JPS6327824B2 - - Google Patents

Info

Publication number
JPS6327824B2
JPS6327824B2 JP54024003A JP2400379A JPS6327824B2 JP S6327824 B2 JPS6327824 B2 JP S6327824B2 JP 54024003 A JP54024003 A JP 54024003A JP 2400379 A JP2400379 A JP 2400379A JP S6327824 B2 JPS6327824 B2 JP S6327824B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
resin
plate
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024003A
Other languages
Japanese (ja)
Other versions
JPS55117870A (en
Inventor
Tsutomu Iwaki
Shoichi Ikeyama
Sennosuke Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2400379A priority Critical patent/JPS55117870A/en
Publication of JPS55117870A publication Critical patent/JPS55117870A/en
Publication of JPS6327824B2 publication Critical patent/JPS6327824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 本発明は電池用電極活物質保持体の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrode active material holder for a battery.

電池の電極としては、大別すると鉛電池、アル
カリ電池など二次電池や一次電池に用いられてい
るペースト式や加圧成型式、鉛電池のクラツド
式、アルカリ電池のポケツト式のように活物質を
容器中に収納する方式、さらにアルカリ電池の焼
結式とがある。
Battery electrodes can be roughly divided into paste type and pressure molding type used in secondary batteries and primary batteries such as lead batteries and alkaline batteries, active material electrodes such as clad type lead batteries and pocket type alkaline batteries. There are two methods: a method in which batteries are stored in a container, and a method in which alkaline batteries are sintered.

これら3つの方式にはそれぞれ長短があり、ペ
ーストあるいは加圧成型式は、製法が簡単で低コ
ストであるとともに性能面でもすぐれているが、
二次電池に用いた場合には寿命の点に問題があ
る。また、クラツド式やポケツト式のような容器
に収納する方式は寿命の点ではすぐれているが性
能やコストに問題がある。最後の焼結式は性能、
寿命ともすぐれているが、製法が複雑であるので
コストに問題がある。
Each of these three methods has its advantages and disadvantages, and the paste or pressure molding method is easy to manufacture, low cost, and has excellent performance.
When used in secondary batteries, there is a problem in terms of lifespan. In addition, methods of storing in a container such as a clasp type or a pocket type are superior in terms of lifespan, but have problems in performance and cost. The final sintering ceremony is performance,
Although it has an excellent lifespan, the manufacturing method is complicated, so there is a cost problem.

しかし、電池全体でみるとやはり低コストが大
きな魅力であるので、ペースト式あるいは加圧成
型式が主流を占めているのが現状である。
However, when looking at batteries as a whole, low cost is still a big attraction, so paste type or pressure molding type are currently the mainstream.

ペースト式あるいは加圧成型式は、電池活物質
粉末に必要に応じて導電材や結着剤を入れてペー
スト状にしたり半乾燥状態で電極にするので、製
法が極めて簡単である。しかし、活物質の結合力
を高めるために結着剤の量を増すと電気抵抗が増
大して性能が劣化するので、この形式の電極では
強度が比較的小さく、充放電の繰り返しにより活
物質が脱落したり、電極がふくれてしまい寿命の
点では改良の余地が多い。
The paste type or pressure molding type is extremely simple to manufacture because a conductive material or a binder is added to the battery active material powder as necessary to make it into a paste or to form an electrode in a semi-dry state. However, if the amount of binder is increased to increase the bonding strength of the active material, the electrical resistance will increase and the performance will deteriorate, so this type of electrode has a relatively low strength and the active material will deteriorate due to repeated charging and discharging. There is a lot of room for improvement in terms of service life, as the electrodes often fall off or swell.

これに対して焼結式の場合は、非常に小さい孔
を持つ焼結体に活物質を塩の溶液の状態で充てん
し、これを電解法、加熱分解、アルカリ浸せきな
どによる活物質に転化するので、焼結基体への結
合力も大きく、また、微孔内に活物質が保持され
ているので脱落もし難く寿命も長い。また、接触
部分も多く、導電性も高いので特性もすぐれてい
る。ただ製造上の複雑化により、活物質を直接ペ
ーストあるいは加圧により得られる方式よりもコ
スト高になる。
On the other hand, in the case of the sintering method, a sintered body with very small pores is filled with active material in the form of a salt solution, and this is converted into an active material by electrolysis, thermal decomposition, alkali immersion, etc. Therefore, the bonding force to the sintered substrate is strong, and since the active material is held within the micropores, it is difficult to fall off and has a long life. It also has excellent properties because it has many contact areas and is highly conductive. However, due to the complexity of manufacturing, the cost is higher than methods in which the active material is directly pasted or pressurized.

このような焼結式の欠点を抑制して特性や寿命
は焼結式に近づけ、価格はペースト式に近づける
試みの一つが、芯材として発泡メタルを用い、こ
れに活物質を直接充てんする方式である。この発
泡メタル、たとえば住友電気工業(株)よりセルメツ
トの名で販売されているものは、多孔度が90〜97
%と従来の焼結式の78〜84%に比べてはるかに大
きく。孔径も50〜300μのように活物質粉末を直
接充てんできる大きさを有していて、しかも三次
元構造を持つているので充てんされる活物質を骨
格で包含できる。
One attempt to suppress these drawbacks of the sintered type, bring the characteristics and lifespan closer to those of the sintered type, and bring the price closer to the paste type is a method that uses foamed metal as the core material and directly fills it with active material. It is. This foam metal, for example, sold under the name Selmet by Sumitomo Electric Industries, Ltd., has a porosity of 90 to 97.
% and much larger compared to 78-84% of traditional sintering type. The pores have a size of 50 to 300μ, which allows them to be directly filled with active material powder, and because they have a three-dimensional structure, the active material to be filled can be contained in the skeleton.

このことから、特性や寿命を焼結式電極に近づ
けることはできるが、大電流放電での電圧低下や
円筒状電池に用いる場合にうずまき状に巻くと強
度に問題があり、巻く際に亀裂さらには破損を招
くなどの問題を残している。これは発泡メタルは
多孔度が大きく。金属の占める割合が小さいこと
が原因であり、導電性が小さいことや強度が小さ
いことによるものである。これらを防ぐためには
骨格が大きくすればよいのであるが、それでは多
孔度、孔径とも小さくなり、発泡メタルの特長は
失われてしまう。
From this, it is possible to make the characteristics and lifespan similar to sintered electrodes, but there are problems with voltage drop during large current discharge and strength when wound in a spiral shape when used in cylindrical batteries, and cracks may occur during winding. However, there remain problems such as damage. This is because foamed metal has a high porosity. This is due to the small proportion of metal, low conductivity, and low strength. In order to prevent these problems, the skeleton could be made larger, but this would reduce both the porosity and the pore diameter, and the characteristics of the foamed metal would be lost.

本発明は、このような問題点を発泡メタルの特
長をそこなうことなく解決する一つの簡単でしか
も有効な手段を提供するものであつて、発泡メタ
ルに天然あるいは合成樹脂の綿あるいは帯状板
(細い薄板)を一体化した線あるいは帯状構造を
持つ電極活物質支持体の製造法を提供するもので
ある。
The present invention provides a simple and effective means for solving these problems without impairing the features of foam metal. The present invention provides a method for manufacturing an electrode active material support having a wire or band-like structure in which thin plates are integrated.

すなわち、発泡状樹脂板上に天然あるいは合成
樹脂の線あるいは帯状板を固着した後に、全体を
金属メツキするものであつて、このようにすると
簡単な操作で芯材として樹脂の線あるいは帯状板
を保持した発泡メタルを得ることができる。しか
も樹脂の線あるいは帯状板はメツキされるととも
に、メツキ金属によつて発泡メタル部分と一体化
される。その方法はすでに提案した金属線や帯状
板を用いるよりも全体として軽量となり、しかも
コストも安い。このように芯材として金属の代わ
りに樹脂を用いても、その上にメツキされるので
金属の線や帯状板を用いたと同様に金属の連続し
た層が形成され、電導性や強度の向上が認められ
ることがわかつた。
That is, after fixing wires or strips of natural or synthetic resin onto a foamed resin board, the entire body is plated with metal.In this way, the resin wires or strips can be used as a core material with a simple operation. A retained foamed metal can be obtained. Moreover, the resin wire or band-like plate is plated and integrated with the foamed metal part by the plated metal. This method is lighter overall and cheaper than using metal wires or strip plates, which have already been proposed. Even if resin is used instead of metal as the core material, since it is plated on top of it, a continuous layer of metal is formed in the same way as when metal wires or strips are used, which improves conductivity and strength. I found out that it was accepted.

この場合に、発泡状樹脂としては、公知のポリ
ウレタン、ポリスチロール、尿素樹脂、ポリ塩化
ビニル等を用いる。天然あるいは合成樹脂の線あ
るいは帯(細い薄板)としては、木綿、セルロー
スアセテート、ポリアミド、ポリエステル、塩化
ビニール−アクリロニトリル共重合体などの線や
帯、さらにはポリ塩化ビニル、ポリプロピレン、
ポリエチレン等の帯状板などが用いられる。ま
た、これら樹脂の線あるいは帯状板は、発泡状樹
脂面に接着剤により接着してもよく、また発泡状
樹脂として熱可塑性樹脂を用いた場合には、発泡
状樹脂よりも高融点の線あるいは帯状板を用い
て、発泡状樹脂よりも高温度に線あるいは帯状板
を加熱しておいて熱溶着してもよい。接着剤で一
体化する際の長所は、一体化を十分行なうことが
できることであり、熱溶着の場合は、熱により発
泡状樹脂の樹脂線あるいは帯状板と接する部分が
溶解収縮するので、表面にあてても線あるいは帯
状板が一部発泡状樹脂板中にうめこまれるように
なることであり、金属メツキ後に一体化が十分な
されることである。
In this case, as the foamed resin, known polyurethane, polystyrene, urea resin, polyvinyl chloride, etc. are used. Wires or bands (thin thin plates) of natural or synthetic resins include lines or bands of cotton, cellulose acetate, polyamide, polyester, vinyl chloride-acrylonitrile copolymer, etc., as well as polyvinyl chloride, polypropylene,
A strip plate made of polyethylene or the like is used. These wires or strips of resin may be bonded to the foamed resin surface with an adhesive, and if a thermoplastic resin is used as the foamed resin, the wires or strips of resin may have a higher melting point than the foamed resin. Using a band-shaped plate, the wire or the band-shaped plate may be heated to a higher temperature than the foamed resin and heat welded. The advantage of integrating with adhesive is that it is possible to achieve sufficient integration, and in the case of heat welding, the portion of the foamed resin that comes into contact with the resin wire or strip plate melts and shrinks due to heat, so there is no damage to the surface. Even when applied, the wire or band-shaped plate is partially embedded in the foamed resin plate, and the integration is sufficiently achieved after metal plating.

このような樹脂の線あるいは帯状板を芯材とす
る電極活物質支持体は、すでに提案したスクリー
ン、エキスパンデツドメタル、孔あき板を芯材と
した保持体に比べて、このような芯材の占める割
合を少なくしてもほぼ同様の効果が期待できると
ともに、芯材の占める材料費の節約、さらには電
極活物質支持体製造上の簡単さなどの長所を有し
ている。また、金属線や帯状板を用いるよりも軽
量化とコストの低廉化が可能である。
Electrode active material supports that use resin wires or strips as core materials are superior to previously proposed holders that use screen, expanded metal, or perforated plates as core materials. Almost the same effect can be expected even if the proportion occupied by the core material is reduced, and it also has advantages such as saving on the material cost occupied by the core material and further simplifying the production of the electrode active material support. Furthermore, it is possible to reduce weight and cost more than using metal wires or strip-shaped plates.

さらに樹脂の線の太さについては、平板として
電極を用いる場合には、それほど限定はされない
が、うず巻き状に巻く場合には、あまり太いと問
題があるので、線の場合はその外径が0.05〜0.5
mm程度がよい。また、帯状板の厚さは0.05〜0.3
mm、幅は1〜5mm程度がよい。また、線あるいは
帯状板の間隔についても、極端な場合には電極1
枚に1本でも効果があるが、通常は5〜50mm程度
の間隔で保持させるのがよい。
Furthermore, the thickness of the resin wire is not so limited when using the electrode as a flat plate, but when winding it in a spiral shape, there is a problem if it is too thick, so in the case of a wire, the outer diameter is 0.05 ~0.5
About mm is good. Also, the thickness of the strip plate is 0.05~0.3
mm, and the width is preferably about 1 to 5 mm. Also, in extreme cases, the spacing between the wires or strips may vary between electrodes 1 and 2.
It is effective to use one per sheet, but it is usually best to hold them at intervals of about 5 to 50 mm.

なお、樹脂の線あるいは帯状板を一体化後の発
泡状樹脂板への金属メツキについては、公知の無
電解メツキ、ついで電解メツキの方法が比較的厚
いメツキを要する本発明には適していて、このメ
ツキにより線あるいは帯状板と発泡状樹脂板とを
メツキ金属で連結することになり、線あるいは帯
にメツキされた連続した金属体が形成されるとと
もに、この層が発泡メタル部分と一体化されて電
導性や強度の向上に極めて有効な手段となる。
Regarding metal plating on the foamed resin plate after integrating the resin wire or strip plate, the known methods of electroless plating and then electrolytic plating are suitable for the present invention, which requires relatively thick plating. This plating connects the wire or band-shaped plate and the foamed resin plate with the plating metal, forming a continuous metal body plated on the line or band, and this layer is integrated with the foamed metal part. This is an extremely effective means for improving conductivity and strength.

その他この活物質保持体の有効な利用対象して
は、アルカリ電池があり、この場合にはメツキは
ニツケルを用いるのがよい。そして、ニツケルメ
ツキにより骨格を形成しこれに活物質を保持させ
て渦巻状に巻回する場合には、メツキ後に加熱焼
鈍することによりメツキ金属の柔軟性と機械的強
度が向上するので加熱は有効であり、この場合に
は原料の発泡樹脂は加熱により分解除去され、中
空の金属からなる活物質保持体構造となる。
Another effective use of this active material holder is alkaline batteries, in which case it is preferable to use nickel for the plating. When a skeleton is formed by nickel plating and the active material is held in it and wound in a spiral, heating is not effective because heat annealing after plating improves the flexibility and mechanical strength of the plating metal. In this case, the raw material foamed resin is decomposed and removed by heating, resulting in an active material support structure made of hollow metal.

このようにして発泡メタルに金属線あるいは帯
構造が一体化された電極活物質支持体が得られ、
活物質の充てんが容易で長寿命であるとともに、
高放電での分極が小さく、また、うず巻き状に巻
くことも可能になる。
In this way, an electrode active material support in which a metal wire or band structure is integrated with a foamed metal is obtained.
In addition to being easy to fill with active materials and having a long life,
Polarization at high discharge is small, and it is also possible to wind it in a spiral shape.

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図Aに示すように多孔度約95%で空間2を
もつ、厚さ2.0mmの発泡ウレタン樹脂板1の片面
に、ポリスチロール樹脂のベンゼン溶液を塗布し
た線径0.3mmのポリアミドからなる線3を5mm間
隔に接着する。この際に加圧ローラ間を通してポ
リアミドの線3が樹脂板1に第1図Bに示すよう
に軽くめり込むようにしておく。
As shown in Figure 1A, it is made of polyamide wire with a wire diameter of 0.3 mm and coated with a benzene solution of polystyrene resin on one side of a 2.0 mm thick foamed urethane resin plate 1 with a porosity of about 95% and spaces 2. Glue wire 3 at 5mm intervals. At this time, the polyamide wire 3 is passed between the pressure rollers so that it is slightly sunk into the resin plate 1 as shown in FIG. 1B.

これに公知のニツケル無電解メツキを、ついで
電解ニツケルメツキを施し、総厚さ約25μのニツ
ケルメツキを形成する。ついで水洗、乾燥して電
極活物質支持体とし、空間部2に活物質を充てん
して用いる。さらに軽量化の保持体とするため、、
これにさらに加熱処理する場合について述べる。
まずメツキ処理後の保持体を空気中で600℃の温
度で20分間加熱して樹脂を分解除去する、これに
より樹脂線は第1図Bの3′で示すように中空と
なる。ついで水素中において900℃で15分間加熱
する。この加熱によりニツケル骨格の強度は向上
し、中空金属線3′部分は軟化して柔軟性を与え
られうず巻き状に巻く際に都合がよくなる。勿論
これらの工程は、連続的に行なうことができる。
This is subjected to known nickel electroless plating and then electrolytic nickel plating to form a nickel plating with a total thickness of about 25μ. Then, it is washed with water and dried to form an electrode active material support, and the space 2 is filled with the active material for use. In order to make the holding body even lighter,
The case of further heat treatment will be described.
First, the plated holder is heated in air at a temperature of 600° C. for 20 minutes to decompose and remove the resin, thereby making the resin wire hollow as shown at 3' in FIG. 1B. It is then heated in hydrogen at 900°C for 15 minutes. This heating improves the strength of the nickel skeleton, softens the hollow metal wire 3' and gives it flexibility, making it convenient for winding into a spiral shape. Of course, these steps can be performed continuously.

このようにして多孔度96%、厚さ約2.1mmで、
5mm間隔に線構造を有する発泡ニツケルが得られ
る。ついでリード板取付け部分を加圧した後に、、
水酸化ニツケル83重量部、ニツケル粉末10重量
部、コバルト粉末7重量部をカルボキシメチルセ
ルロースの水溶液でペースト状にしたものを充て
んし、さらに樹脂分4%のフツ素樹脂水性デイス
パージヨンを含浸後厚さが約1.1mmになるように
全体を加圧する。このようにして得られた電極を
単2サイズに截断する。この場合に線(あるいは
帯)の向きは電極の長さ方向と平行になるように
する。
In this way, the porosity is 96% and the thickness is about 2.1mm.
Foamed nickel having a line structure at 5 mm intervals is obtained. Then, after applying pressure to the lead plate attachment part,
Filled with 83 parts by weight of nickel hydroxide, 10 parts by weight of nickel powder, and 7 parts by weight of cobalt powder made into a paste with an aqueous solution of carboxymethyl cellulose, and further impregnated with a fluorine resin aqueous dispersion with a resin content of 4%. Pressurize the whole thing so that the height is about 1.1mm. The electrode thus obtained is cut into two size pieces. In this case, the direction of the line (or band) should be parallel to the length direction of the electrode.

このようにして得られたニツケル極にリード線
を取り付けた後に化成し、公知の方法でうず巻き
状に巻いて単2型ニツケル−カドミウム密閉電池
を組み立てた。この電池をAとする。一方比較例
として発泡ポリウレタン樹脂にニツケルメツキ
し、以下前記と同様にして得たニツケル極を用い
た電池をB、従来の構結式ニツケル極を用いた電
池をCとする。
After attaching a lead wire to the nickel electrode thus obtained, it was chemically converted and wound into a spiral shape by a known method to assemble a AA-size nickel-cadmium sealed battery. This battery is called A. On the other hand, as a comparative example, a foamed polyurethane resin was plated with nickel, and hereinafter a battery using a nickel electrode obtained in the same manner as described above is designated as B, and a battery using a conventional structural type nickel electrode is designated as C.

第2図は、各電池の500mA放電での放電曲線
であり、第3図は、、同じく3A放電での特性であ
る。この両面から明らかなように500mAでの容
量はA=B>Cであり、電圧はBがAやCよりや
や劣る程度である。3A放電では容量はA>B=
Cとなり、電圧はA=C>Bになつている。な
お、この結果は各電池10個の平均値を採つた。
FIG. 2 shows the discharge curve of each battery at 500 mA discharge, and FIG. 3 shows the characteristics at 3 A discharge. As is clear from both sides, the capacity at 500 mA is A=B>C, and the voltage of B is slightly inferior to that of A and C. At 3A discharge, the capacity is A>B=
C, and the voltage is A=C>B. Note that this result was the average value of 10 batteries for each battery.

このように、本発明の方法によれば、電圧、容
量ともにすぐれた電極が得られる。Bが3A放電
の容量の点で劣るのは、うず巻き状にした際に生
じた亀裂が原因であり、また電圧の点では導電性
がやや小さいことにもよるものと思われる。
As described above, according to the method of the present invention, an electrode with excellent voltage and capacity can be obtained. The reason that B is inferior in terms of 3A discharge capacity is thought to be due to cracks that occurred when it was formed into a spiral shape, and also due to its slightly lower conductivity in terms of voltage.

さらに、10時間率充電−1時間率放電の繰り返
しによる寿命試験で、初期容量の60%まで低下し
た点を寿命として調べた結果、Aは1300サイクル
で85%を保つているのに対して、Bは1250サイク
ルで60%に、Cは1280サイクルで60%に低下し
た。この場合、Bは亀裂が寿命に悪影響を与えた
ものであり、CよりもAがすぐれているのは、C
では粉末の焼結体であることから粉末同志が電極
基体の骨格を形成しているのに対して、Aでは発
泡状金属であるので、金属が連続的につながつて
いて基体の耐蝕性の点ですぐれていて活物質の脱
落も少ないことによるものと思われる。
Furthermore, in a life test by repeatedly charging at a rate of 10 hours and discharging at a rate of 1 hour, we investigated the point at which the initial capacity decreased to 60% as the lifespan, and found that A maintained 85% after 1300 cycles. B decreased to 60% after 1250 cycles, and C decreased to 60% after 1280 cycles. In this case, B is the one where the crack has had a negative impact on the lifespan, and the reason why A is better than C is that C
In A, since it is a sintered body of powder, the powder particles form the skeleton of the electrode base, whereas in A, it is a foamed metal, so the metal is continuously connected, and the corrosion resistance of the base is affected. This seems to be due to the fact that the active material is superior in terms of properties and there is less shedding of the active material.

その他に、本発明を移動用や据置用に用いられ
る平板状の電極に適用した場合にも、焼結式と同
程度の電圧特性にまで向上し、容量は約1.3倍、
寿命も約1.5倍に向上することが認められた。
In addition, when the present invention is applied to flat electrodes used for moving or stationary use, the voltage characteristics are improved to the same level as the sintered type, and the capacity is approximately 1.3 times higher.
It was also observed that the lifespan was improved by approximately 1.5 times.

以上詳述したごとく本発明をアルカリ電池用の
ニツケル極に適用すると極めてすぐれた効果を有
しているが、カドミウム極でも同じ効果をもつ。
また鉛電池についても鉛を主体とする発泡メタル
を用い、鉛線構造を形成させることにより同様の
効果が認められる。
As detailed above, when the present invention is applied to nickel electrodes for alkaline batteries, it has extremely excellent effects, but cadmium electrodes also have the same effect.
A similar effect can also be observed for lead batteries by using foamed metal containing lead as a main component and forming a lead wire structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aはニツケルメツキ前の樹脂線を固着し
た発泡状樹脂板の平面略図、第1図Bはその断面
略図、第2図は各種ニツケル極を用いたニツケル
−カドミウム電池の500mA放電での放電曲線を
示す図、第3図は3A放電での放電曲線を示す図
である。 1……発泡ウレタン樹脂板、2……空間、3…
…ポリアミド線。
Figure 1A is a schematic plan view of a foamed resin plate with resin wires fixed before nickel plating, Figure 1B is a schematic cross-sectional view, and Figure 2 is a 500mA discharge of a nickel-cadmium battery using various nickel electrodes. FIG. 3 is a diagram showing a discharge curve at 3A discharge. 1...Urethane foam resin plate, 2...Space, 3...
...Polyamide wire.

Claims (1)

【特許請求の範囲】 1 発泡状樹脂板1に、天然あるいは合成樹脂の
線3あるいは帯状板を固着した後、これら全体に
金属メツキをほどこすことを特徴とする電池用電
極活物質保持体の製造法。 2 発泡状樹脂板1が、ポリウレタン、ポリスチ
ロール、尿素樹脂およびポリ塩化ビニルよりなる
群から選んだいずれかである特許請求の範囲第1
項記載の電池用電極活物質保持体の製造法。 3 天然あるいは合成樹脂の線3あるいは帯状板
が、木綿、セルロースアセテート、ポリアミド、
ポリエステルおよび塩化ビニル−アクリロニトリ
ル共重合体よりなる群から選択したいずれかであ
る特許請求の範囲第1項記載の電池用電極活物質
保持体の製造法。 4 前記線3あるいは帯状板を発泡状樹脂板1に
固着する手段が、接着または熱溶着である特許請
求の範囲第1項記載の電池用電極活物質保持体の
製造法。 5 金属メツキがニツケルメツキである特許請求
の範囲第1項記載の電池用電極活物質保持体の製
造法。 6 発泡状樹脂板1に天然あるいは合成樹脂の線
3あるいは帯状板を固着した後、これら全体に金
属メツキをほどこし、ついで加熱して樹脂分を分
解除去するとともに金属部を焼鈍することを特徴
とする電池用電極活物質保持体の製造法。 7 前記線3あるいは帯状板を発泡状樹脂板1に
固着する手段が、接着または熱溶着である特許請
求の範囲第6項記載の電池用電極活物質保持体の
製造法。 8 金属メツキがニツケルメツキである特許請求
の範囲第6項記載の電池用電極活物質保持体の製
造法。
[Claims] 1. An electrode active material holder for a battery, characterized in that wires 3 or band-like plates made of natural or synthetic resin are fixed to a foamed resin plate 1, and then metal plating is applied to the whole. Manufacturing method. 2. Claim 1, wherein the foamed resin board 1 is one selected from the group consisting of polyurethane, polystyrene, urea resin, and polyvinyl chloride.
A method for producing an electrode active material holder for a battery as described in 1. 3 The wire 3 or strip of natural or synthetic resin is made of cotton, cellulose acetate, polyamide,
The method for producing an electrode active material holder for a battery according to claim 1, wherein the holder is selected from the group consisting of polyester and vinyl chloride-acrylonitrile copolymer. 4. The method of manufacturing an electrode active material holder for a battery according to claim 1, wherein the means for fixing the wire 3 or the strip plate to the foamed resin plate 1 is adhesive or thermal welding. 5. The method for producing a battery electrode active material holder according to claim 1, wherein the metal plating is nickel plating. 6. A wire 3 or band-like plate made of natural or synthetic resin is fixed to a foamed resin plate 1, and then metal plating is applied to the whole of the plate, followed by heating to decompose and remove the resin content and annealing the metal part. A method for manufacturing an electrode active material holder for batteries. 7. The method of manufacturing an electrode active material holder for a battery according to claim 6, wherein the means for fixing the wire 3 or the strip plate to the foamed resin plate 1 is adhesion or thermal welding. 8. The method for producing a battery electrode active material holder according to claim 6, wherein the metal plating is nickel plating.
JP2400379A 1979-02-28 1979-02-28 Manufacturing method of electrode base for cell Granted JPS55117870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400379A JPS55117870A (en) 1979-02-28 1979-02-28 Manufacturing method of electrode base for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400379A JPS55117870A (en) 1979-02-28 1979-02-28 Manufacturing method of electrode base for cell

Publications (2)

Publication Number Publication Date
JPS55117870A JPS55117870A (en) 1980-09-10
JPS6327824B2 true JPS6327824B2 (en) 1988-06-06

Family

ID=12126380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400379A Granted JPS55117870A (en) 1979-02-28 1979-02-28 Manufacturing method of electrode base for cell

Country Status (1)

Country Link
JP (1) JPS55117870A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149211U (en) * 1984-09-05 1986-04-02
JPH07320742A (en) * 1994-05-20 1995-12-08 Sumitomo Electric Ind Ltd Electrode for alkaline storage battery and manufacture thereof

Also Published As

Publication number Publication date
JPS55117870A (en) 1980-09-10

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
EP1667256B1 (en) Method for manufacturing electrodes for battery
EP0750358B1 (en) Non-sintered type nickel electrode and method of producing the same
JPS6327823B2 (en)
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
JPS6327824B2 (en)
JPS5937667A (en) Metal oxide-hydrogen battery
JPS6048869B2 (en) battery electrode
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPS641909B2 (en)
JPH10172539A (en) Electrode for storage battery and its manufacture
JPS6242448Y2 (en)
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPS62165862A (en) Manufacture of electrode base plate for alkaline storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JPS6254235B2 (en)
JPS63307665A (en) Manufacture of electrode plate for alkali storage battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPH0132633B2 (en)
JPH0231721Y2 (en)
JPS5834902B2 (en) battery electrode
JP2981537B2 (en) Negative electrode for alkaline batteries
JPH08138680A (en) Electrode base plate for battery and manufacture thereof