JP2006134795A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2006134795A
JP2006134795A JP2004324814A JP2004324814A JP2006134795A JP 2006134795 A JP2006134795 A JP 2006134795A JP 2004324814 A JP2004324814 A JP 2004324814A JP 2004324814 A JP2004324814 A JP 2004324814A JP 2006134795 A JP2006134795 A JP 2006134795A
Authority
JP
Japan
Prior art keywords
electrode
filling
storage battery
current collector
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004324814A
Other languages
Japanese (ja)
Inventor
Yoshitaka Dansui
慶孝 暖水
Yasushi Nakamura
靖志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004324814A priority Critical patent/JP2006134795A/en
Publication of JP2006134795A publication Critical patent/JP2006134795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline hydrogen storage battery adapted to large-current application by improving current-collecting efficiency by enhancing conductivity from a non-filling part of a filling type electrode to a collector. <P>SOLUTION: This alkaline storage battery is provided with a spiral electrode group composed by rolling strip-like positive and negative electrode plates each having a non-filling part having no active material along at least one of long sides thereof formed thereon by interlaying a separator, and by welding flat plate-like collectors to its both end faces. The alkaline storage battery is characterized in that at least one of the positive and negative electrode plates is a filling type electrode having a three-dimensional metal porous body as a core material, the non-filling parts of the filling type electrodes are molded so as to contact with each other on end faces of the spiral electrode group, and each collector is provided with a fixed blade on a surface to be welded to the end face of the filling type electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、大電流充放電可能なニッケル水素蓄電池に関するものである。   The present invention relates to a nickel metal hydride storage battery capable of charging and discharging a large current.

ニッケル−カドミウム蓄電池またはニッケル水素蓄電池等のアルカリ蓄電池は各種電源として広く使用されてきた。特に、近年ニッケル水素蓄電池は電動車両、ハイブリッド自動車、電動工具等のように大電流の充放電が必要な分野から更なる高率放電特性の向上が望まれている。   Alkaline storage batteries such as nickel-cadmium storage batteries or nickel metal hydride storage batteries have been widely used as various power sources. In particular, in recent years, nickel-metal hydride storage batteries have been desired to be further improved in high-rate discharge characteristics from fields that require charging and discharging with a large current, such as electric vehicles, hybrid vehicles, and electric tools.

このなかで最も普及している電動工具でもニッケル−カドミウム蓄電池からニッケル水素蓄電池が用いられるようになってきている。ニッケル水素蓄電池では、正負極板の少なくとも一方の芯材には、発泡ニッケル基板のような三次元金属多孔体を用い、この芯材に活物質を詰めた充填式電極である。正極を充填式電極とした場合、活物質である水酸化ニッケル粉末を高密度で充填することができるため高容量化が可能になる上、製造方法も容易なため、広範に展開されている。   Among these, even the most popular electric tools are using nickel metal hydride storage batteries from nickel-cadmium storage batteries. In the nickel-metal hydride storage battery, a three-dimensional metal porous body such as a foamed nickel substrate is used for at least one core material of the positive and negative electrode plates, and this core material is a filled electrode filled with an active material. When a positive electrode is used as a filling electrode, it can be filled with nickel hydroxide powder as an active material at a high density, so that the capacity can be increased and the manufacturing method is easy, so that it is widely deployed.

ただし前記の三次元金属多孔体は、多孔体を形成する骨格が数十μmから百μm程度であり、その骨格が三次元に絡み合っているため体積当りの導電性が低くなる。   However, in the three-dimensional metal porous body, the skeleton forming the porous body is about several tens of μm to 100 μm, and the skeleton is intertwined in three dimensions, so that the conductivity per volume is low.

大電流用アルカリ蓄電池は一般的に集電構造としてタブレス構造(帯状電極の長辺に沿って活物質の存在しない未充填部を設けて捲回し、ここに平板状の集電体を溶接する構造)を採るが、電極端面と集電体との溶接強度すなわち溶接点面積の確保が電池性能を左右する。そこで特許文献1では、電極の未充填部を幅方向に圧縮した上で先端に凹凸を設け、導電性を向上させつつ溶接点数を増して溶接強度を確保する方法が提案されている。
特開平10−228908号公報
Alkaline batteries for large currents generally have a tabless structure as a current collecting structure (a structure in which an unfilled portion where no active material is present is provided along the long side of the strip electrode, and a flat plate current collector is welded thereto. However, the securing of the welding strength between the electrode end face and the current collector, that is, the area of the welding point, affects the battery performance. Therefore, Patent Document 1 proposes a method of securing the welding strength by increasing the number of welding points while improving the conductivity by providing unevenness at the tip after compressing the unfilled portion of the electrode in the width direction.
Japanese Patent Laid-Open No. 10-228908

しかしながら特許文献1の方法は、電極と集電体との溶接強度は確保できるものの、充填式電極は三次元金属多孔体1枚分の断面積のみで集電するため、集電体との接触面積をそれ以上大きくすることが出来ず、溶接強度とは関係なく導電性の向上には限度がある。   However, although the method of Patent Document 1 can secure the welding strength between the electrode and the current collector, the filled electrode collects current only with a cross-sectional area of one three-dimensional metal porous body, so that it contacts with the current collector. The area cannot be increased any more, and there is a limit to improving the conductivity regardless of the welding strength.

本発明はこのような課題を解決するものであり、充填式電極の未充填部から集電体への導電性を高め、集電効率を向上させて大電流用途に適合させたアルカリ水素蓄電池を提供するものである。   The present invention solves such a problem, and an alkaline hydrogen storage battery adapted to high current use by increasing the conductivity from the unfilled portion of the filled electrode to the current collector and improving the current collection efficiency. It is to provide.

上記課題を踏まえ、本発明は、長辺の少なくとも一方に沿って活物質の存在しない未充填部を設けた帯状の正負極板を、セパレータを介して捲回し、平板状の集電体をその両端面に溶接してなる渦巻状電極群を備えたアルカリ蓄電池であって、正負極板のうち少なくとも一方は三次元金属多孔体を芯材とする充填式電極であり、この充填式電極の未充填部が渦巻状電極群の端面において互いに接するよう成型されており、集電体は充填式電極の端面に溶接される面には固定刃が備えられていることを特徴とするアルカリ蓄電池に関する。   Based on the above problems, the present invention winds a strip-like positive and negative electrode plate provided with an unfilled portion free of active material along at least one of the long sides through a separator, and a flat current collector is obtained. An alkaline storage battery having a spiral electrode group welded to both end faces, wherein at least one of the positive and negative electrode plates is a filled electrode having a three-dimensional metal porous body as a core material. The present invention relates to an alkaline storage battery characterized in that the filling portion is shaped so as to be in contact with each other at the end face of the spiral electrode group, and the current collector is provided with a fixed blade on the surface welded to the end face of the filling electrode.

充填式電極の未充填部を略直角状に折り曲げた場合は実質的に集電体の厚みが増し、多重に折り曲げた場合は未充填部自体の抵抗が減少し、何れの場合も充填式電極の未充填部
から集電体への導電性が向上するとともに未充填部自身が集電体と同様な機能が付加される。またこの未充填部が多孔体であるために集電体の固定刃が食い込み、溶接点数が確保できるので板状芯材を用いた場合と同等以上の溶接強度を得ることができる。この2つの効果の相乗により、大電流用途に好適な集電効率を得ることができるというものである。
When the unfilled portion of the filled electrode is bent at a substantially right angle, the thickness of the current collector is substantially increased, and when it is folded in multiple, the resistance of the unfilled portion itself is decreased. In either case, the filled electrode The conductivity from the unfilled portion to the current collector is improved, and the unfilled portion itself has the same function as the current collector. Further, since the unfilled portion is a porous body, the fixed blade of the current collector bites in and the number of welding points can be secured, so that a welding strength equal to or higher than that obtained when a plate-like core material is used can be obtained. The synergistic effect of these two effects makes it possible to obtain current collection efficiency suitable for large current applications.

本発明の集電構造を採ることにより、従来の課題であった充填式電極の未充填部から集電体への導電性が向上できることに加え、板状芯材と同等以上の溶接強度が得られるので、高い集電効率を有する高性能な大電流用ニッケル水素蓄電池を提供するものことができる。   By adopting the current collecting structure of the present invention, it is possible to improve the conductivity from the unfilled portion of the filled electrode to the current collector, which was a conventional problem, and to obtain a welding strength equal to or higher than that of the plate-like core material. Therefore, a high-performance high-current nickel-metal hydride storage battery having high current collection efficiency can be provided.

以下、本発明を実施するための最良の形態について、図を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1および図4は本発明のアルカリ蓄電池の部分断面構造図、図2および図5は正極の概略斜視図、図3および図6は極板群の断面構造図である。活物質充填部1と未充填部11あるいは12とからなる正極は三次元金属多孔体を芯材とする充填式電極であり、セパレータ4を介して負極3とともに捲回され、渦巻状電極群となる。この渦巻状電極群の端面において、正極の未充填部11あるいは12は互いに接しており、平板状の正極集電体5に溶接される。この正極集電体の充填式電極の端面に溶接される面には固定刃が備えられているが、詳細については後述する。この電極群は負極端子を兼ねるケース10に挿入される。   1 and 4 are partial cross-sectional structural views of the alkaline storage battery of the present invention, FIGS. 2 and 5 are schematic perspective views of the positive electrode, and FIGS. 3 and 6 are cross-sectional structural views of the electrode plate group. The positive electrode composed of the active material filled portion 1 and the unfilled portion 11 or 12 is a filled electrode having a three-dimensional metal porous body as a core material. The positive electrode is wound together with the negative electrode 3 via a separator 4 and has a spiral electrode group. Become. At the end face of the spiral electrode group, the unfilled portions 11 or 12 of the positive electrode are in contact with each other and are welded to the flat positive electrode current collector 5. The surface to be welded to the end face of the filling electrode of the positive electrode current collector is provided with a fixed blade, which will be described in detail later. This electrode group is inserted into a case 10 that also serves as a negative electrode terminal.

一方負極3は板状芯材を用いており、負極活物質の未充填部が負極集電体9に溶接される。正極集電体5はリード8を介して正極端子を兼ねる封口板7と電気的に接続され、負極集電体9はケース10と電気的に接続される。この後に電解液を注入し、封口板7とケース10とをかしめることにより、本発明のアルカリ蓄電池が構成される。   On the other hand, the negative electrode 3 uses a plate-shaped core material, and an unfilled portion of the negative electrode active material is welded to the negative electrode current collector 9. The positive electrode current collector 5 is electrically connected to a sealing plate 7 also serving as a positive electrode terminal via a lead 8, and the negative electrode current collector 9 is electrically connected to a case 10. Thereafter, an electrolytic solution is injected, and the sealing plate 7 and the case 10 are caulked to constitute the alkaline storage battery of the present invention.

ここで本発明に用いる三次元金属多孔体の多孔度(空隙部分の比率)は特に限定されないが活物質充填前で70〜98%程度、好ましくは94〜98%程度である。この場合の空隙部分の平均直径は、円形に換算して100〜300μmである。また材質がニッケルである場合、目付重量(単位面積辺りの金属重量)は200〜700g/m2である。 Here, the porosity (ratio of voids) of the three-dimensional metallic porous material used in the present invention is not particularly limited, but is about 70 to 98%, preferably about 94 to 98% before filling with the active material. In this case, the average diameter of the voids is 100 to 300 μm in terms of a circle. When the material is nickel, the weight per unit area (metal weight per unit area) is 200 to 700 g / m 2 .

また本発明に用いる三次元金属多孔体に充填される活物質は、公知の活物質がいずれも用いられ特に限定されないが、例えば正極の場合水酸化ニッケルが挙げられる。この活物質は特に限定されない限り、その粉末と適当な導電材や結着剤を混合してペースト状にされる。   The active material filled in the three-dimensional metal porous body used in the present invention is not particularly limited and any known active material is used. For example, in the case of a positive electrode, nickel hydroxide is used. Unless this active material is particularly limited, the powder is mixed with an appropriate conductive material or binder to form a paste.

さらに未充填部11あるいは12の作製法については特に限定されないが、最終的な電極の形状(帯状)における長辺の少なくとも一方に沿って、予め活物質が詰まらないように加圧圧縮するのが好ましい。この後で上記ペーストを三次元金属多孔体に充填し、乾燥後、極板を加圧プレスして所定の厚みとし、その後に所定寸法に切断して充填式電極を作製する。   Further, the manufacturing method of the unfilled portion 11 or 12 is not particularly limited. However, it is preferable to compress and compress in advance so as not to clog the active material along at least one of the long sides in the final electrode shape (band shape). preferable. Thereafter, the three-dimensional metal porous body is filled with the paste, and after drying, the electrode plate is press-pressed to a predetermined thickness, and then cut into a predetermined dimension to produce a filled electrode.

本発明の未充填部11あるいは12は、渦巻状電極群を構成した際に互いに接するように成型する。充填式電極の未充填部どうしが強固に密着することにより、未充填部から集電体への導電性が向上する。具体的には図1のように未充填部11を圧縮成型する場合と、図4のように未充填部12を略直角状に曲げる場合とに大別できる。未充填部11の場合は、未充填部11どうしの接触面積密度が増加することにより抵抗が減少する。未充填部12の場合は、実質的に正極集電体5の厚みが増すことになる。これら何れの場合も、
正極から正極集電体5への導電性が向上するので好ましい。
The unfilled portions 11 or 12 of the present invention are molded so as to contact each other when the spiral electrode group is formed. By firmly adhering the unfilled portions of the filled electrode, the conductivity from the unfilled portion to the current collector is improved. Specifically, it can be roughly divided into a case where the unfilled portion 11 is compression-molded as shown in FIG. 1 and a case where the unfilled portion 12 is bent at a substantially right angle as shown in FIG. In the case of the unfilled portions 11, the resistance decreases as the contact area density between the unfilled portions 11 increases. In the case of the unfilled portion 12, the thickness of the positive electrode current collector 5 is substantially increased. In any of these cases,
This is preferable because the conductivity from the positive electrode to the positive electrode current collector 5 is improved.

ここで正極集電体5を溶接する際の未充填部11あるいは12の厚みをA、正極の厚みをB、負極3の厚みをC、セパレータ4の厚みをDとしたとき、(B+C+2D)≦A≦1.2×(B+C+2D)の関係を満たすことが、隣接する未充填部11あるいは12どうしを強固に密着させる観点から好ましい。A<(B+C+2D)の場合は隣接する未充填部11あるいは12どうしの密着性が低下し、本発明の効果が現れにくい。またA>1.2×(B+C+2D)の場合、未充填部11あるいは12どうしを密着させる際の斥力が過剰となり、電極群が変形しやすくなる。   Here, when the thickness of the unfilled portion 11 or 12 when welding the positive electrode current collector 5 is A, the thickness of the positive electrode is B, the thickness of the negative electrode 3 is C, and the thickness of the separator 4 is D, (B + C + 2D) ≦ It is preferable to satisfy the relationship of A ≦ 1.2 × (B + C + 2D) from the viewpoint of firmly adhering adjacent unfilled portions 11 or 12 to each other. In the case of A <(B + C + 2D), the adhesion between adjacent unfilled portions 11 or 12 is lowered, and the effect of the present invention is hardly exhibited. In the case of A> 1.2 × (B + C + 2D), the repulsive force when the unfilled portions 11 or 12 are brought into close contact with each other becomes excessive, and the electrode group is easily deformed.

図10は極板群の構成と固定刃付き集電体の概略斜視図である。本発明の集電体(図1〜6中の正極集電体5)には固定刃14が設けられている必要がある。具体的には図10に示すような形状以外でも、多孔体である未充填部11あるいは12に食い込むことが可能な形状であればよく、両者の接触面積が増すことにより、高い導電性を得ることができる。   FIG. 10 is a schematic perspective view of a configuration of the electrode plate group and a current collector with a fixed blade. The current collector of the present invention (the positive electrode current collector 5 in FIGS. 1 to 6) needs to be provided with a fixed blade 14. Specifically, in addition to the shape shown in FIG. 10, any shape that can bite into the unfilled portion 11 or 12, which is a porous body, may be used, and high conductivity can be obtained by increasing the contact area between the two. be able to.

なおここまでは正極のみを充填式電極として説明したが、負極のみが充填式電極の場合、あるいは正負極ともに充填式電極の場合も、本発明の効果が同等に現出することは言うまでもない。さらに正極集電体5は固定刃14さえ備えていればよいので、上述した円板状(円筒形電池用)のほか矩形状(角形電池用)であってもよい。   In the above description, only the positive electrode has been described as a filling electrode. However, it goes without saying that the effects of the present invention are equally exhibited when only the negative electrode is a filling electrode or when both the positive and negative electrodes are filling electrodes. Furthermore, since the positive electrode current collector 5 only needs to have the fixed blade 14, it may have a rectangular shape (for a square battery) in addition to the disk shape (for a cylindrical battery) described above.

以下、本発明を渦巻状電極群で構成する円筒型ニッケル水素蓄電池を例にとり、図面とともに説明する。   Hereinafter, a cylindrical nickel-metal hydride storage battery comprising the spiral electrode group as an example will be described with reference to the drawings.

(電池A1)
厚みが0.4mm、幅54mm、長さ1000mm、ニッケル目付重量が450g/mである発泡式ニッケル基板に、活物質として球状水酸化ニッケル粉末(平均粒子径10〜20μm)100重量部と、水酸化コバルト粉末(平均粒子径0.2μm)10重量部と酸化亜鉛粉末(平均粒子径0.2μm)2重量部とを混練してペースト状にしたものを、未充填部となる部分(幅4mm)に活物質が詰まらないように充填し乾燥した。乾燥した後、充填部が0.27mmの厚みになるようにロールプレス機で加圧成形した。その後、図2のように未充填部を加圧成型加工し、活物質充填部よりも未充填部が厚くなるように(平均厚み0.79mm)した。この正極にと公知の水素吸蔵合金を活物質とした塗着式負極(厚み0.19mm)3を、それぞれの未充填部が上方または下方に突出するように位置をずらして、親水化処理をしたポリプロピレン製セパレータ(厚み0.1mm)を介して捲回し、電極群を構成した。
(Battery A1)
A foamed nickel substrate having a thickness of 0.4 mm, a width of 54 mm, a length of 1000 mm, and a nickel basis weight of 450 g / m 2 , 100 parts by weight of a spherical nickel hydroxide powder (average particle diameter of 10 to 20 μm) as an active material, A portion (width) which becomes a non-filled portion by kneading 10 parts by weight of cobalt hydroxide powder (average particle diameter 0.2 μm) and 2 parts by weight of zinc oxide powder (average particle diameter 0.2 μm) into a paste form 4 mm) was filled and dried so as not to clog the active material. After drying, it was pressure-formed with a roll press so that the filling portion had a thickness of 0.27 mm. Thereafter, the unfilled portion was pressure-molded as shown in FIG. 2 so that the unfilled portion was thicker than the active material filled portion (average thickness 0.79 mm). The coating type negative electrode (thickness 0.19 mm) 3 using a known hydrogen storage alloy as an active material is shifted on the positive electrode so that each unfilled portion protrudes upward or downward, and is subjected to a hydrophilic treatment. The electrode group was configured by winding through a polypropylene separator (thickness: 0.1 mm).

次に、正負極板の各無地部に、その上方から平坦な円板状の集電体を電気抵抗溶接した。ここで正極の集電体は図10に示す固定刃を装備したものを用いた。   Next, a flat disk-shaped current collector was electrically resistance-welded from above to each plain part of the positive and negative electrode plates. Here, a positive electrode current collector equipped with a fixed blade shown in FIG. 10 was used.

ここで各部位の厚みは、正極未充填部A=0.79、正極充填部B=0.27、負極C=0.19、セパレータD=0.1であるので、その関係は(式1)のとおりであった。0.79=1.2×(0.27+0.19+2×0.1)・・・(式1)
前記電極群をケースに挿入した後、負極集電体をケースの内底部と抵抗溶接し、正極集電体と封口板とをリードを用いて電気的に接続し、アルカリ電解液を注液して安全弁を備えた封口板で密閉し、容量6.5Ahの円筒型ニッケル水素蓄電池を構成した。これを電池A1とする。
Here, the thicknesses of the respective portions are the positive electrode unfilled portion A = 0.79, the positive electrode filled portion B = 0.27, the negative electrode C = 0.19, and the separator D = 0.1. ). 0.79 = 1.2 × (0.27 + 0.19 + 2 × 0.1) (Formula 1)
After inserting the electrode group into the case, the negative electrode current collector is resistance-welded to the inner bottom of the case, the positive electrode current collector and the sealing plate are electrically connected using a lead, and an alkaline electrolyte is injected. A cylindrical nickel-metal hydride storage battery with a capacity of 6.5 Ah was formed by sealing with a sealing plate equipped with a safety valve. This is designated as battery A1.

(電池B1)
正極集電体の形状を固定刃のない図11のようにした以外は電池A1のように構成したものを、電池B1とする。
(Battery B1)
A battery B1 is configured as the battery A1 except that the shape of the positive electrode current collector is as shown in FIG. 11 without a fixed blade.

(電池A0、A2〜4、B0、B2〜4)
未充填部となる部分の幅を5mm、3.5mm、3.0mm、2.5mmとし、これを多重に折り返し、未充填部の平均厚みをそれぞれ0.92mm、0.73mm、0.66mm、0.59mmとした以外は、電池A1およびB1と同様の充填式正極を作製した。
(Batteries A0, A2-4, B0, B2-4)
The width of the unfilled portion is 5 mm, 3.5 mm, 3.0 mm, 2.5 mm, and this is folded back multiple times, and the average thickness of the unfilled portion is 0.92 mm, 0.73 mm, 0.66 mm, A filled positive electrode similar to the batteries A1 and B1 was prepared except that the thickness was 0.59 mm.

ここで正極未充填部を除く各部位の厚みは、未正極充填部B=0.27、負極C=0.19、セパレータD=0.1である。よって正極未充填部A=0.92の場合、各部位の厚みの関係は(式2)のとおりであった。
0.92=1.4×(0.27+0.19+2×0.1)・・・(式2)
正極未充填部A=0.73の場合、各部位の厚みの関係は(式3)のとおりであった。0.73=1.1×(0.27+0.19+2×0.1)・・・(式3)
正極未充填部A=0.66の場合、各部位の厚みの関係は(式4)のとおりであった。0.66=1.0×(0.27+0.19+2×0.1)・・・(式4)
正極未充填部A=0.59の場合、各部位の厚みの関係は(式5)のとおりであった。
0.59=0.9×(0.27+0.19+2×0.1)・・・(式5)
これらの電極群に対し、図10に示す固定刃のついた正極集電体を溶接した以外は電池A1と同様に構成したものを、それぞれ電池A0(A=0.92)、A2(A=0.73)、A3(A=0.66)、A4(A=0.59)とする。
Here, the thickness of each part excluding the positive electrode unfilled portion is an unpositive electrode filled portion B = 0.27, a negative electrode C = 0.19, and a separator D = 0.1. Therefore, when the positive electrode unfilled portion A = 0.92, the relationship between the thicknesses of the respective portions was as shown in (Formula 2).
0.92 = 1.4 × (0.27 + 0.19 + 2 × 0.1) (Formula 2)
In the case where the positive electrode unfilled portion A = 0.73, the relationship between the thicknesses of the respective portions was as shown in (Formula 3). 0.73 = 1.1 × (0.27 + 0.19 + 2 × 0.1) (Formula 3)
In the case where the positive electrode unfilled portion A = 0.66, the relationship between the thicknesses of the respective portions was as shown in (Formula 4). 0.66 = 1.0 × (0.27 + 0.19 + 2 × 0.1) (Formula 4)
When the positive electrode unfilled portion A = 0.59, the relationship between the thicknesses of the respective portions was as shown in (Formula 5).
0.59 = 0.9 × (0.27 + 0.19 + 2 × 0.1) (Formula 5)
A battery A1 (A = 0.92) and A2 (A = A = A2) are constructed in the same manner as the battery A1 except that a positive electrode current collector with a fixed blade shown in FIG. 10 is welded to these electrode groups. 0.73), A3 (A = 0.66), and A4 (A = 0.59).

またこれらの電極群に対し、固定刃のない正極集電体(図11参照)を溶接した以外は電池B1と同様に構成したものを、それぞれ電池B0(A=0.92)、B2(A=0.73)、B3(A=0.66)、B4(A=0.59)とする。   Also, batteries B0 (A = 0.92) and B2 (A, respectively) having the same configuration as the battery B1 except that a positive electrode current collector without a fixed blade (see FIG. 11) was welded to these electrode groups. = 0.73), B3 (A = 0.66), and B4 (A = 0.59).

ただし、電池A0、B0は極板群を捲回した際に未充填部の径が大きくなりすぎて、ケース挿入時に電極群が変形する不良が多発した。   However, in the batteries A0 and B0, when the electrode plate group was wound, the diameter of the unfilled portion was too large, and the electrode group deformed frequently when the case was inserted.

(電池R1、R2)
図7〜9に示すように、正極未充填部13が多重に折り重ねることなく単に圧縮成型されていること以外は、電池A1と同様に構成したものを電池R1、電池B1と同様に構成したものを電池R2とする。
(Batteries R1, R2)
As shown in FIGS. 7 to 9, the positive electrode unfilled portion 13 is configured in the same manner as the battery R1 and the battery B1 except that the positive electrode unfilled portion 13 is simply compression molded without being folded repeatedly. This is battery R2.

以上のように構成された各電池について、20℃650mAで16時間充電後、1300mAで放電し、公称容量を確認した。いずれの電池とも容量は6500mAhであった。次に電池の動的抵抗を測定するため、電池公称容量の50%にあたる20℃2Aで3時間25分充電した。充電後1時間静置し電圧を測定した所1.36Vであった。これら各電池を15A、30A、60Aでそれぞれ10秒間放電しその時の電圧を測定した。10秒間の放電と放電の間は5秒間とした。   About each battery comprised as mentioned above, after charging at 20 degreeC 650mA for 16 hours, it discharged at 1300mA and confirmed nominal capacity. Both batteries had a capacity of 6500 mAh. Next, in order to measure the dynamic resistance of the battery, the battery was charged for 3 hours and 25 minutes at 20 ° C. and 2 A corresponding to 50% of the battery nominal capacity. It was 1.36V when it left still for 1 hour after charge and the voltage was measured. Each of these batteries was discharged at 15A, 30A, and 60A for 10 seconds, and the voltage at that time was measured. The duration between discharges for 10 seconds was 5 seconds.

この電池の動的抵抗をオームの法則(IR=E)より求めた。ここでIは電流(A)、Rは動的抵抗(一般的にはDC抵抗と呼ばれている)、Eは充電状態で静置している時の開回路電圧と10秒後の閉回路電圧の差であり、電流を流した時に電圧降下が小さければ小さいほどDC抵抗が小さく、高出力化が達成されていることになる。計算結果を表1に示す。   The dynamic resistance of this battery was determined from Ohm's law (IR = E). Here, I is current (A), R is dynamic resistance (generally called DC resistance), E is an open circuit voltage when standing in a charged state, and a closed circuit after 10 seconds. This is the difference in voltage, and the smaller the voltage drop when a current is passed, the smaller the DC resistance and the higher the output. The calculation results are shown in Table 1.

未充填部どうしが互いに接するように成型されていない電池R1〜R2およびA4や、正極集電体に固定刃を設けていない電池B0〜B4と比較し、本発明の各電池(A0〜A3)においては、未充填部が渦巻状電極群の端面において互いに接しており、その箇所に正極集電体の固定刃が食い込んでいるため、極板の集電性と導電性が各段に向上し、その結果DC抵抗が20%近く低減することが可能となり、高率放電特性が飛躍的に向上した。 Each battery of the present invention (A0 to A3) as compared with batteries R1 to R2 and A4 that are not molded so that the unfilled portions are in contact with each other, and batteries B0 to B4 that are not provided with a fixed blade on the positive electrode current collector In this case, the unfilled parts are in contact with each other at the end face of the spiral electrode group, and the fixed blade of the positive electrode current collector bites into that part, so that the current collection and conductivity of the electrode plate are improved in each stage. As a result, the DC resistance can be reduced by nearly 20%, and the high-rate discharge characteristics are dramatically improved.

図2のように未充填部を加圧成型加工した以外は、各部位の厚みを含め、電池A0〜A4と同様に構成したものを電池X0〜X4、電池B0〜B4と同様に構成したものを電池Y0〜Y4とする。ただし、電池X0、Y0は極板群を捲回した際に未充填部が上下に折れ曲がり群端面の凹凸が顕著化し、集電体を溶接する際のスパーク不良が多発した。   What was comprised similarly to battery A0-A4 and battery B0-B4 including the thickness of each site | part except having pressure-molded the unfilled part like FIG. Are batteries Y0 to Y4. However, in the batteries X0 and Y0, when the electrode plate group was wound, the unfilled portion was bent up and down, and the unevenness of the end face of the group became conspicuous, and spark failure occurred frequently when welding the current collector.

以上のように構成された各電池について、実施例1と同様の評価と計算を行った。その結果を表2に示す。   About each battery comprised as mentioned above, the same evaluation and calculation as Example 1 were performed. The results are shown in Table 2.

実施例1と同様、未充填部どうしが互いに接するように成型されていない電池R1〜R2およびX4や、正極集電体に固定刃を設けていない電池Y0〜Y4と比較し、本発明の各電池(X0〜X3)においては、未充填部が渦巻状電極群の端面において互いに接しており、その箇所に正極集電体の固定刃が食い込んでいるため、極板の集電性と導電性が各段に向上し、その結果DC抵抗が20%近く低減することが可能となり、高率放電特性が飛躍的に向上した。 As in Example 1, the batteries R1 to R2 and X4 that are not molded so that the unfilled portions are in contact with each other, and the batteries Y0 to Y4 that do not have a fixed blade on the positive electrode current collector, In the batteries (X0 to X3), the unfilled portions are in contact with each other at the end face of the spiral electrode group, and the fixed blade of the positive electrode current collector bites into the portion, so that the current collecting property and conductivity of the electrode plate As a result, the DC resistance can be reduced by nearly 20%, and the high-rate discharge characteristics are dramatically improved.

本発明によれば、DC抵抗を下げることができるので、大電流充放電が必要な、電動工具、電動車両、ハイブリッド自動車や瞬時に大電流放電が必要なバックアップ電源等の電池として適用することができる。   According to the present invention, since the DC resistance can be lowered, it can be applied as a battery such as an electric tool, an electric vehicle, a hybrid vehicle, or a backup power source that requires a large current discharge instantaneously, which requires a large current charge / discharge. it can.

本発明の実施例におけるアルカリ蓄電池の構成を示す部分断面構造図The partial cross section figure which shows the structure of the alkaline storage battery in the Example of this invention 本発明の実施例における未充填部成形後の正極板を示す概略斜視図The schematic perspective view which shows the positive electrode plate after the unfilling part shaping | molding in the Example of this invention. 本発明の実施例における極板群の構成を示す断面構造図Sectional structure diagram showing the configuration of the electrode plate group in the embodiment of the present invention 本発明の実施例におけるアルカリ蓄電池の構成を示す部分断面構造図The partial cross section figure which shows the structure of the alkaline storage battery in the Example of this invention 本発明の実施例における未充填部成形後の正極板を示す概略斜視図The schematic perspective view which shows the positive electrode plate after the unfilling part shaping | molding in the Example of this invention. 本発明の実施例における極板群の構成を示す断面構造図Sectional structure diagram showing the configuration of the electrode plate group in the embodiment of the present invention 従来例におけるアルカリ蓄電池の構成を示す部分断面構造図Partial cross-sectional structure diagram showing the configuration of an alkaline storage battery in a conventional example 従来例における未充填部成形後の正極板を示す概略斜視図Schematic perspective view showing the positive electrode plate after forming the unfilled portion in the conventional example 従来例における極板群の構成を示す断面構造図Cross-sectional structure diagram showing configuration of electrode plate group in conventional example (a)本発明の実施例における極板群の構成と固定刃付き集電体の溶接前概略斜視図(b)同溶接後概略斜視図(A) Schematic perspective view before welding of configuration of electrode plate group and current collector with fixed blade in embodiment of the present invention (b) Schematic perspective view after welding (a)従来例における極板群の構成と集電体の溶接前概略斜視図(b)同溶接後概略斜視図(A) Structure of electrode plate group in conventional example and schematic perspective view before current collector welding (b) schematic perspective view after welding

符号の説明Explanation of symbols

1 正極活物質充填部
2 ケース
3 負極
4 セパレータ
5 正極集電体
7 封口板
8 リード
9 負極集電体
11、12,13 未充填部
14 固定刃

DESCRIPTION OF SYMBOLS 1 Positive electrode active material filling part 2 Case 3 Negative electrode 4 Separator 5 Positive electrode collector 7 Sealing plate 8 Lead 9 Negative electrode collector 11, 12, 13 Unfilled part 14 Fixed blade

Claims (2)

長辺の少なくとも一方に沿って活物質が存在しない未充填部を設けた帯状の正負極を、セパレータを介して捲回し、平板状の集電体をその両端面に溶接してなる渦巻状電極群を備えたアルカリ蓄電池であって、
前記正負極板のうち少なくとも一方は、三次元金属多孔体を芯材とする充填式電極であり、
前記充填式電極の未充填部は前記渦巻状電極群の端面において、互いに接するように成型されており、
前記集電体は前記充填式電極の端面に溶接される面には固定刃が備えられていることを特徴とするアルカリ蓄電池。
A spiral electrode formed by winding a strip-like positive and negative electrode provided with an unfilled portion where no active material exists along at least one of the long sides through a separator, and welding a flat plate current collector to both end faces thereof An alkaline storage battery comprising a group,
At least one of the positive and negative electrode plates is a filled electrode having a three-dimensional metal porous body as a core material,
The unfilled portion of the filled electrode is molded so as to be in contact with each other at the end face of the spiral electrode group,
The alkaline storage battery, wherein the current collector is provided with a fixed blade on a surface welded to an end surface of the filling electrode.
前記充填式電極成型後の未充填部の厚みをA、前記充填式電極充填部の厚みをB、他方の電極の厚みをC、前記セパレータの厚みをDとしたとき、(B+C+2D)≦A≦1.2×(B+C+2D)の関係を満たすことを特徴とする請求項1記載のアルカリ蓄電池。

When the thickness of the unfilled part after the filling electrode molding is A, the thickness of the filling electrode filling part is B, the thickness of the other electrode is C, and the thickness of the separator is D, (B + C + 2D) ≦ A ≦ The alkaline storage battery according to claim 1, wherein a relationship of 1.2 × (B + C + 2D) is satisfied.

JP2004324814A 2004-11-09 2004-11-09 Alkaline storage battery Pending JP2006134795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324814A JP2006134795A (en) 2004-11-09 2004-11-09 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324814A JP2006134795A (en) 2004-11-09 2004-11-09 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2006134795A true JP2006134795A (en) 2006-05-25

Family

ID=36728129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324814A Pending JP2006134795A (en) 2004-11-09 2004-11-09 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2006134795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014493A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Battery
US10885414B2 (en) 2008-06-10 2021-01-05 Varcode Ltd. Barcoded indicators for quality management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112468U (en) * 1983-01-19 1984-07-30 日本電池株式会社 Storage battery with spiral plate group
JP2000323117A (en) * 1999-05-14 2000-11-24 Sanyo Electric Co Ltd Cylindrical storage battery
JP2002015722A (en) * 2000-06-30 2002-01-18 Yuasa Corp Alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112468U (en) * 1983-01-19 1984-07-30 日本電池株式会社 Storage battery with spiral plate group
JP2000323117A (en) * 1999-05-14 2000-11-24 Sanyo Electric Co Ltd Cylindrical storage battery
JP2002015722A (en) * 2000-06-30 2002-01-18 Yuasa Corp Alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10885414B2 (en) 2008-06-10 2021-01-05 Varcode Ltd. Barcoded indicators for quality management
JP2011014493A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Battery

Similar Documents

Publication Publication Date Title
JP3943822B2 (en) Battery spiral electrode group and battery
JP2007537573A (en) Embedded electrode structure that balances energy, power and cost in alkaline batteries
JP5308806B2 (en) Manufacturing method of nickel metal hydride storage battery
EP0595757A1 (en) A nickel-hydride battery used in battery-operated vehicles
JP4429569B2 (en) Nickel metal hydride storage battery
US5744263A (en) Alkaline storage batteries and nickel electrodes having plurality of substrates
JP4617105B2 (en) Coin-type all-solid-state battery
JP2006134795A (en) Alkaline storage battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
JP3749024B2 (en) battery
JPH1186898A (en) Alkaline storage battery
JP5092277B2 (en) Secondary battery electrode and manufacturing method thereof
JP2002343417A (en) Alkaline storage battery
JP3424482B2 (en) Alkaline storage battery
JP3831535B2 (en) Secondary battery
KR100816817B1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JP2009187692A (en) Electrode for secondary battery, and secondary battery
JP2004303678A (en) Energy storage element and combined energy storage element
JPH07335246A (en) Cell and manufacture thereof
JP2009170284A (en) Secondary battery
JP3738864B2 (en) Nickel electrode for alkaline storage battery
JP5093275B2 (en) Method for manufacturing electrode for secondary battery
JP4626130B2 (en) Nickel-hydrogen storage battery
US20070117022A1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JP3952489B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921