、大気中で最高温度880℃
、全所要時nn50分のメツシュベルト式トンネル炉を
通過させて、メタライズペーストに含まれるを機バイン
ダー成分を燃焼飛散させた。さらに、N2ガス96%−
H2ガス4%の混合ガスを毎時4m”の流量で供給する
ことにより、還元性雰囲気に維持されたメツシュベルト
式トンネル炉に前記アルミナ基板を導入し、常温から9
50℃まで30℃/分の温度勾配で昇温し、続いて95
0℃の温度をそのまま30分間維持した後、常温まで3
0℃/分の温度勾配で降温する温度プロファイルでメタ
ライズペーストを焼成した。
Next, the alumina substrate was heated to a maximum temperature of 880°C in the atmosphere.
The metallizing paste was passed through a mesh belt type tunnel furnace for a total time of 50 minutes to burn and scatter the binder components contained in the metallizing paste. Furthermore, N2 gas 96%-
The alumina substrate was introduced into a Metschbelt tunnel furnace maintained in a reducing atmosphere by supplying a mixed gas of 4% H2 gas at a flow rate of 4 m/hour, and the alumina substrate was heated from room temperature to 9 m/h.
The temperature was increased at a temperature gradient of 30°C/min to 50°C, followed by 95°C.
After maintaining the temperature at 0℃ for 30 minutes, return to room temperature for 3 minutes.
The metallization paste was fired using a temperature profile in which the temperature was lowered at a temperature gradient of 0° C./min.

以上の手順に従って銅パターンが形成された基板を用い
、次の方法で導体の密着強度、シート抵抗、耐半田性、
半田濡れ性の試験と測定をそれぞれ実施した。
Using the board on which the copper pattern has been formed according to the above procedure, the adhesion strength of the conductor, sheet resistance, solder resistance,
Tests and measurements of solder wettability were conducted respectively.

先ず、導体の密着強度については、1.5mm角の銅パ
ターンを形成した基板を用い、これに0.6■φの錫メ
ツキ軟銅線の一端を基板面と平行に半田付けすると共に
、該軟銅線の他端をプッシュプルゲージに固定し、半田
付部が破断するまで基板面に対して垂直方向に引っ張る
ことにより行った。そして、破断した時点の荷重をプッ
シュプルゲージで読み取り、半田付面積1 ■2当りの
荷重に換算した。こうして50個の試料について単位面
積当りの破断加重を測定し、その平均値を密着強度とし
て表1に示した。
First, regarding the adhesion strength of the conductor, we used a board on which a 1.5 mm square copper pattern was formed, soldered one end of a 0.6 φ tin-plated annealed copper wire parallel to the board surface, and soldered the annealed copper wire parallel to the board surface. This was done by fixing the other end of the wire to a push-pull gauge and pulling it in a direction perpendicular to the board surface until the soldered part broke. Then, the load at the time of breakage was read with a push-pull gauge and converted to the load per soldering area of 1.2. In this way, the breaking load per unit area was measured for 50 samples, and the average value is shown in Table 1 as the adhesion strength.

シート抵抗の測定は、ホイストンブリッジを用い、基板
に形成した幅0 、31m、長さ100mmの線状パタ
ーンの、長手方向の両端間の電気抵抗値を測定し、これ
をヰ1位面積当りの抵抗値に換算することにより行った
。こうして50個の試料について単位面積当りの抵抗値
を測定し、その平均値をシート抵抗値として表1に示し
た。
To measure the sheet resistance, use a Whiston bridge to measure the electrical resistance value between both ends in the longitudinal direction of a linear pattern with a width of 0.31 m and a length of 100 mm formed on the substrate, and calculate this value per unit area. This was done by converting it into a resistance value. In this way, the resistance value per unit area was measured for 50 samples, and the average value is shown in Table 1 as the sheet resistance value.

耐半田性の評価については、シート抵抗測定後の前記基
板の線状バター・ンを、260℃士、5・℃に保温され
た溶融半田(63S n −37P b )槽内に10
秒間浸漬してから取り出し、綿状パターンを目視するこ
とを1サイクルとし、これをパターンの断線が見られる
まで繰り返すことにより行った。その結果、1〜3回で
断線が見られたものを不可、4〜6回で断線・が見られ
たもの、を可、7〜9回で断線が見られたものを良、1
0回以上で断線が見られないものを優とし、この結果を
表1に示した。
For evaluation of solder resistance, the linear pattern of the board after sheet resistance measurement was placed in a molten solder (63S n -37P b ) bath kept at 260°C and 5°C for 10 minutes.
One cycle consisted of dipping for a second, taking it out, and visually observing the flocculent pattern, and repeating this until breakage of the pattern was observed. As a result, those in which a disconnection was observed after 1 to 3 times were evaluated as unacceptable, those in which disconnection was observed in 4 to 6 times were acceptable, and those in which disconnection was observed in 7 to 9 times were evaluated as good.
Those in which no wire breakage was observed after 0 or more cycles were evaluated as excellent, and the results are shown in Table 1.

半田濡れ性の評価試験については、81111角の銅パ
ターンを形成した基板を用い、該銅パターンを25%ロ
ジンに浸漬した後、230℃±5℃に保温された溶融半
田(63S n −37P b ) 槽内に5秒間浸漬
し、取り出し、半田の濡れ程度を見ることにより行った
。この結果、半田濡れ面積が銅面積の80%に満たない
ものを不可、80〜95%を可、96〜99%を良、i
oo%を優とし、これを表IのElの欄に示した。
For the solder wettability evaluation test, a board on which an 81111 square copper pattern was formed was used, and after the copper pattern was immersed in 25% rosin, molten solder (63S n -37P b ) The solder was immersed in the tank for 5 seconds, taken out, and checked to see how wet the solder was. As a result, if the solder wet area is less than 80% of the copper area, it is unacceptable, if 80 to 95% is acceptable, if 96 to 99% is good, if
oo% was considered excellent and is shown in the El column of Table I.

(実施例2〜5) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガンの1を4gから各々2sr、 
 6g、  8g、  10gに変え、それ以外は同実
施例1と同じ方法と条件で実施例2〜5を実施した。こ
れらの結果を表1のE2〜5の欄に示す。
(Examples 2 to 5) As shown in Table 1, in the above Example 1, from 4 g of 1 of manganese monoxide in the metallizing paste, 2 sr,
Examples 2 to 5 were carried out using the same method and conditions as in Example 1, except that the amounts were changed to 6 g, 8 g, and 10 g. These results are shown in columns E2 to E5 of Table 1.

(実施例6〜9) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中のガラス粉末の量を10gから各々4g17g、
15g、20gに変え、それ以外は実施例1と同じ方法
と条件で実施例6〜9を実施した。これらの結果を表1
0E6〜9の欄に示す。
(Examples 6 to 9) As shown in Table 1, in Example 1, the amount of glass powder in the metallization paste was changed from 10g to 4g, 17g,
Examples 6 to 9 were carried out using the same method and conditions as in Example 1 except that the amounts were changed to 15 g and 20 g. These results are shown in Table 1.
Shown in columns 0E6-9.

(実施例10〜12) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中のガラス粉末の種類を、日本電気硝子社製GA−
12から、日本電気硝子社製GA−4、同L S −0
500,同GA−13に換え、それ以外は実施例1同じ
方法と条件で実施例10〜12を実施した。これらの結
果を表1のEIO〜12の欄に示す。
(Examples 10 to 12) As shown in Table 1, in Example 1, the type of glass powder in the metallizing paste was changed to GA-
From 12, Nippon Electric Glass GA-4, LS-0
Examples 10 to 12 were carried out using the same method and conditions as in Example 1, except for using the same GA-13. These results are shown in the EIO-12 columns of Table 1.

(実施例13) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4gを四酸化マンガン(M n
304) 4.3g (M n O換算で4g)に換え
、それ以外は実施例1同じ方法と条件で実施例13を実
施した。この結果を表1のEl3の欄に示す。
(Example 13) As shown in Table 1, in Example 1, 4 g of manganese monoxide in the metallizing paste was replaced with manganese tetroxide (M n
304) Example 13 was carried out using the same method and conditions as in Example 1, except that the amount was changed to 4.3 g (4 g in terms of M n O). The results are shown in the column El3 of Table 1.

(実施例14) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4gを三酸化マンガン(M n
20a) 4.5g (M n O換算で4g)に換え
、それ以外は実施例1同じ方法と条件で実施例14を実
施した。この結果を表1のEl4の欄に示す。
(Example 14) As shown in Table 1, in Example 1, 4 g of manganese monoxide in the metallization paste was replaced with manganese trioxide (M n
20a) Example 14 was carried out using the same method and conditions as in Example 1, except that the amount was changed to 4.5 g (4 g in terms of M n O). The results are shown in column El4 of Table 1.

(実施例15) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4gを二酸化マンガン(M n
 02) 4.9g (M n O換算で4g)に換え
、それ以外は実、絶倒1同じ方法と条件で実施例15を
実施した。この結果を表1のE15の欄に示す。
(Example 15) As shown in Table 1, in Example 1, 4 g of manganese monoxide in the metallizing paste was replaced with manganese dioxide (M n
02) Example 15 was carried out using exactly the same method and conditions except that 4.9 g (4 g in terms of M n O) was used. The results are shown in column E15 of Table 1.

(実施例16) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4gヲ炭Qeマンガン(M n
 CCh) 6.6g (M n O換算で4g)に換
え、それ以外は実施例1同じ方法と条件で実施例16を
実施した。この結果を表1のE16の欄に示す。
(Example 16) As shown in Table 1, in Example 1, 4 g of manganese monoxide, charcoal Qe, manganese (M n
Example 16 was carried out using the same method and conditions as in Example 1, except that the amount of CCh) was changed to 6.6 g (4 g in terms of M n O). The results are shown in the E16 column of Table 1.

(実施例17) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4g(MnO)を、−酸化マン
ガン(MnO)2gと四酸化マンガン(MnsCL)2
.15gとに換え(合計M n O換算で4g)、かつ
、ガラス粉末を日本電気硝子社製のGA−12から日本
琺瑯r’th薬社製の4101番に換え、それ以外は実
施例1同じ方法と条件で実施例17を実施した。この結
果を表10E17の欄に示す。
(Example 17) As shown in Table 1, in Example 1, 4 g of manganese monoxide (MnO) in the metallizing paste was replaced with 2 g of -manganese oxide (MnO) and 2 g of manganese tetroxide (MnsCL).
.. 15 g (4 g in terms of total M n O), and the glass powder was changed from GA-12 manufactured by Nippon Electric Glass Co., Ltd. to No. 4101 manufactured by Nippon Enamel R'th Yakusha, but otherwise the same as Example 1. Example 17 was carried out using the method and conditions. The results are shown in column E17 of Table 10.

(実施例18) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4g(MnO)を、−酸化マン
ガン2gと炭酸マンガン(M n COa) 3.24
gとに換え(合計MnO換算で4g)、かつ、ガラス粉
末を日本電気硝子社製のGA−12から日本琺瑯釉薬社
製の4121番に換え、それ以外は実施例1同じ方法と
条件で実施例18を実施した。この結果を表1のE18
の欄に示す。
(Example 18) As shown in Table 1, in Example 1, 4 g of manganese monoxide (MnO) in the metallizing paste was replaced with 2 g of -manganese oxide and 3.24 g of manganese carbonate (M n COa).
(4 g in terms of total MnO), and the glass powder was changed from GA-12 manufactured by Nippon Electric Glass Co., Ltd. to No. 4121 manufactured by Nippon Enamel Glaze Co., Ltd., but otherwise carried out using the same method and conditions as Example 1. Example 18 was carried out. This result is E18 in Table 1.
Shown in the column.

(実施例19) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4g(MnO)を、四酸化マン
ガン(’M n 30 s ) 2’、45 gと二酸
化マンガン(Mn203)2.22gと炭酸マンガン(
M n C03) 3.24gとに換え(合計MnO換
算で6g)、かつ、ガラス粉末を日本電気硝子社製のG
A−12から日本琺瑯釉薬社製の4138番に換え、そ
れ以外は実施例1同じ方法と条件で実施例19を実施し
た。この結果を表1のE19の欄に示す。
(Example 19) As shown in Table 1, in Example 1, 4 g of manganese monoxide (MnO) in the metallization paste was replaced with 45 g of manganese tetroxide ('M n 30 s ) 2' and manganese dioxide. (Mn203) 2.22g and manganese carbonate (
MnC03) 3.24g (total MnO equivalent: 6g), and the glass powder was replaced with G manufactured by Nippon Electric Glass Co., Ltd.
Example 19 was carried out using the same method and conditions as Example 1 except that A-12 was replaced with No. 4138 manufactured by Nippon Enamel Glaze Co., Ltd. The results are shown in the E19 column of Table 1.

(実施例20) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガン4g(MnO)を、四酸化マン
ガン(M n 304) 2.15gと二酸化マンガン
(Mn203)2.22gと二酸化マンガン(M n 
02) 2.45gとに換え(合計MnO換算で6g)
、かつ、ガラス粉末を日本電気硝子社製のGA−12か
ら日本琺瑯釉薬社製の631O番に換え、それ以外は実
施例1同じ方法と条件で実施例20を実施した。この結
果を表1のE20の欄に示す。
(Example 20) As shown in Table 1, in Example 1, 4 g of manganese monoxide (MnO) in the metallization paste was replaced with 2.15 g of manganese tetroxide (M n 304) and 2 g of manganese dioxide (Mn 203). .22g and manganese dioxide (M n
02) Replaced with 2.45g (6g in total MnO conversion)
Example 20 was carried out using the same method and conditions as in Example 1 except that the glass powder was changed from GA-12 manufactured by Nippon Electric Glass Co., Ltd. to No. 631O manufactured by Nippon Enamel Glaze Co., Ltd. The results are shown in the E20 column of Table 1.

(実施例21〜24) 表1に示す通り、前記実施例1に於て、メタライズペー
スト中の酸化第一銅(CuaO)の量80gと金属銅(
Cu)のff120gを、各々90gと10 g、  
70 gと30 i、  80 gと40 g、  5
0 gと50gに各々変え、それ以外は実施例1同じ方
法と条件で実施例21〜24を実施した。この結果を表
1のE21〜24の欄に示す。
(Examples 21 to 24) As shown in Table 1, in Example 1, the amount of cuprous oxide (CuaO) in the metallizing paste was 80 g and the amount of copper metal (
Cu) ff120g, respectively 90g and 10g,
70 g and 30 i, 80 g and 40 g, 5
Examples 21 to 24 were carried out using the same method and conditions as Example 1 except that the weight was changed to 0 g and 50 g, respectively. The results are shown in columns E21-24 of Table 1.

(比較例1〜2) 表2に示す通り、前記実施例1に於て、メタライズペー
スト中の一酸化マンガンの口を4gから各々1gと12
gに変え、それ以外は実施例1と同じ方法と条件で比較
例1と2を実施した。
(Comparative Examples 1 and 2) As shown in Table 2, in Example 1, the amount of manganese monoxide in the metallizing paste was changed from 4g to 1g and 12g, respectively.
Comparative Examples 1 and 2 were carried out using the same method and conditions as in Example 1, except for changing to g.

その結果を表2のCI、C2の欄に示す。The results are shown in the CI and C2 columns of Table 2.

(比較例3〜4 ) 表2に示す通り、前記実施例1に於て、メタライズペー
スト中のガラス粉末のmを10gがら各々2gと25g
に変え、それ以外は実施例1と同じ方法と条件で比較例
3と4を実施した。その結果を表2の03、C4の欄に
示 す。 (比較例5 ) 表2に示す通り、前記実施例工に於て、メタライズペー
スト中の酸化第一銅(Cu20 )の量80gと金属銅
(Cu) ノff120gを、各々40gトロ0gに変
え、それ以外は実施例1と同じ方法と条件で比較例5を
実施した。その結果を表2の05の欄に示す。
(Comparative Examples 3 to 4) As shown in Table 2, in Example 1, m of the glass powder in the metallizing paste was 10 g, 2 g and 25 g, respectively.
Comparative Examples 3 and 4 were carried out using the same method and conditions as in Example 1 except for the following. The results are shown in columns 03 and C4 of Table 2. (Comparative Example 5) As shown in Table 2, in the above example process, the amount of cuprous oxide (Cu20) in the metallizing paste was changed to 80 g and the amount of copper metal (Cu) was changed to 40 g and 0 g, respectively. Comparative Example 5 was carried out using the same method and conditions as in Example 1 except for the above. The results are shown in column 05 of Table 2.

以上実施例1〜24の結果が示すように、メタライズペ
ースト中のマンガン化合物は、その−酸化マンガンに換
算したときの口が酸化第一銅と金属銅とからなる銅成分
粉末100重量部に対して2〜lomff1部の範囲に
あるときは、メタライズされた銅の緻密性の向上寄与し
、導体の密着性と耐ハンダ性の向上にを効である。しか
も、十分良好な半田濡れ性が得られる。これに対し、メ
タライズペースト中の前記マンガン化合物の量が、酸化
第一銅と金属銅とからなる銅成分粉末100重量部に対
して一酸化マンガンに換算して2重量部未満では、比較
例1の結果が示すように、導体密着強度が1Kg/im
2以下となり、耐ハンダ性も悪く、好ましくない。他方
、lofflffl部を超えると、比較例2のように、
半田濡れ性が悪くなり、好ましくない。
As shown in the results of Examples 1 to 24 above, the manganese compound in the metallizing paste has an amount of 100 parts by weight of the copper component powder consisting of cuprous oxide and copper metal when converted to manganese oxide. When it is in the range of 2 to 1 part lomff, it contributes to improving the density of metallized copper, and is effective in improving the adhesion and solder resistance of the conductor. Moreover, sufficiently good solder wettability can be obtained. On the other hand, if the amount of the manganese compound in the metallizing paste is less than 2 parts by weight calculated as manganese monoxide with respect to 100 parts by weight of the copper component powder consisting of cuprous oxide and metallic copper, Comparative Example 1 As shown in the results, the conductor adhesion strength is 1Kg/im.
2 or less, and the solder resistance is also poor, which is not preferable. On the other hand, when exceeding the lofffffl portion, as in Comparative Example 2,
Solder wettability deteriorates, which is undesirable.

従って本発明では、メタライズペースト中のマンガン化
合物のMを、上記範囲に限定した。
Therefore, in the present invention, M of the manganese compound in the metallized paste is limited to the above range.

メタライズペースト中のガラス粉末は、その■が酸化第
一銅と金属銅とからなる銅成分粉末100重a部に対し
て4〜20重■部の範囲にあるときは、メタライズされ
た銅の密着強度の向上に佇効であり、しかも、十分良好
な半田濡れ性と十分低いシート抵抗が得られる。これに
対し、メタライズペースト中の前記ガラス粉末のMが、
酸化第一銅と金属銅とからなる銅成分粉末100部に対
して4重量部未満では、比較例3の結果が示すように、
メタライズされた銅の密着強度が弱<、I Kg/ m
m’以下となるため、好ましくない。一方、これが20
重量部を超えると、比較例4の結果が示すように、半田
濡れ性が悪く、シート抵抗が急激に高くなるため、好ま
しくない。従って本発明では、メタライズペースト中の
ガラス粉末の量を、上記の範囲に限定した。
When the glass powder in the metallizing paste is in the range of 4 to 20 parts by weight per 100 parts by weight of the copper component powder consisting of cuprous oxide and metallic copper, the adhesion of the metallized copper will be reduced. It is effective in improving strength, and also provides sufficiently good solder wettability and sufficiently low sheet resistance. On the other hand, M of the glass powder in the metallization paste is
If the amount is less than 4 parts by weight based on 100 parts of copper component powder consisting of cuprous oxide and metallic copper, as shown in the results of Comparative Example 3,
Adhesion strength of metallized copper is weak <, I Kg/m
m' or less, which is not preferable. On the other hand, this is 20
If it exceeds parts by weight, as shown in the results of Comparative Example 4, the solder wettability will be poor and the sheet resistance will sharply increase, which is not preferable. Therefore, in the present invention, the amount of glass powder in the metallization paste is limited to the above range.

本発明によるメタライズペーストにおいては、メタライ
ズされた銅に導電性を賦与するための粒子が前記酸化第
一銅と金属銅とからなる銅成分粉末である。この銅成分
粉末のうち、金属銅粉末は、有機バインダを除去するた
めの空気中での熱処理の時に、酸化される。しかしその
後、還元性ガス中で焼成されることにより、前記酸化さ
れた金属銅と酸化第一銅とが還元されて何れも金属銅と
なり、導電性を生じる。すなわち、このメタライズペー
ストは、空気中で加熱して有機バインダーを完全に飛散
させた後、H2を命むN2ガス中で焼成し、メタライズ
することが可能である。そしてこの場合に、焼成炉内に
送り込む前記還元性のガスの量は、従来の1/3程度の
ユで済む。
In the metallizing paste according to the present invention, the particles for imparting conductivity to the metallized copper are copper component powder consisting of the cuprous oxide and metallic copper. Among the copper component powders, the metallic copper powder is oxidized during heat treatment in air to remove the organic binder. However, by subsequently firing in a reducing gas, the oxidized metallic copper and cuprous oxide are reduced to become metallic copper, resulting in conductivity. That is, this metallization paste can be heated in air to completely scatter the organic binder, and then fired in N2 gas containing H2 to metallize it. In this case, the amount of the reducing gas sent into the firing furnace can be reduced to about 1/3 of the conventional amount.

メタライズペースト中の前記銅成分粉末は、金属銅粉末
が多い程メタライズされた銅のシート抵抗が低い。これ
に対し、金属銅が前記範囲を越えて銅成分粉末に占める
割合が多(なると、比較例5で示されたように、メタラ
イズされた金属層のセラミックに対する密着強度が急激
に低くなる。
As for the copper component powder in the metallized paste, the more metallic copper powder there is, the lower the sheet resistance of the metalized copper is. On the other hand, if the proportion of metallic copper in the copper component powder exceeds the above range (as shown in Comparative Example 5), the adhesion strength of the metallized metal layer to the ceramic decreases rapidly.

これは、メタライズペーストに含まれる有機バインダを
除去するため、空気中で熱処理する際に、メタライズペ
ースト中の金BfX4が酸化され、体積が増大すること
により、メタライズペースト中にクラックが発生したり
、一部がセラミックの表面から剥離するためである。金
Ji!!銅が銅成分粉末100重量部中50重1部以下
の場合は、前述のような問題は起こらない。また、銅成
分粉末に占める金属銅粉末のユが1重口部に満たないと
きは、金属銅を含有させる効果に乏しい。よって、本発
明では、銅成分粉末中の酸化第一銅と第二銅の割合を、
前記の範囲に限定した。
This is because when the metallizing paste is heat-treated in air to remove the organic binder contained in the metallizing paste, the gold BfX4 in the metallizing paste is oxidized and its volume increases, causing cracks to occur in the metallizing paste. This is because a portion of it peels off from the ceramic surface. Kim Ji! ! When the copper content is 50 parts by weight or less in 100 parts by weight of the copper component powder, the above-mentioned problem does not occur. Further, when the amount of metallic copper powder in the copper component powder is less than one weight portion, the effect of containing metallic copper is poor. Therefore, in the present invention, the ratio of cuprous oxide and cupric oxide in the copper component powder is
limited to the above range.

[発明の効果] 以上説明したように、本発明によれば、メタライズペー
スト中に含ませる導電性を賦与するための粒子として、
酸化第一銅と金属銅の混合粉末を用いることにより、金
BM粉末を用いる場合に比べて、導電材料の単価を大幅
に低減することができ、メタライズペーストの価格低減
を図ることが出来る。しかも、空気中で加熱して有機バ
インダーを完全に飛散させることが可能なため、vV機
バインダーの除去及び焼成工程が容易になり、生産性の
向上とメタライズされた銅の性状の安定化を図ることが
できる。
[Effects of the Invention] As explained above, according to the present invention, as particles for imparting conductivity to be included in the metallizing paste,
By using a mixed powder of cuprous oxide and metallic copper, the unit price of the conductive material can be significantly reduced compared to the case of using gold BM powder, and the price of the metallizing paste can be reduced. Moreover, since the organic binder can be completely dispersed by heating in the air, the removal of the vV machine binder and the firing process are facilitated, improving productivity and stabilizing the properties of the metallized copper. be able to.

Claims (1)

【特許請求の範囲】[Claims] 金属銅粉末が1〜50重量部で、残部が酸化第一銅から
なる銅成分混合粉末を100重量部と、マンガン化合物
粉末を一酸化マンガン換算で2〜10重量部と、ガラス
粉末を4〜20重量部と、有機バインダーをペースト化
に適した量含有するメタライズペースト組成物。
100 parts by weight of a copper component mixed powder consisting of 1 to 50 parts by weight of metallic copper powder and the remainder being cuprous oxide, 2 to 10 parts by weight of manganese compound powder in terms of manganese monoxide, and 4 to 4 parts by weight of glass powder. A metallizing paste composition containing 20 parts by weight and an organic binder in an amount suitable for paste formation.
JP18200988A 1988-07-21 1988-07-21 Metallized paste composition Pending JPH0233807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18200988A JPH0233807A (en) 1988-07-21 1988-07-21 Metallized paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18200988A JPH0233807A (en) 1988-07-21 1988-07-21 Metallized paste composition

Publications (1)

Publication Number Publication Date
JPH0233807A true JPH0233807A (en) 1990-02-05

Family

ID=16110729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18200988A Pending JPH0233807A (en) 1988-07-21 1988-07-21 Metallized paste composition

Country Status (1)

Country Link
JP (1) JPH0233807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261950A (en) * 1991-06-26 1993-11-16 Ngk Spark Plug Co., Ltd. Composition for metalizing ceramics
JPH07269009A (en) * 1994-03-30 1995-10-17 Shuichi Asayama Frame structure of building
JP2008041319A (en) * 2006-08-02 2008-02-21 Taiyo Ink Mfg Ltd Method of forming conductive baked material pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622405A (en) * 1985-06-27 1987-01-08 松下電器産業株式会社 Thick film conductive composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622405A (en) * 1985-06-27 1987-01-08 松下電器産業株式会社 Thick film conductive composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261950A (en) * 1991-06-26 1993-11-16 Ngk Spark Plug Co., Ltd. Composition for metalizing ceramics
JPH07269009A (en) * 1994-03-30 1995-10-17 Shuichi Asayama Frame structure of building
JP2008041319A (en) * 2006-08-02 2008-02-21 Taiyo Ink Mfg Ltd Method of forming conductive baked material pattern

Similar Documents

Publication Publication Date Title
TWI786109B (en) Conductive composition, manufacturing method of conductor, and forming method of wiring of electronic parts
US4001146A (en) Novel silver compositions
JP6885188B2 (en) Method for manufacturing conductive composition and terminal electrode
JPH07302510A (en) Conductive paste composition
JPH01192781A (en) Thick film copper conductor composition
JPH0233807A (en) Metallized paste composition
JPH04277406A (en) Copper conductor paste
JP2795467B2 (en) Good adhesive metal paste
JP2016219256A (en) Cu paste composition and thick film conductor
JPH0233806A (en) Metallized paste composition
JP5215914B2 (en) Resistor film manufacturing method, resistor film, and resistor
JPS63236784A (en) Metallizing paste composition
JPH0465011A (en) Copper conductive paste
JPH0349108A (en) Copper conductor composition material
JP2813447B2 (en) Conductor paste for aluminum nitride sintered substrate
JPH0341997B2 (en)
JPH0793051B2 (en) Copper conductor composition
JP2004362862A (en) Conductive paste composition for thick-film conductor
JPS63194387A (en) Metallized paste compound
JPH0465010A (en) Copper conductive paste
JPH07130573A (en) Ceramic powder coated with conductive metal
JPS6035386B2 (en) Conductive paint using Ni powder
KR800001624B1 (en) Air firable base metal condoctors
JP2760542B2 (en) Manufacturing method of ceramic circuit board
KR830001482B1 (en) Nickel Alloy Paste for Electric Conductor Formation