JPH04123757A - Preparation of nickel electrode - Google Patents

Preparation of nickel electrode

Info

Publication number
JPH04123757A
JPH04123757A JP2244245A JP24424590A JPH04123757A JP H04123757 A JPH04123757 A JP H04123757A JP 2244245 A JP2244245 A JP 2244245A JP 24424590 A JP24424590 A JP 24424590A JP H04123757 A JPH04123757 A JP H04123757A
Authority
JP
Japan
Prior art keywords
terminal
nickel
welding
electrode
chamfered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244245A
Other languages
Japanese (ja)
Inventor
Yasushi Harada
原田 寧
Masuhiro Onishi
益弘 大西
Noboru Miyake
登 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2244245A priority Critical patent/JPH04123757A/en
Publication of JPH04123757A publication Critical patent/JPH04123757A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To obtain electrodes with excellent productivity and reliability by ultrasonic-welding terminals using a chamfered supersonic wave hone having a prescribed surface area. CONSTITUTION:A terminal 2 of a nickel plate is put on a nickel electrode 3 of an alkali-resistant porous body 3 and they are press-welded each other by ultrasonic-welding while pressure is applied by a supersonic wave honel. The shape of the hone has enough surface area to cover the terminal and all of the part being contact with the substrate is chamfered and has the chamfered parts 4 and thus a good nickel electrode consisting of the porous body 3 having the R-parts 5 and the terminal 2 buried in the porous body 3 flatly is prepared with high productivity and reliability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用ペースト式ニッケル電極の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing paste-type nickel electrodes for alkaline storage batteries.

従来技術とその問題点 アルカリ蓄電池に用いる電極は従来焼結式電極が主流で
あった。しかし近年コスト低減と高エネルギー密度化を
図る目的で金属繊維焼結体、発泡ニッケル等の耐アルカ
リ性金属多孔体にペースト状の活物質を直接充填する非
焼結式電極が検討されている。この種の非焼結式電極は
、基体が集電機能、活物質保持機能及び極板形状保持機
能を有しているため、焼結式電極では不可決の穿孔鋼板
等の芯体を必要としない。
Conventional technology and its problems Conventionally, sintered electrodes have been the mainstream for electrodes used in alkaline storage batteries. However, in recent years, in order to reduce costs and increase energy density, non-sintered electrodes have been studied in which a paste-like active material is directly filled into an alkali-resistant metal porous body such as a metal fiber sintered body or foamed nickel. This type of non-sintered electrode has a base that has a current collection function, an active material retention function, and an electrode plate shape retention function, so it does not require a core such as a perforated steel plate that is not available in sintered electrodes. do not.

ところで、焼結式電極では芯体の一部を電池端子へ接続
する端子として利用することができる。しかし、前記非
焼結式電極においては芯体を有しないので、別途端子を
取付ける必要があり、この取付が困難である。基体が9
0%以上の高多孔度のものであるため端子の溶接が難し
く機械的強度、電導度が低くなるという問題点がある。
By the way, in a sintered electrode, a part of the core can be used as a terminal for connecting to a battery terminal. However, since the non-sintered electrode does not have a core, it is necessary to separately attach a terminal, which is difficult to attach. The base is 9
Since it has a high porosity of 0% or more, it is difficult to weld the terminals and has a problem of low mechanical strength and low electrical conductivity.

尚、端子の取付は方法としては活物質充填前に端子とな
る金属板をスポット溶接する方法、予め端子溶接部をプ
レスして多孔度を下げ活物質が充填されないようにして
おき、一連の充填等の工程終了後、端子溶接部の表面に
付着した活物質を除去し、端子をスポット溶接する方法
がある。
The terminals can be installed by spot welding the metal plate that will become the terminal before filling the active material, or by pressing the terminal welding area in advance to reduce the porosity and prevent the active material from filling. After completing these steps, there is a method of removing the active material attached to the surface of the terminal welding part and spot welding the terminal.

しかし前者は活物質充填以鋒の生産性を著しく低下させ
るという問題点があり、又後者は工程的に複雑であるう
え、生産性が悪く、活物質の除去が不十分になりやすく
溶接の信顧性が低下するという問題点がある。
However, the former method has the problem of significantly reducing the productivity of filling the active material, and the latter method is complicated, has poor productivity, and tends to result in insufficient removal of the active material, resulting in unreliable welding. There is a problem that customer loyalty is reduced.

このような点を改良するため耐アルカリ性金属多孔体へ
の端子溶接方法として超音波により溶接する方法が提案
されている。この方法によれば溶接強度の高い端子付電
極が得られる。
In order to improve these points, an ultrasonic welding method has been proposed as a terminal welding method to an alkali-resistant metal porous body. According to this method, an electrode with a terminal having high welding strength can be obtained.

しかしながらこの超音波による溶接法においても問題が
ないわけではない、つまり超音波溶接時、溶接ホーンに
より端子がかなりの力で加圧されることから端子のエツ
ジ部がはね上り(第4図)、電極体構成時にはね上った
エツジ部がセパレータを突破り内部短絡を引きおこすと
いう問題があった。
However, this ultrasonic welding method is not without its problems. During ultrasonic welding, the terminal is pressurized with considerable force by the welding horn, causing the edge of the terminal to spring up (Figure 4). However, when constructing the electrode body, there was a problem in that the raised edge part broke through the separator and caused an internal short circuit.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
生産性及び信頼性に優れたニッケル電極を提供すること
を目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The purpose is to provide a nickel electrode with excellent productivity and reliability.

発明の構成 本発明は上記目的を達成するべく、 耐アルカリ性金属多孔体中に活物質を充填させた後、電
極表面部の活物質を一部除去して端子を超音波溶接によ
り取付けるニッケル電極の製造法において、超音波溶接
ホーンの形状が端子を覆うのに十分な面積を持ち、且つ
該ホーンが面取りされたものを用いたことを特徴とする
ニッケル電極の製造法である。
Structure of the Invention In order to achieve the above object, the present invention provides a nickel electrode in which an alkali-resistant metal porous body is filled with an active material, a part of the active material on the electrode surface is removed, and a terminal is attached by ultrasonic welding. This method of manufacturing a nickel electrode is characterized in that the shape of the ultrasonic welding horn has a sufficient area to cover the terminal, and the horn is chamfered.

実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, the details of the present invention will be explained using one example.

第1図は本発明の製造法による端子溶接時の概略図、第
2図は本発明の製造法により得た電極の要部拡大断面図
、第3図は従来の製造法による端子溶接時の概略図、第
4図は従来の製造法により得た電極の要部拡大断面図で
ある。
Fig. 1 is a schematic diagram of terminal welding by the manufacturing method of the present invention, Fig. 2 is an enlarged sectional view of the main part of the electrode obtained by the manufacturing method of the present invention, and Fig. 3 is a schematic diagram of terminal welding by the conventional manufacturing method. The schematic diagram and FIG. 4 are enlarged cross-sectional views of essential parts of an electrode obtained by a conventional manufacturing method.

ここで1は超音波ホーン、2は端子、3は耐アルカリ性
金属多孔体、4はホーンの面取り部、5はアール部、6
はエツジ部のはね上がり部である。
Here, 1 is an ultrasonic horn, 2 is a terminal, 3 is an alkali-resistant metal porous body, 4 is a chamfered part of the horn, 5 is a rounded part, and 6
is the raised part of the edge part.

球状の高密度粉末の水酸化ニッケルである15〜30人
の細孔半径を有し、その空孔容積が0.05d/g以下
テ且つ比表面積が15〜30rrf/gの粉末を用い、
1%のカルボキシメチルセルロースを溶解した水溶液を
加えて、ペースト状ニッケル活物質を調製した。この活
物質をニッケル繊維を焼結したニッケル繊維基板に充填
した。
Using a spherical high-density powder of nickel hydroxide having a pore radius of 15 to 30 people, a pore volume of 0.05 d/g or less, and a specific surface area of 15 to 30 rrf/g,
A paste-like nickel active material was prepared by adding an aqueous solution in which 1% carboxymethyl cellulose was dissolved. This active material was filled into a nickel fiber substrate made of sintered nickel fibers.

この充填電極を乾燥した後、プレス成形しニッケル電極
とした。この電極の端子形成予定部に水をシャワー状に
かけて湿潤させた。湿潤された活物質部をブラッシング
により除去した。
After drying this filled electrode, it was press-molded into a nickel electrode. A shower of water was applied to the portion of the electrode where the terminal was to be formed to moisten it. The wetted active material portion was removed by brushing.

この時、基板表面部の活物質だけを除去し、内部の活物
質は残った状態とした。
At this time, only the active material on the surface of the substrate was removed, and the active material inside remained.

次にニッケル板よりなる端子をのせて、超音波ホーンで
加圧しながら超音波溶接により加圧カフ5kgf以下で
印加時間0.2秒で溶接した。
Next, a terminal made of a nickel plate was placed and welded by ultrasonic welding while applying pressure with an ultrasonic horn at a pressure cuff of 5 kgf or less for an application time of 0.2 seconds.

この時、第1図に示した如く超音波ホーンの形状は、端
子を覆うのに十分な面積であり、該ホーンと基板と接触
する部分のすべてが面取りされているものを用いた。こ
れによって、第2図に示した如き溶接端子が得られた。
At this time, as shown in FIG. 1, the shape of the ultrasonic horn was such that the area was sufficient to cover the terminals, and all of the portions where the horn came into contact with the substrate were chamfered. As a result, a welding terminal as shown in FIG. 2 was obtained.

比較のために、第3図に示した超音波ホーンの面積が端
子面積より小さく、面取りされていないものを用いた従
来法により第4図のニッケル電極を作製した。
For comparison, the nickel electrode shown in FIG. 4 was fabricated by a conventional method using the ultrasonic horn shown in FIG. 3, which had a smaller area than the terminal area and was not chamfered.

上記各々のニッケル電極とペースト式カドミウム極板を
用いて、密閉形ニッケルカドミウム蓄電池を構成した。
A sealed nickel-cadmium storage battery was constructed using each of the above nickel electrodes and paste-type cadmium electrode plates.

本発明によるニッケル電極を用いた電池と従来法のニッ
ケル電極を用いた電池を充放電試験、振動試験、衝撃試
験を行なった。
Charge/discharge tests, vibration tests, and impact tests were conducted on batteries using nickel electrodes according to the present invention and batteries using conventional nickel electrodes.

本発明による電池では、内部短絡が全く生じなっかたの
に対して、従来法による電池では、不良率6%で内部短
絡を生じた。
In the battery according to the present invention, no internal short circuit occurred, whereas in the conventional battery, internal short circuit occurred at a failure rate of 6%.

又、本発明では、超音波ホーンによる溶接時の加圧で溶
接部分が平滑であるものが得られるが、従来法では、溶
接後に端子のエツジ部のはね上がりを再度、プレスによ
って押える必要があり本発明に比べて余分な工程を要す
るが、本発明では、その必要が無く、生産性に優れる。
In addition, in the present invention, a smooth welded part can be obtained by applying pressure during welding with an ultrasonic horn, but in the conventional method, it is necessary to press again to prevent the edges of the terminal from springing up after welding. Although extra steps are required compared to the invention, the present invention does not require such steps and is superior in productivity.

発明の効果 上述した如く、本発明は生産性及び信顛性に優れたニッ
ケル電極を提供することが出来るので、その工業的価値
は極めて大である。
Effects of the Invention As described above, the present invention can provide a nickel electrode with excellent productivity and reliability, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法による端子溶接時の概略図、第
2図は本発明の製造法により得た電極の要部拡大断面図
、第3図は従来の製造法による端子溶接時の概略図、第
4図は従来の製造法により得た電極の要部拡大断面図で
ある。 1・・・超音波ホーン      2・・・端子3・・
・耐アルカリ性金属多孔体 4・・・面取り部      5・・・アール部6・・
・エツジ部のはね上がり部
Fig. 1 is a schematic diagram of terminal welding by the manufacturing method of the present invention, Fig. 2 is an enlarged sectional view of the main part of the electrode obtained by the manufacturing method of the present invention, and Fig. 3 is a schematic diagram of terminal welding by the conventional manufacturing method. The schematic diagram and FIG. 4 are enlarged cross-sectional views of essential parts of an electrode obtained by a conventional manufacturing method. 1... Ultrasonic horn 2... Terminal 3...
・Alkali-resistant metal porous body 4... Chamfered part 5... Rounded part 6...
・Spring part of edge part

Claims (1)

【特許請求の範囲】[Claims]  耐アルカリ性金属多孔体中に活物質を充填させた後、
電極表面部の活物質を一部除去して端子を超音波溶接に
より取付けるニッケル電極の製造法において、超音波溶
接ホーンの形状が端子を覆うのに十分な面積を持ち、且
該ホーンが面取りされたものを用いたことを特徴とする
ニッケル電極の製造法。
After filling the active material into the alkali-resistant metal porous material,
In a method for manufacturing nickel electrodes in which a part of the active material on the electrode surface is removed and a terminal is attached by ultrasonic welding, the shape of the ultrasonic welding horn has a sufficient area to cover the terminal, and the horn is chamfered. A method for producing a nickel electrode characterized by using a nickel electrode.
JP2244245A 1990-09-14 1990-09-14 Preparation of nickel electrode Pending JPH04123757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244245A JPH04123757A (en) 1990-09-14 1990-09-14 Preparation of nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244245A JPH04123757A (en) 1990-09-14 1990-09-14 Preparation of nickel electrode

Publications (1)

Publication Number Publication Date
JPH04123757A true JPH04123757A (en) 1992-04-23

Family

ID=17115892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244245A Pending JPH04123757A (en) 1990-09-14 1990-09-14 Preparation of nickel electrode

Country Status (1)

Country Link
JP (1) JPH04123757A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6397140B2 (en) 1995-05-25 2002-05-28 Hitachi, Ltd. Method and apparatus for controller power train of motor vehicle
JP2003282044A (en) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd Secondary battery
KR100396488B1 (en) * 1996-05-15 2003-11-17 삼성에스디아이 주식회사 Joining method of lead terminal of lithium ion battery
JP2008027831A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Battery
US20110183197A1 (en) * 2010-01-26 2011-07-28 Sangwon Byun Rechargeable battery
CN105103337A (en) * 2013-07-05 2015-11-25 Lg化学株式会社 Battery module including connection members comprised of dissimilar metals
JP2020181635A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Manufacturing method of secondary cell and secondary cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340252A (en) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd Manufacture of electrode for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340252A (en) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd Manufacture of electrode for battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397140B2 (en) 1995-05-25 2002-05-28 Hitachi, Ltd. Method and apparatus for controller power train of motor vehicle
KR100396488B1 (en) * 1996-05-15 2003-11-17 삼성에스디아이 주식회사 Joining method of lead terminal of lithium ion battery
EP1146578A1 (en) * 2000-04-10 2001-10-17 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6815120B2 (en) 2000-04-10 2004-11-09 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
US6972044B2 (en) 2000-04-10 2005-12-06 Matsushita Electric Industrial Co., Ltd. Battery electrode and manufacturing method and apparatus for the same
JP2003282044A (en) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2008027831A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Battery
US20110183197A1 (en) * 2010-01-26 2011-07-28 Sangwon Byun Rechargeable battery
CN105103337A (en) * 2013-07-05 2015-11-25 Lg化学株式会社 Battery module including connection members comprised of dissimilar metals
EP2937916A4 (en) * 2013-07-05 2016-08-10 Lg Chemical Ltd Battery module including connection members comprised of dissimilar metals
US10069129B2 (en) 2013-07-05 2018-09-04 Lg Chem, Ltd. Battery module comprising connecting member composed of dissimilar metals
JP2020181635A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Manufacturing method of secondary cell and secondary cell

Similar Documents

Publication Publication Date Title
JPH04123757A (en) Preparation of nickel electrode
EP1215741B1 (en) Method for manufacturing a positive electrode plate
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JPH10125332A (en) Manufacture of battery electrode
JP3953139B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP3893856B2 (en) Square alkaline storage battery
US20030068554A1 (en) Alkaline storage battery and process for producing the same
JP3081272B2 (en) Method for manufacturing battery with spiral electrode body
JPH10228908A (en) Alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPS62165862A (en) Manufacture of electrode base plate for alkaline storage battery
JPS6310864B2 (en)
JPH09199137A (en) Electrode for storage battery
JPH0713176Y2 (en) Electrode plate for alkaline batteries
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JP3220675B2 (en) Battery manufacturing method
JP3412437B2 (en) Alkaline storage battery
JPH0447666A (en) Manufacture of ni electrode plate
JP2822443B2 (en) Electrode group for storage battery
JPH0353448A (en) Manufacture of closed type alkaline storage battery
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP2000195511A5 (en)
JP3973115B2 (en) Battery having an electrode body with a wound structure
JPH0419960A (en) Manufacture of nickel pole plate