JPH0353448A - Manufacture of closed type alkaline storage battery - Google Patents

Manufacture of closed type alkaline storage battery

Info

Publication number
JPH0353448A
JPH0353448A JP1188311A JP18831189A JPH0353448A JP H0353448 A JPH0353448 A JP H0353448A JP 1188311 A JP1188311 A JP 1188311A JP 18831189 A JP18831189 A JP 18831189A JP H0353448 A JPH0353448 A JP H0353448A
Authority
JP
Japan
Prior art keywords
electrolyte
separator
electrodes
storage battery
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188311A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hata
秦 勝幸
Koji Isawa
浩次 石和
Kazuhiro Yoshida
一博 吉田
Hiroyuki Hasebe
裕之 長谷部
Kunihiko Sasaki
邦彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1188311A priority Critical patent/JPH0353448A/en
Publication of JPH0353448A publication Critical patent/JPH0353448A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PURPOSE:To shorten the injecting time for an electrolyte by receiving an electrode group prepared through the process of combining positive and negative- pole electrodes together, with a separator interposed therebetween, in a canning body and subsequently injecting the electrolyte into the canning body while applying ultrasonic waves to the canning body. CONSTITUTION:Ultrasonic waves are applied to a canning body 1 in injecting an electrolyte into the canning body 1 to be permeated into positive and negative-pole electrodes and also into a separator after receiving an electrode group 2 prepared through the process of combining the positive and negative- pole electrodes together, with the separator interposed therebetween, in the canning body 1. Since the surface tension of the electrolyte to the separator and to the like can be accordingly lowered, the electrolyte can be quickly permeated into both the separator and the electrodes. Since also air present in the electrodes and in the separator, both received in the canning body, can be speedily removed permeability of the electrolyte can be expedited. The injecting time for the electrolyte can thus be shortened to mass-produce a storage battery.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本允明は、密閉式アルカリ蓄電池の製遣方法に関し、特
に電解液の注入工程を改良した密閉式アルカリ蓄電池の
製造方法に係わる。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) This paper relates to a method for manufacturing a sealed alkaline storage battery, and in particular, a method for manufacturing a sealed alkaline storage battery that improves the electrolyte injection process. related to.

(従来の技術) アルカリ蓄電池は、正極にニッケル、負極にカドミウム
、亜鉛、水素吸蔵合金などを使用したちのが知られてい
る。これらの中で、特に二・7ケル・カドミウム電池は
古くから研究がなされ、現在広く使用されている。ニッ
ケル・カドミウム蓄電池の電極としては、ニッケル粉末
焼結体に活物質を含浸した、いわゆる焼結式電極が使用
されているが、近年の高容量化や低コスト化の要求が高
まるに伴って焼結式電極の代わりにペースト式電極の開
発が盛んに行われてきている。
(Prior Art) Alkaline storage batteries are known to use nickel for the positive electrode and cadmium, zinc, hydrogen storage alloy, etc. for the negative electrode. Among these, 2.7 Kel cadmium batteries in particular have been studied for a long time and are currently widely used. Nickel-cadmium storage batteries use so-called sintered electrodes, which are made of sintered nickel powder impregnated with an active material, but as the demand for higher capacity and lower cost increases in recent years, sintered electrodes are used as electrodes for nickel-cadmium storage batteries. Paste type electrodes have been actively developed in place of bonded type electrodes.

前記ペースト式電極を使用した密閉式アルカリ蓄電池は
、正極、負極の両電極間にセパレータを挟み、所定の方
法で捲回又は積層状に組み合わせた後、缶体内に装入し
、所定量の電解液を注入し、封ロすることにより製造さ
れている。
A sealed alkaline storage battery using the above-mentioned paste type electrodes is constructed by sandwiching a separator between the positive and negative electrodes, winding or laminating them in a prescribed manner, and then inserting the battery into a case and subjecting it to a prescribed amount of electrolysis. It is manufactured by injecting a liquid and sealing it.

前記電解液の注入法としては、従来より缶体内の空隙部
に少量ずつ注岐することによって前記缶体内に収納した
セバレー夕や電極に直接滲み込ませる方法が主に採用さ
れている。しかしながら、かかる方法では特に粘度の高
い高濃度のアルカリ電解戚を用いるとセパレータや電極
への浸透が遅く、注液に要する時間が長くかかり、生産
性に欠けるという問題があった。
As a method of injecting the electrolytic solution, a method has conventionally been mainly adopted in which the electrolytic solution is injected little by little into the cavity inside the can so that it directly seeps into the separator and electrodes housed within the can. However, this method has a problem in that when a highly concentrated alkaline electrolyte having a particularly high viscosity is used, the permeation into the separator or electrode is slow, the time required for injection is long, and productivity is lacking.

このようなことから電解液の注入時間を短くする方広と
して、電極やセパレータの多孔度を大きくする方広や、
セパレータや?ffitffiに親水処理を施す方広、
或いは電解液を注戚する時に缶体内部を減圧する方法な
どが考えられている。
For this reason, as a rectangular device that shortens the injection time of the electrolyte, a rectangular device that increases the porosity of the electrodes and separators,
A separator? Masahiro applying hydrophilic treatment to ffitffi,
Alternatively, a method of reducing the pressure inside the can when pouring the electrolyte is being considered.

しかしながら、セパレータや電極の多孔度を大きくする
方法ではセバレー夕の絶縁性が低下したり、保液性が小
さくなるる恐れがある他電極の電極体積か減少するため
、電泊容量の低下を招く等の間17がある。また、セバ
レータやtiS極に親水処理を施した場合、セバレー夕
や電極の抵抗が大きくなったり、充放電性能の低下を引
き起こす恐れがある。更に、缶体内を減圧にして電解液
を注入する方法は製造工程が煩雑になり、コス1・の高
騰化を招く問題がある。
However, the method of increasing the porosity of the separator or electrode may reduce the insulation properties of the separator, reduce the liquid retention capacity, and reduce the electrode volume of other electrodes, resulting in a decrease in the electrode capacity. There are 17 between. Furthermore, if the separator or the TiS electrode is subjected to hydrophilic treatment, there is a risk that the resistance of the separator or the electrode may increase or the charging/discharging performance may deteriorate. Furthermore, the method of injecting the electrolyte while reducing the pressure inside the can has the problem of complicating the manufacturing process and raising the cost.

(発明が解決しようとする課8) 本発明は、上記従来の3題を解決するためになされたも
ので、極めて簡単な工程により電解液の注入時間を短縮
でき、量産的に密閉式アルカリ蓄電池を製造し得る方法
を提供しようとするものである。
(Issue 8 to be solved by the invention) The present invention was made to solve the above three conventional problems, and it is possible to shorten the injection time of electrolyte through an extremely simple process, and to mass-produce sealed alkaline storage batteries. The aim is to provide a method for manufacturing.

[課題を解決するための千段コ 本発明は、缶体内に正負極の電極をセバレー夕を介在さ
せて組み合わせた電極群を収納した後、前記缶体に超音
波を印加しつつ該缶体内に電解液を注入することを特徴
とする密閉式アルカリ蓄電地の製造方広である。
[1000 Steps to Solve the Problems] The present invention stores an electrode group in which positive and negative electrodes are combined with a separator interposed in a can body, and then applies ultrasonic waves to the can body while moving the electrodes into the can body. This is a method for producing a sealed alkaline storage battery characterized by injecting an electrolyte into the battery.

上記正極、負極は、例えば三次元構造を有する導電性多
孔質基板に活物質を含むペースト状物を充JA Lたペ
ースト式電極を用いることができる。
As the positive electrode and the negative electrode, for example, a paste type electrode in which a conductive porous substrate having a three-dimensional structure is filled with a paste containing an active material can be used.

前記三次元構造を有する導電性多孔質基阪としては、例
えば発泡メタル、ニッケル焼結繊維越仮、金属メッキ繊
維基阪等を挙げることができる。前記ペースト状物とし
ては、例えば■水酸化ニッケルなどの正極活物質とカル
ボキシメチルセルロス(CMC) 、メチルセルロース
、ポリアクリル酸ソーダなどの増結剤と、ポリテトラフ
ルオ口エチレンなどの結着剤と水などの溶媒との組成か
らなる正極用ペースト状物、■酸化力ドミニウムなどの
負極活物質とポリビニルアルコールなとの増結剤とエチ
レングリコールなどの溶媒との組成からなる負極用ペー
スト状物を挙げることができる。なお、負極は前記ペー
スト式電極の他にカドミウム、水素吸蔵合金を用いるこ
とができる。また、前記正極活物質に必要に応してβ−
Co(OH)2を添加してもよい。
Examples of the conductive porous material having the three-dimensional structure include foamed metal, nickel sintered fiber material, metal plated fiber material, and the like. The paste-like material includes, for example, (1) a positive electrode active material such as nickel hydroxide, a binder such as carboxymethyl cellulose (CMC), methylcellulose, or sodium polyacrylate, a binder such as polytetrafluoroethylene, and water; Examples include paste-like materials for positive electrodes consisting of a composition of a solvent such as (1) a negative-electrode active material such as oxidizing power dominium, a binder such as polyvinyl alcohol, and a solvent such as ethylene glycol; I can do it. Note that, in addition to the paste type electrode described above, cadmium or a hydrogen storage alloy can be used for the negative electrode. In addition, β-
Co(OH)2 may also be added.

上記セバレー夕としては、例えばナイロンG,G繊維、
ポリアセタール繊維の不織布等から形成される。
Examples of the above-mentioned separator include nylon G, G fiber,
It is formed from nonwoven fabric of polyacetal fiber.

上記缶体に超音波を印加する手段としては、例えば肢体
を媒体として缶体に超音波を印加する方法、缶体に直接
超¥i波を印加する方広等を採用し得る。かかる超音波
は、20kHz − IMHzの範囲のMJ it数の
bのを使用することが望ましい。
As the means for applying ultrasonic waves to the can body, for example, a method of applying ultrasonic waves to the can body using the limb as a medium, a method of applying ultrasonic waves directly to the can body, etc. can be adopted. It is desirable to use such ultrasound with a MJit number b in the range 20kHz - IMHz.

上記電解液としては、例えば水酸化ナトリウム水溶液、
水酸化カリウム水溶液等のアルカリ電解液を用いること
ができる。また、前記水酸化ナトリウム水溶液、水酸化
カリウム水溶液に必要に応じてリチウムを添加して電解
i&を調製してもよい。
Examples of the electrolytic solution include sodium hydroxide aqueous solution,
An alkaline electrolyte such as an aqueous potassium hydroxide solution can be used. Alternatively, electrolytic i& may be prepared by adding lithium to the sodium hydroxide aqueous solution and potassium hydroxide aqueous solution as necessary.

(作用) 本発明によれば、缶体内に電解液を注入し、該缶体内の
正負極の電極、セバレータに7ハ角ゲlfkを滲み込ま
せる際、前記缶体に超音波を印加することによって電A
/4液のセバレー夕等に対する表面張力を低下させるこ
とができるため、セバレー夕や電極に電解7夜を迅速に
浸透させることができる。
(Function) According to the present invention, when an electrolytic solution is injected into the can body and the seven-square gel lfk is infiltrated into the positive and negative electrodes and the separator inside the can body, ultrasonic waves are applied to the can body. By Electric A
Since the surface tension of the /4 liquid against the separator etc. can be lowered, the electrolytic solution can be quickly penetrated into the separator and electrodes.

また、超音波の印加により缶体内に収納した電極やセパ
レータ中の空気を速やかに除去できるため、電解戚の浸
透性を促進できる。従って、電角!I液の注入時間を著
しく短縮できるため、密閉式アルカリ蓄電池を量産的に
製遣することかできる。
Moreover, since the air in the electrodes and separators housed in the can can be quickly removed by applying ultrasonic waves, the permeability of electrolytic components can be promoted. Therefore, electric angle! Since the injection time of liquid I can be significantly shortened, sealed alkaline storage batteries can be mass-produced.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例 まず、水酸化ニッケルを活物質とし、これに導電材とし
てニッケル粉、増粘剤としてのカルボキシメチルセルロ
ース、結着剤としてのポリテトラフルオロエチレンをそ
れぞれ所定量添加し、純水を加えて混合し、ペースト状
物を調製し、このペースト状物をニッケル焼拮繊維基板
に充填した後、乾燥、プレスを行ってペースト式ニッケ
ル正極を作製した。つづいて、第1図(a)に示すよう
にAAサイズ(単3型)の円筒状缶体l内に前記正極と
カトミウム負極をナイロン6.0繊維からなる日付け量
87g/m2 肉厚 0.2■のセバレータ(日本バイ
リーン肚製商品名, FT−21f3)を挟んで捲回し
た電極詳2を収納した。次いで、前記缶体lを第1図(
b)に示すように水槽3内の蒸留水4に大部分を浸漬し
た後、前記水槽3底部に取り付けた超音波振動子(図示
せず)により45kHZの超音波を印加しながら前記缶
体lの上部開口部から濃度の5′になるKOH水溶ll
& (電解戚)  !.GcCを滴下した。滴下された
濃度の異なる電解液全量が面記電極群に全て浸透するま
での時間をAll定した。電解液のl農度と浸透時間の
関係を第2図に示す。なお、第2図中には比較例として
超音波を印加しない時の電解戚の濃度と浸透時間との関
係を併記した。
Example First, nickel hydroxide is used as an active material, and predetermined amounts of nickel powder as a conductive material, carboxymethyl cellulose as a thickener, and polytetrafluoroethylene as a binder are added, and pure water is added and mixed. A paste-like material was prepared, and this paste-like material was filled into a nickel annealing fiber substrate, followed by drying and pressing to produce a paste-type nickel positive electrode. Subsequently, as shown in Fig. 1(a), the positive electrode and the cadmium negative electrode were placed in a cylindrical can of AA size (AA size), made of nylon 6.0 fiber, with an amount of 87 g/m2 and a wall thickness of 0. Electrode detail 2, which was wound with a .2■ sebarator (trade name, FT-21f3 manufactured by Nippon Vilene Fu) sandwiched in between, was stored. Next, the can body l is shown in Fig. 1 (
As shown in b), after most of the can body is immersed in distilled water 4 in the water tank 3, the can body l is immersed in water while applying 45kHz ultrasonic waves using an ultrasonic transducer (not shown) attached to the bottom of the water tank 3. From the upper opening of the KOH water solution to a concentration of 5'
& (electrolysis)! .. GcC was added dropwise. The time required for all the dropped electrolyte solutions of different concentrations to permeate the surface electrode group was determined. Figure 2 shows the relationship between the degree of electrolyte and the permeation time. In addition, as a comparative example, FIG. 2 also shows the relationship between the concentration of the electrolyte and the penetration time when no ultrasonic waves are applied.

第2図から明らかなように本実施例ではKOH水溶液の
電解液の濃度が6Nの場合、約40秒間で注入が終了す
るのに対し、比較例では約90秒間要し、本発明の超音
波を印加する方広では注液時間が約172で済むことが
わかる。また、第2図から電解液の濃度が高いほど注一
夜時間の短縮効果が高いことがわかる。
As is clear from FIG. 2, in this example, when the concentration of the electrolyte of the KOH aqueous solution was 6N, injection was completed in about 40 seconds, whereas in the comparative example it took about 90 seconds, and the ultrasonic wave of the present invention It can be seen that in a wide direction where . Furthermore, it can be seen from FIG. 2 that the higher the concentration of the electrolyte, the greater the effect of shortening the night time.

また、上記操作での電解液の注入後に円筒状缶体の上部
開口部に封目板をカシメにより取り付けることにより、
充放電特性の優れた高容量のアルカリ蓄電池を製造する
ことができた。
In addition, by attaching a sealing plate to the upper opening of the cylindrical can body by caulking after injecting the electrolyte in the above operation,
We were able to manufacture a high-capacity alkaline storage battery with excellent charge-discharge characteristics.

[発明の効果] 以上詳述した如く、本発明によれば缶体内に収納される
電極群を構成する電極やセバレー夕の性状等を変更する
ことなく、該電極群が収納された缶体内に電解液を極め
て簡単な工程で短時間で注入でき、ひいては高容量の密
閉式アルカリ蓄電池を量産的に製造し得る方法を堤供で
きる。
[Effects of the Invention] As described in detail above, according to the present invention, the electrode group housed in the can body can be housed without changing the properties of the electrodes and separators constituting the electrode group housed in the can body. It is possible to provide a method in which an electrolyte can be injected in a very simple process in a short time, and a high-capacity sealed alkaline storage battery can be mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本実施例における密閉式アルカ
リ蓄電池の製造工程を示す斜視図、第2図は本実施例及
び比較例における電解液の濃度と修に2禿与間の関係を
示す特性図である。 l・・・円筒状缶体、 2・・・電極群、 3・・・水冶、 4・・・蒸留水。 出加入代理人
Figures 1 (a) and (b) are perspective views showing the manufacturing process of the sealed alkaline storage battery in this example, and Figure 2 shows the concentration of the electrolyte in this example and a comparative example, and the It is a characteristic diagram showing a relationship. l... Cylindrical can body, 2... Electrode group, 3... Hydrology, 4... Distilled water. joining agent

Claims (1)

【特許請求の範囲】[Claims] 缶体内に正負極の電極をセパレータを介在させて組み合
わせた電極群を収納した後、前記缶体に超音波を印加し
つつ該缶体内に電解液を注入することを特徴とする密閉
式アルカリ蓄電池の製造方法。
A sealed alkaline storage battery characterized in that an electrode group consisting of positive and negative electrodes combined with a separator is housed in a can, and then an electrolytic solution is injected into the can while applying ultrasonic waves to the can. manufacturing method.
JP1188311A 1989-07-20 1989-07-20 Manufacture of closed type alkaline storage battery Pending JPH0353448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188311A JPH0353448A (en) 1989-07-20 1989-07-20 Manufacture of closed type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188311A JPH0353448A (en) 1989-07-20 1989-07-20 Manufacture of closed type alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0353448A true JPH0353448A (en) 1991-03-07

Family

ID=16221385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188311A Pending JPH0353448A (en) 1989-07-20 1989-07-20 Manufacture of closed type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0353448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019444A2 (en) * 2000-08-30 2002-03-07 Valence Technology, Inc. Method for distributing electrolyte in batteries
WO2012069100A1 (en) * 2010-11-24 2012-05-31 Li-Tec Battery Gmbh Method and device for filling an electrochemical cell
CN104604009A (en) * 2012-11-08 2015-05-06 株式会社Lg化学 Method for manufacturing secondary battery
US9819048B2 (en) 2012-11-08 2017-11-14 Lg Chem, Ltd. Method of manufacturing secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019444A2 (en) * 2000-08-30 2002-03-07 Valence Technology, Inc. Method for distributing electrolyte in batteries
WO2002019444A3 (en) * 2000-08-30 2002-08-08 Valence Technology Inc Method for distributing electrolyte in batteries
WO2012069100A1 (en) * 2010-11-24 2012-05-31 Li-Tec Battery Gmbh Method and device for filling an electrochemical cell
CN104604009A (en) * 2012-11-08 2015-05-06 株式会社Lg化学 Method for manufacturing secondary battery
US9819048B2 (en) 2012-11-08 2017-11-14 Lg Chem, Ltd. Method of manufacturing secondary battery
US9819045B2 (en) 2012-11-08 2017-11-14 Lg Chem, Ltd. Method of manufacturing secondary battery
US10062896B2 (en) 2012-11-08 2018-08-28 Lg Chem, Ltd. Method of manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP3815774B2 (en) Electrochemical element including electrolyte
US3669746A (en) Separators for secondary alkaline batteries having a zinc-containing electrode
JP6919078B2 (en) Positive electrode structure for secondary batteries
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US3897266A (en) Alkaline battery cell
US4443526A (en) NiCO3 Electrode material and electrode
JP2512019B2 (en) Electrochemical battery
JPH0353448A (en) Manufacture of closed type alkaline storage battery
US4174565A (en) Method of precharging rechargeable metal oxide-hydrogen cells
US20020106565A1 (en) Positive electrode plate for alkaline storage battery and method for manufacturing the same, and alkaline storage battery using the same
JPH04123757A (en) Preparation of nickel electrode
JP2629365B2 (en) Nickel zinc storage battery and method of manufacturing the same
JP3156485B2 (en) Nickel electrode for alkaline storage battery
US4880435A (en) Alkaline storage cell and manufacturing method therefor
JP2926732B2 (en) Alkaline secondary battery
JP3332139B2 (en) Sealed alkaline storage battery
JP2759505B2 (en) Inorganic non-aqueous electrolyte battery
JP3103781B2 (en) How to inject the battery
JP2000260463A (en) Liquid injection method into battery
JPH0325863A (en) Internally stacked battery
TW488110B (en) Three dimensional chemical cell
JP3004241B2 (en) Hydrogen battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JPS60225373A (en) Alkaline zinc storage battery
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery