JPH0231721Y2 - - Google Patents

Info

Publication number
JPH0231721Y2
JPH0231721Y2 JP1983006744U JP674483U JPH0231721Y2 JP H0231721 Y2 JPH0231721 Y2 JP H0231721Y2 JP 1983006744 U JP1983006744 U JP 1983006744U JP 674483 U JP674483 U JP 674483U JP H0231721 Y2 JPH0231721 Y2 JP H0231721Y2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
collector terminal
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983006744U
Other languages
Japanese (ja)
Other versions
JPS59112468U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983006744U priority Critical patent/JPS59112468U/en
Publication of JPS59112468U publication Critical patent/JPS59112468U/en
Application granted granted Critical
Publication of JPH0231721Y2 publication Critical patent/JPH0231721Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【考案の詳細な説明】 本考案は、スポンジ状ニツケル多孔体を基板と
した正極板を含む渦巻状電極群の改良に関し、電
極を渦巻状に巻く際および集電端子を溶接する際
の能率を向上させ、かつ正極板からの集電性を向
上させることを目的とするものである。
[Detailed description of the invention] The present invention relates to the improvement of a spiral electrode group including a positive electrode plate using a sponge-like porous nickel material as a substrate. The purpose of this is to improve the current collecting ability from the positive electrode plate.

従来、アルカリ電池の正極板の基板としては、
ニツケル粉末の焼結体が用いられているが、その
多孔度は70〜80%程度であり、これ以上に多孔度
を上げると、その機械的強度が著しく減少し、し
たがつてその空〓内に正極活物質を充填した場合
に、基板の変形、危裂や活物質の剥離等を招来す
る欠点があつた。また、活物質を充填する場合、
通常減圧含浸法とよばれる方法すなわち硝酸ニツ
ケルや硫酸ニツケル等のニツケル塩の水溶液を基
板に減圧含浸したのち、アルカリ水溶液で処理
し、さらに湯洗、乾燥するという操作を繰り返す
手段がとられている。しかしながら、一回の操作
によつて充填される量は少なく、しかも2回目か
ら充填される量は次第に減少してくるので通常4
〜10回の操作をくり返す必要がある。そのため製
造工程が複雑で経済的コストが高くなるという欠
点があつた。
Conventionally, the substrate for the positive electrode plate of alkaline batteries is
A sintered body of nickel powder is used, but its porosity is about 70 to 80%, and if the porosity is increased beyond this, its mechanical strength will be significantly reduced, and the porosity within the pores will decrease significantly. When the positive electrode active material is filled in the substrate, there are drawbacks such as deformation and cracking of the substrate and peeling of the active material. In addition, when filling the active material,
Usually, a method called vacuum impregnation method is used, in which the substrate is impregnated under reduced pressure with an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate, then treated with an alkaline aqueous solution, and then washed with hot water and dried. . However, the amount to be filled in one operation is small, and the amount to be filled from the second operation onwards gradually decreases, so usually 4
It is necessary to repeat the operation ~10 times. Therefore, the manufacturing process is complicated and the economic cost is high.

そこで近年、三次元的に連続した構造を有する
ニツケル金属よりなるスポンジ状多孔体に、ペー
スト状にした正極活物質を直接充填する方法が注
目されてきている。
Therefore, in recent years, attention has been paid to a method in which a sponge-like porous body made of nickel metal having a three-dimensionally continuous structure is directly filled with a positive electrode active material in the form of a paste.

三次元的に連続した構造を有するスポンジ状ニ
ツケル多孔体は、その多孔度が90〜98%と高く、
しかも機械的強度が大きい。そのうえ孔径が大き
いので、この多孔体に活物質を充填すると正極板
の高容量化をはかることができるとともに充填方
法が極めて簡便になり連続工程が可能で経済的に
も有利となる。しかしながら、スポンジ状ニツケ
ル多孔体を基板に用いる場合には、集電端子の取
り付けが困難であるという欠点がある。すなわち
活物質を多孔体に充填すると、活物質が大きな電
気的抵抗となつて集電端子の溶接が極めて困難と
なるのである。そこで、第1図に示すようにあら
かじめ多孔体1の一部分を凹状に加圧して集電端
子取付部2を設けたのち活物質を充填するという
方法が考えられるが、この場合も集電端子取付部
2に若干の活物質が付着するので集電端子の溶接
が不完全となる場合がある。活物質を充填する前
に集電端子を取り付けておけば問題はないが、そ
の場合には集電端子が妨げとなつて活物質の充填
の能率が著しく低下するという欠点がある。ま
た、以上述べてきた方法では第2図に示すように
正極板7の長尺方向と垂直に集電端子3が突出す
るので電極を渦巻状に巻く際の能率が悪いという
欠点がある。そこで現在焼結式極板に関しては一
般におこなわれている集電端子の取り付け方法、
すなわち、第3図に示すように電極の一端に電極
の長尺方向と平行に焼結基板の支持鋼板を露出さ
せた部分4を設けた正・負極板を第4図に示すよ
うにセパレータを介して所定方向にずらせて渦巻
状に巻き電極群の上下端面に突出した各電極基板
の支持鋼板5および6に正・負極集電端子10お
よび11をそれぞれ溶接する方法を用いることが
考えられる。しかしながら、スポンジ状ニツケル
多孔体を用いる場合には、あらかじめ多孔体を加
圧して集電端子取付部4を設けておいても加圧の
度合が小さくて多孔度が充分に減少していない場
合にはペースト状活物質を充填する際に集電端子
取付部に若干の活物質が充填されるために集電端
子の取付けが不完全になる場合がある。逆に加圧
の度合が大きすぎると集電端子取付部分の剛性が
低下して集電端子を溶接する際の加圧によつて容
易に湾曲あるいは変形が生じて内部短絡を引起す
等の不都合が生じる。
Sponge-like porous nickel material with a three-dimensional continuous structure has a high porosity of 90 to 98%.
Moreover, it has high mechanical strength. Moreover, since the pore diameter is large, filling this porous body with an active material can increase the capacity of the positive electrode plate, and the filling method is extremely simple, making it possible to perform a continuous process and being economically advantageous. However, when a sponge-like porous nickel material is used for the substrate, there is a drawback that it is difficult to attach current collector terminals. That is, when a porous body is filled with an active material, the active material has a large electrical resistance, making it extremely difficult to weld the current collector terminal. Therefore, as shown in Fig. 1, a method can be considered in which a part of the porous body 1 is pressurized into a concave shape in advance to provide a collector terminal attachment part 2, and then filled with active material. Since some active material adheres to portion 2, welding of the current collector terminal may become incomplete. There is no problem if the current collecting terminal is attached before filling the active material, but in that case, there is a drawback that the current collecting terminal becomes an obstruction and the efficiency of filling the active material is significantly reduced. Furthermore, the method described above has the disadvantage that the current collecting terminal 3 protrudes perpendicularly to the longitudinal direction of the positive electrode plate 7 as shown in FIG. 2, resulting in poor efficiency in winding the electrode in a spiral shape. Therefore, the current method of attaching current collector terminals, which is generally used for sintered electrode plates,
That is, as shown in FIG. 3, positive and negative electrode plates are provided with a portion 4 in which the support steel plate of the sintered substrate is exposed parallel to the longitudinal direction of the electrode at one end of the electrode, and a separator is attached as shown in FIG. It is conceivable to use a method of welding the positive and negative electrode current collector terminals 10 and 11, respectively, to the supporting steel plates 5 and 6 of each electrode substrate, which are spirally wound while being shifted in a predetermined direction through the electrode group and protruding from the upper and lower end surfaces of the electrode group. However, when using a sponge-like porous nickel material, even if the porous material is pressurized in advance and the current collector terminal mounting portion 4 is provided, if the degree of pressurization is small and the porosity is not sufficiently reduced. When filling the paste-like active material, a small amount of the active material is filled into the current collecting terminal mounting portion, so that the current collecting terminal may not be completely mounted. On the other hand, if the degree of pressure is too large, the rigidity of the part where the current collecting terminal is attached will decrease, and the pressure applied when welding the current collecting terminal will easily cause bending or deformation, causing problems such as internal short circuits. occurs.

本考案は、上記のような問題点を解決すべくな
されたものであり、正極板の長尺方向と平行に極
板の端縁部の全長あるいは一部分にわたつて多孔
体を強く加圧し、かつ極板の長尺方向と垂直に亀
裂を入れた集電端子取付部を設けて、その集電端
子取付部を渦巻状電極群の外部あるいは中心部に
向つて折りまげることによつて、電極を渦巻状に
巻く際及び正極集電端子を溶接する際の能率を向
上させ、かつ正極板の集電性を向上させたもので
ある。
The present invention was developed to solve the above-mentioned problems by applying strong pressure to the porous body over the entire length or part of the edge of the positive electrode plate in parallel to the longitudinal direction of the positive electrode plate, and By providing a collector terminal attachment part with a crack perpendicular to the longitudinal direction of the electrode plate and bending the collector terminal attachment part towards the outside or the center of the spiral electrode group, the electrode can be This improves the efficiency of spirally winding and welding the positive electrode current collector terminal, and also improves the current collecting ability of the positive electrode plate.

以下、本考案の実施例ならびにその効果を詳述
する。
Hereinafter, embodiments of the present invention and their effects will be described in detail.

本考案に用いた正極板はつぎのようにして製作
した。まず、平均孔径0.3mm、多孔度94%、厚さ
1.1mm、幅81mmの連続した帯状のスポンジ状ニツ
ケル多孔体の両端部を第5図に示すように3.0mm
の幅で0.1mmの厚さに連続的に加圧して集電端子
取付部12とし、さらにその集電端子取付部に第
6図に示すように多孔体の長尺方向と垂直に5mm
間隔の亀裂13をカツター等によつて入れたもの
を基板とした。つぎにこの基板に水酸化ニツケル
粉末85部、カーボニルニツケル粉末10部、コバル
ト粉末5部の混合粉末をカルボキシメチルセルロ
ース水溶液でペースト状としたものを充填し、乾
燥したのちフツ素樹脂の分散液を含浸して0.68mm
の厚さに加圧成形し、所望の大きさに切断して正
極板とした。こゝで集電端子取付部に付着した活
物質は容易にふき取ることができた。こうして得
られた正極板をナイロン不織布のセパレータを介
して従来より公知のペースト式カドミウム負極板
と組合せて渦巻状に巻いた。そして、正極の集電
端子取付部を第7図に示すように渦巻状極板群の
中心部に向つて折り曲げた後、正・負極集電端子
10および11を溶接して電解液にS.G.1.300(20
℃)KOH水溶液を用いて公称容量が2.5Ahの円
筒形密閉ニツケル・カドミウム蓄電池Aを製作し
た。ここで、正極板の集電端子取付部12への集
電端子10の取り付けは焼結式極板を用いた場合
と同様に容易であつた。なお、集電端子取付部は
極板群の外部に折り曲げてもよい。比較のため
に、第1図に示したように凹状の集電端子取付部
を設けた多孔体に活物質を充填したのち集電端子
を溶接して製作した正極板を用いた電池Bを製作
した。この場合、集電端子取付部に付着した活物
質のために集電端子の溶接が困難であるものや、
電極を巻く際に集電端子が捲回治具等にひつかか
るために正極板からはずれてしまうものがあつ
た。
The positive electrode plate used in this invention was manufactured as follows. First, average pore diameter 0.3mm, porosity 94%, thickness
Both ends of a continuous band-shaped sponge-like porous nickel material with a width of 1.1 mm and a width of 81 mm are separated by 3.0 mm as shown in Figure 5.
The collector terminal attachment part 12 is continuously pressurized to a thickness of 0.1 mm with a width of
A substrate was prepared by cutting spaced cracks 13 using a cutter or the like. Next, a mixed powder of 85 parts of nickel hydroxide powder, 10 parts of carbonyl nickel powder, and 5 parts of cobalt powder was made into a paste form with an aqueous carboxymethyl cellulose solution, and after drying, it was impregnated with a dispersion of fluororesin. 0.68mm
The positive electrode plate was formed by pressure molding to a thickness of 1,000 yen and cut into a desired size. The active material adhering to the current collector terminal attachment part could be easily wiped off. The thus obtained positive electrode plate was combined with a conventionally known paste-type cadmium negative electrode plate via a nylon nonwoven fabric separator, and wound into a spiral. Then, after bending the positive electrode current collector terminal attachment part toward the center of the spiral electrode plate group as shown in FIG. 7, the positive and negative electrode current collector terminals 10 and 11 are welded and SG1 is added to the electrolyte. 300 (20
℃) A sealed cylindrical nickel-cadmium storage battery A with a nominal capacity of 2.5Ah was manufactured using a KOH aqueous solution. Here, the current collector terminal 10 was easily attached to the current collector terminal attaching portion 12 of the positive electrode plate, similar to when a sintered electrode plate was used. Note that the current collector terminal mounting portion may be bent to the outside of the electrode plate group. For comparison, battery B was fabricated using a positive electrode plate made by filling a porous body with a concave collector terminal attachment part with an active material and then welding the collector terminal as shown in Figure 1. did. In this case, welding of the current collecting terminal may be difficult due to the active material adhering to the current collecting terminal mounting part, or
When winding the electrode, the current collector terminal got caught in the winding jig, etc., causing it to come off from the positive electrode plate.

これらの電池を20℃、0.1CAで16時間充電した
のち各放電率で放電した時の放電容量および放電
中間電圧と放電率との関係をそれぞれ第8図およ
び第9図に示す。図から、本考案による電池Aは
従来法による電池Bよりも放電容量が大きく、放
電電圧が高いことがわかる。
The discharge capacity and the relationship between discharge intermediate voltage and discharge rate when these batteries were charged at 20° C. and 0.1 CA for 16 hours and then discharged at various discharge rates are shown in FIGS. 8 and 9, respectively. From the figure, it can be seen that the battery A according to the present invention has a larger discharge capacity and a higher discharge voltage than the battery B according to the conventional method.

特に、高率放電時において本考案による電池A
の放電性能がすぐれていることがわかる。
In particular, during high rate discharge, the battery A according to the present invention
It can be seen that the discharge performance is excellent.

これはつぎのような理由によるものと考えられ
る。すなわち、従来法によつて集電端子を取り付
けた場合には、集電端子取付部に活物質が付着し
ているため集電端子と電極との間の導電性が充分
に得られないからであると考えられる。また、集
電端子を一ケ所しか設けていないので端子より遠
い部分の活物質が高率放電になればなるほど利用
されにくいからであるとも考えられる。しかしな
がら、本考案によると、強く加圧した集電端子取
付部には活物質が付着しないので集電端子と電極
との間の導電性は極めて良好となり、また電極の
全長にわたつて集電が可能であるので活物質がほ
ぼ完全に利用できるために放電性能がすぐれてい
るものと考えられる。なお、集電端子取付部を渦
巻状極板群の外部方向あるいは中心部に向つてあ
らかじめ折り曲げているために、集電端子を溶接
する際に集電端子取付部が変形して内部短絡を引
き起すことはなかつた。また、低率放電が適用さ
れる場合には、電極の全長にわたつて集電端子取
付部を設けなくても部分的に設けるだけで充分な
集電性が得られることを確認した。
This is considered to be due to the following reasons. In other words, when the current collector terminal is attached using the conventional method, sufficient conductivity between the current collector terminal and the electrode cannot be obtained because the active material is attached to the current collector terminal attachment part. It is believed that there is. Another possible reason is that since the current collecting terminal is provided at only one location, the active material located further away from the terminal is less likely to be utilized as the rate of discharge increases. However, according to the present invention, the active material does not adhere to the strongly pressurized current collector terminal attachment part, so the conductivity between the current collector terminal and the electrode is extremely good, and current collection is achieved over the entire length of the electrode. Since the active material can be used almost completely, it is considered that the discharge performance is excellent. In addition, since the collector terminal attachment part is bent in advance toward the outside or the center of the spiral electrode plate group, the collector terminal attachment part may deform when welding the collector terminal, causing an internal short circuit. There was nothing to wake me up. Furthermore, when low rate discharge is applied, it has been confirmed that sufficient current collection performance can be obtained by providing a collector terminal attachment part only partially, without providing the collector terminal attachment part over the entire length of the electrode.

以上のように本考案によると、スポンジ状ニツ
ケル多孔体を基板に用いた場合でも集電端子の取
り付けが容易であり、かつ集電性のすぐれた正極
板をそなえた蓄電池を提供することができる。な
お、本考案は亜鉛、鉄等を負極板とした他のアル
カリ蓄電池にも適用できることはいうまでもな
い。
As described above, according to the present invention, even when a sponge-like porous nickel material is used as a substrate, it is possible to provide a storage battery in which the current collecting terminal can be easily attached and is equipped with a positive electrode plate having excellent current collecting properties. . It goes without saying that the present invention can also be applied to other alkaline storage batteries in which the negative electrode plate is made of zinc, iron, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はスポンジ状ニツケル多孔
体を用いる正極板の従来法による集電端子の取付
方法を示した図、第3図および第4図は焼結式極
板を用いた場合の集電方法を示した図、第5図、
第6図および第7図は本考案による集電方法を示
した図、第8図および第9図は本考案による電池
と従来法による電池との放電性能の比較図であ
る。 1……スポンジ状ニツケル多孔体、2,12…
…集電端子取付部、7……正極板、8……負極
板、9……セパレータ、10……正極集電端子、
11……負極集電端子、13……亀裂。
Figures 1 and 2 show a conventional method for attaching a current collector terminal to a positive electrode plate using a sponge-like porous nickel material, and Figures 3 and 4 show a method for attaching a current collector terminal using a sintered electrode plate. A diagram showing the current collection method, Fig. 5,
6 and 7 are diagrams showing the current collecting method according to the present invention, and FIGS. 8 and 9 are diagrams comparing the discharge performance of the battery according to the present invention and the battery according to the conventional method. 1... Sponge-like porous nickel material, 2, 12...
... Current collector terminal attachment part, 7 ... Positive electrode plate, 8 ... Negative electrode plate, 9 ... Separator, 10 ... Positive electrode current collector terminal,
11... Negative current collector terminal, 13... Crack.

Claims (1)

【実用新案登録請求の範囲】 極板を捲回して成る渦巻状極板群を備えた蓄電
池において、 正極板は水酸化ニツケルを主体とする活物質を
三次元的に連続した構造を有するスポンジ状ニツ
ケル多孔体に保持させて成るペースト式正極板で
あり、 該正極板はその長尺方向と平行に極板の端縁部
の全長あるいは一部分にわたつてスポンジ状ニツ
ケル多孔体が圧縮された圧縮部を有し、 該圧縮部は正極板の長尺方向と垂直に亀裂を有
し、集電端子取り付け部は該圧縮部を渦巻状極板
群の端面と平行に折り曲げることにより構成され
ている ことを特徴とする渦巻状極板群を備えた蓄電池。
[Claim for Utility Model Registration] In a storage battery equipped with a spiral electrode group formed by winding electrode plates, the positive electrode plate is a sponge-like material having a three-dimensional continuous structure of an active material mainly composed of nickel hydroxide. This is a paste-type positive electrode plate held in a porous nickel material, and the positive electrode plate has a compressed part in which the sponge-like porous nickel material is compressed over the entire length or part of the edge of the electrode plate in parallel with the longitudinal direction of the positive electrode plate. The compressed part has a crack perpendicular to the longitudinal direction of the positive electrode plate, and the current collector terminal attachment part is constructed by bending the compressed part parallel to the end surface of the spiral electrode plate group. A storage battery equipped with a spiral plate group characterized by:
JP1983006744U 1983-01-19 1983-01-19 Storage battery with spiral plate group Granted JPS59112468U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983006744U JPS59112468U (en) 1983-01-19 1983-01-19 Storage battery with spiral plate group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983006744U JPS59112468U (en) 1983-01-19 1983-01-19 Storage battery with spiral plate group

Publications (2)

Publication Number Publication Date
JPS59112468U JPS59112468U (en) 1984-07-30
JPH0231721Y2 true JPH0231721Y2 (en) 1990-08-28

Family

ID=30138288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983006744U Granted JPS59112468U (en) 1983-01-19 1983-01-19 Storage battery with spiral plate group

Country Status (1)

Country Link
JP (1) JPS59112468U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024206A1 (en) * 1999-09-30 2001-04-05 Asahi Glass Company, Limited Capacitor element
JP2006134795A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Alkaline storage battery

Also Published As

Publication number Publication date
JPS59112468U (en) 1984-07-30

Similar Documents

Publication Publication Date Title
TW419849B (en) Cylindrical alkaline storage battery using non-sintered electrode and manufacturing method of the same
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JPH0231721Y2 (en)
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JPH04123757A (en) Preparation of nickel electrode
JP3869540B2 (en) Cylindrical battery with spiral electrode body and method for manufacturing the same
JPS62136756A (en) Electrode plate for battery
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JPS6242448Y2 (en)
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JP4334783B2 (en) Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same
JPS61259454A (en) Manufacture of battery plate
JPS63124361A (en) Plate for battery
JPH0713176Y2 (en) Electrode plate for alkaline batteries
JP3954822B2 (en) Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
JP3015455B2 (en) Electrode plate for battery
JPS60225373A (en) Alkaline zinc storage battery
JPH04101367U (en) Paste type nickel electrode
JPS5880265A (en) Battery
JP2999542B2 (en) Metal-hydrogen alkaline storage battery
JP2646136B2 (en) Nickel electrode for alkaline storage battery
JPS6327824B2 (en)
JP2004179119A (en) Manufacturing method of positive electrode plate for alkaline storage battery
JPS61198562A (en) Electrode for alkaline secondary battery