JPH0231595Y2 - - Google Patents

Info

Publication number
JPH0231595Y2
JPH0231595Y2 JP1985126121U JP12612185U JPH0231595Y2 JP H0231595 Y2 JPH0231595 Y2 JP H0231595Y2 JP 1985126121 U JP1985126121 U JP 1985126121U JP 12612185 U JP12612185 U JP 12612185U JP H0231595 Y2 JPH0231595 Y2 JP H0231595Y2
Authority
JP
Japan
Prior art keywords
compressor
shaft sealing
oil
chamber
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985126121U
Other languages
Japanese (ja)
Other versions
JPS6236268U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985126121U priority Critical patent/JPH0231595Y2/ja
Publication of JPS6236268U publication Critical patent/JPS6236268U/ja
Application granted granted Critical
Publication of JPH0231595Y2 publication Critical patent/JPH0231595Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はスクリユ圧縮機の潤滑油給油装置に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a lubricating oil supply device for a screw compressor.

(従来技術とその問題点) スクリユ圧縮機は雌雄一対のらせん状ランドを
形成したロータがケーシング内において互いに噛
み合い回転することによつて吸入気体の圧縮を行
う。
(Prior Art and its Problems) A screw compressor compresses intake gas by having male and female rotors formed with a pair of helical lands meshing with each other and rotating in a casing.

と同時に圧縮機内に対し、潤滑油を供給し、圧縮
作用空間内の潤滑、密封、冷却及び各軸受、軸封
等摺動部の潤滑を行つている。
At the same time, lubricating oil is supplied into the compressor to lubricate, seal, and cool the compression space and lubricate sliding parts such as bearings and shaft seals.

この種のスクリユ圧縮機としては、特公昭59−
44541号公報のスクリユ圧縮機が公知である。
As this type of screw compressor, the special public
A screw compressor disclosed in Japanese Patent No. 44541 is known.

この圧縮機は、第4図に示すように吸入空気量
制御用アンローダ装置3をケーシング2の吸入室
42上方に設けると共に、軸封室14内にはメカ
ニカルシール又はオイルシール等の軸封装置66
を配設し、外部との密封を維持している。
As shown in FIG. 4, this compressor is provided with an unloader device 3 for controlling the amount of intake air above the suction chamber 42 of the casing 2, and a shaft sealing device 66 such as a mechanical seal or an oil seal in the shaft sealing chamber 14.
is installed to maintain a seal with the outside.

さらに、吐出室7には逆止弁8、吐出管43を
介して圧力気槽兼液体槽4に連通する気体口9
と、該吐出室の底壁から液体ポンプ11、通路2
8を介して圧力気槽兼液体槽に設けた液体溜12
と連通する液体抜き口10が開設されている。
Furthermore, the discharge chamber 7 includes a check valve 8 and a gas port 9 that communicates with the pressurized air tank/liquid tank 4 via the discharge pipe 43.
and a liquid pump 11 and a passage 2 from the bottom wall of the discharge chamber.
Liquid reservoir 12 provided in the pressure air tank and liquid tank via 8
A liquid drain port 10 communicating with is provided.

そして、液体溜12より油冷却器22オイルポ
ンプ23及び油量調整弁25を介して圧縮機の吸
入締切り後の作用空間13、吸入側軸封室14及
び吐出側軸封機構15に対しそれぞれに並列に潤
滑油を供給する潤滑油供給回路と、圧縮機の起動
時、三方電磁弁SV1,SV2及びアンローダ装置3
との共同動作により、圧縮機の起動トルクを減少
させる起動負荷軽減装置とにより構成されてい
る。
Then, the liquid reservoir 12 is supplied to the working space 13 after the suction of the compressor is closed, the suction side shaft sealing chamber 14, and the discharge side shaft sealing mechanism 15 through the oil cooler 22, oil pump 23, and oil amount adjustment valve 25, respectively. A lubricating oil supply circuit that supplies lubricating oil in parallel, three-way solenoid valves SV 1 and SV 2 and unloader device 3 when starting the compressor.
and a starting load reduction device that reduces the starting torque of the compressor in cooperation with the compressor.

そしてその動作は、まず図示していない駆動原
動機により圧縮機が起動し、圧力気槽兼液体槽4
内の圧力が一定圧力(1〜2Kgf/cm2ゲージ圧
力)に達すると、前記起動負荷軽減装置が作動
し、圧縮機内に流入する吸入空気がアンローダ装
置3により遮断され、同時に前述の油量調整弁2
5が動作し、圧縮機への潤滑油供給量を絞り必要
以上の供給を制限する。
In its operation, first the compressor is started by a driving motor (not shown), and the compressor is started in the pressure air tank/liquid tank 4.
When the internal pressure reaches a certain pressure (1 to 2 Kgf/cm 2 gauge pressure), the starting load reducing device is activated, and the unloader device 3 cuts off the intake air flowing into the compressor, and at the same time the oil amount adjustment described above is performed. valve 2
5 operates to throttle the amount of lubricating oil supplied to the compressor and limit the supply of more than necessary.

これにより吐出室7内の圧力が0Kgf/cm2ゲー
ジ圧力程度にまで低下し、スクリユロータの吐出
口に加わる背圧が除去されて圧縮機は完全な無負
荷運転状態となり、その運転動力が減少する。
As a result, the pressure in the discharge chamber 7 drops to approximately 0 kgf/cm 2 gauge pressure, the back pressure applied to the discharge port of the screw rotor is removed, the compressor enters a completely no-load operating state, and its operating power decreases. .

即ち、以上の動作中は前記駆動原動機は減電圧
の状態で運転し、前記吐出室7内の圧力が確実に
0Kgf/cm2ゲージ圧力程度まで低下した後全電圧
運転に移行して平常運転に移行する。
That is, during the above operation, the drive motor operates in a reduced voltage state, and after the pressure in the discharge chamber 7 reliably drops to about 0 Kgf/cm 2 gauge pressure, it shifts to full voltage operation and returns to normal operation. Transition.

以上のような従来の圧縮機に於て、該圧縮機に
対する潤滑油供給系統は、油量調整弁25を経た
後に作用空間13内、吸入側の軸封室14及び吐
出側軸封機構15のそれぞれに対し並列に供給さ
れていた為、次のような問題点があつた。
In the conventional compressor as described above, the lubricating oil supply system to the compressor passes through the oil amount adjustment valve 25 and then flows into the working space 13, the shaft sealing chamber 14 on the suction side, and the shaft sealing mechanism 15 on the discharge side. Since they were supplied in parallel, the following problems arose.

即ち、 (イ) 圧縮機の無負荷運転時、アンローダ装置3に
よつて吸気閉塞弁5が閉じられ、さらに油量調
整弁25によつて圧縮機への潤滑油供給量が制
限されるに伴い、該圧縮機の吸入室42と通路
38を介して連通する吸入側軸封室14内の圧
力が負圧となり、軸封装置66の軸封部(図示
せず)より前記軸封室内に対して大気が吸入さ
れやすい。
(a) During no-load operation of the compressor, the intake blockage valve 5 is closed by the unloader device 3, and the amount of lubricating oil supplied to the compressor is further restricted by the oil amount adjustment valve 25. , the pressure within the suction side shaft sealing chamber 14 communicating with the suction chamber 42 of the compressor via the passage 38 becomes negative pressure, and a shaft sealing portion (not shown) of the shaft sealing device 66 enters the shaft sealing chamber. air is easily inhaled.

そのため、メカニカルシール等のように前記
軸封部が摺動構造となつている軸封装置にあつ
ては、該摺動部の大気側に近い部分に潤滑不良
による面荒れ又は焼付が生じ易く、そのような
場合には軸封機能の劣化を促進する他、外部よ
り吸入された大気が通路38を介して吸入室4
2内に浸入する為、吐出室7内における背圧除
去がなされなくなる他、圧力気槽兼液体槽4内
の昇圧を招き、その結果無負荷運転時の消費動
力を増大させる不具合が生ずる。
Therefore, in shaft seal devices such as mechanical seals in which the shaft seal part has a sliding structure, surface roughness or seizure is likely to occur due to poor lubrication in the part of the sliding part near the atmosphere side. In such a case, not only will the deterioration of the shaft sealing function be accelerated, but also the air sucked in from the outside will flow through the passage 38 into the suction chamber 4.
2, the back pressure in the discharge chamber 7 cannot be removed, and the pressure in the pressure gas tank/liquid tank 4 increases, resulting in a problem of increased power consumption during no-load operation.

また、前記軸封装置を軸封室14内の負圧に
対しても耐え得るものとする場合には、遥かに
高価でかつ複雑構造の軸封装置を用いなければ
ならない。
Furthermore, if the shaft sealing device is to be able to withstand the negative pressure within the shaft sealing chamber 14, a shaft sealing device that is much more expensive and has a complicated structure must be used.

(ロ) 一方、吐出側軸封機構15に対する給油も前
記吸入側軸受室及び作用空間と並列給油となつ
ている為、軸封室14内の負圧により大部分の
潤滑油が該軸封室内に流入し、特に寒冷時のよ
うに潤滑油粘度が高くなつた場合、及び長期間
運転を休止していた場合等の起動時には、前記
吐出側の軸封機構に対する給油不足が生じ、よ
つてロータ16の吐出側端面17とケーシング
18の端面とが焼付を生ずることがあつた。
(b) On the other hand, since the oil supply to the discharge side shaft sealing mechanism 15 is parallel to the suction side bearing chamber and the working space, most of the lubricating oil is supplied to the shaft sealing chamber 14 due to the negative pressure inside the shaft sealing chamber 14. When the viscosity of the lubricating oil becomes high, especially in cold weather, or when the operation is stopped for a long period of time, there will be insufficient lubrication to the shaft sealing mechanism on the discharge side, and the rotor Seizure occurred between the discharge side end face 17 of the casing 16 and the end face of the casing 18 .

(ハ) また、前述した如く、軸封室14内と吸入室
42内は通路38を介して連通状態にある為、
特に全負荷運転、無負荷運転の繰り返し時には
前記軸封室内の圧力変動が大きく、軸封装置6
6の軸封作用がさらに不安定なものとなり易く
軸封部から外部に対して潤滑油の漏洩を招く虞
れがある。
(c) Also, as mentioned above, since the inside of the shaft sealing chamber 14 and the inside of the suction chamber 42 are in communication via the passage 38,
Particularly during repeated full-load operation and no-load operation, pressure fluctuations within the shaft sealing chamber are large, and the shaft sealing device 6
The shaft sealing action of No. 6 tends to become even more unstable, and there is a risk that lubricating oil may leak from the shaft sealing portion to the outside.

(考案の目的及び手段) そこで本考案は、圧縮機の無負荷運転時及び全
負荷運転時を問わず軸封室14内の圧力を常に正
の所定圧力以上に保ち、軸封装置66の軸封作用
を安定させると共に、圧縮機の起動時に生ずる吐
出側軸封機構15に対する給油不足を解消し、ロ
ータの吐出側端面の焼付事故を防止することを目
的としたもので、圧縮機の作用空間及び吸入側軸
封室、吐出側軸封機構のそれぞれと接続する潤滑
油供給回路中に圧縮機の無負荷運転時吸気閉塞弁
の閉動作と連動して該圧縮機への潤滑油供給油量
を全負荷運転時以下に制限する油量調整弁を有す
ると共に、前記圧縮機の吐出室には逆止弁を介し
て圧力気槽兼液体槽に連通する気体口と、該気体
口より低水準位置に液体抜き口を設け、運転中吐
出口より吐出された圧縮空気と潤滑油の混合流体
中の圧縮気体を前記気体口から圧力気槽兼液体槽
へ、潤滑油は前記液体抜き口より液体抜きポンプ
を介して液体溜にそれぞれ圧入するように構成し
たスクリユ圧縮機に於て、前記吸入側軸封室の軸
封空間と吸入側端壁間には絞り機構を設けると共
に、前記油量調整弁の一次側油通路を圧縮機の吸
入側軸封室と、該調整弁の二次側油通路を作用空
間及び吐出側軸封機構とにそれぞれ接続したこと
を特徴とする。
(Purpose and Means of the Invention) Therefore, the present invention maintains the pressure inside the shaft sealing chamber 14 at a positive predetermined pressure or higher at all times regardless of whether the compressor is in no-load operation or full-load operation, and the shaft sealing device 66 The purpose is to stabilize the sealing effect, eliminate the lack of oil supply to the discharge side shaft sealing mechanism 15 that occurs when the compressor is started, and prevent seizing accidents on the discharge side end face of the rotor. In the lubricating oil supply circuit connected to each of the suction side shaft sealing chamber and the discharge side shaft sealing mechanism, an amount of lubricating oil is supplied to the compressor in conjunction with the closing operation of the intake blockage valve during no-load operation of the compressor. The discharge chamber of the compressor has a gas port that communicates with the pressure air tank and liquid tank via a check valve, and a gas port that is at a lower level than the gas port. A liquid extraction port is provided at the position, and the compressed gas in the mixed fluid of compressed air and lubricating oil discharged from the discharge port during operation is transferred from the gas port to the pressurized air tank and liquid tank, and the lubricating oil is transferred to the liquid tank from the liquid removal port. In a screw compressor configured to pressurize liquid into the respective reservoirs via a extraction pump, a throttling mechanism is provided between the shaft sealing space of the suction side shaft sealing chamber and the suction side end wall, and the oil amount is adjusted. It is characterized in that the primary side oil passage of the valve is connected to the suction side shaft sealing chamber of the compressor, and the secondary side oil passage of the regulating valve is connected to the working space and the discharge side shaft sealing mechanism, respectively.

(作用) 本考案は以上の構成により成るので、圧縮機の
無負荷運転時吸入側軸封室内が負圧となることが
無くなり、さらに全負荷運転及び無負荷運転の急
激な繰り返し時に於ても前記軸封室内の圧力変動
を微少なものとし、かつ常時正の所定以上に保持
することができるので前記軸封装置の安定した作
用を図ることができる。
(Function) Since the present invention has the above-described configuration, negative pressure does not occur in the suction side shaft sealing chamber during no-load operation of the compressor, and furthermore, even when full-load operation and no-load operation are rapidly repeated. Since pressure fluctuations within the shaft sealing chamber can be made minute and always maintained at a positive predetermined level or higher, stable operation of the shaft sealing device can be achieved.

また、吐出側軸封機構に対しても圧縮機の起動
時に生ずる潤滑油供給不足も解消できる。
Furthermore, the lack of lubricant supply to the discharge-side shaft sealing mechanism that occurs when the compressor is started can also be resolved.

(実施例) 以下第4図と同一部品は同一の記号を用いて説
明する。
(Example) The same parts as in FIG. 4 will be described below using the same symbols.

第1図は、本考案によるスクリユ圧縮機の一実
施例で、ケーシング2の上方にはアンローダ装置
3が配置され、圧力気槽兼液体槽4から供給され
る消費側の圧縮空気の消費量に応じて、吸気閉塞
弁5を開閉動作し、圧縮機1内への吸入空気量の
制御を行つている。
FIG. 1 shows an embodiment of the screw compressor according to the present invention, in which an unloader device 3 is arranged above the casing 2, and the amount of compressed air on the consumption side supplied from the pressure air tank/liquid tank 4 is controlled. In response, the intake blockage valve 5 is opened and closed to control the amount of intake air into the compressor 1.

それと共に、前記圧力気槽兼液体槽内に連通す
る電磁弁SV1及びSV2との組み合わせ動作により
圧縮機の起動時前記吸気閉塞弁を閉じ、圧縮機の
過大な起動トルクを減少させる起動負荷軽減装置
としての機能をも有している。
At the same time, when the compressor is started, the intake blocking valve is closed by a combined operation of the electromagnetic valves SV 1 and SV 2 communicating with the pressure air tank/liquid tank, thereby creating a starting load that reduces excessive starting torque of the compressor. It also functions as a mitigation device.

また、吐出口6には吐出室7を設け、該吐出室
には逆止弁8を介して圧力気槽兼液体槽4内に連
通する気体口9と、該気体口より低水準位置に開
口する液体抜き口10が設けられており、後述す
る圧縮室内に噴射された圧縮空気と潤滑油の混合
流体はこの吐出室7内で比重差により分離され、
気体は気体口9より吐出管43を経て圧力気槽兼
液体槽4に圧入される。
Further, the discharge port 6 is provided with a discharge chamber 7, and the discharge chamber has a gas port 9 that communicates with the pressure air tank/liquid tank 4 via a check valve 8, and an opening at a lower level position than the gas port. A mixed fluid of compressed air and lubricating oil injected into the compression chamber, which will be described later, is separated in this discharge chamber 7 due to a difference in specific gravity.
Gas is forced into the pressure gas tank/liquid tank 4 from the gas port 9 via the discharge pipe 43.

一方、吐出室7の底壁に流下した潤滑油は、液
体抜き口10より液体抜きポンプ11を介して全
負荷、無負荷運転時を問わず常時圧力気槽兼液体
槽4の液体溜12に回収される。
On the other hand, the lubricating oil that has flowed down to the bottom wall of the discharge chamber 7 is constantly transferred to the liquid reservoir 12 of the pressure tank/liquid tank 4 through the liquid drain port 10 and the liquid drain pump 11 regardless of whether the operation is under full load or no load. It will be collected.

液体溜12内に貯溜する潤滑油は、前記圧力気
槽内の圧縮空気圧力により押し出され、油通路2
1、油冷却器22、油通路24、油量調整弁25
を経て油通路26より作用空間13内に噴射さ
れ、該圧縮室内の潤滑、密封、冷却作用を行うと
共に前記油通路26より分岐して吐出側軸封機構
に対しても並列供給され、ロータ16及びケーシ
ング18の端面及び軸受19の潤滑を行う。
The lubricating oil stored in the liquid reservoir 12 is pushed out by the compressed air pressure in the pressure air tank, and the lubricating oil is
1, oil cooler 22, oil passage 24, oil amount adjustment valve 25
The oil is injected from the oil passage 26 into the working space 13 to lubricate, seal, and cool the compression chamber, and is also branched from the oil passage 26 and supplied in parallel to the discharge side shaft sealing mechanism. and lubricates the end face of the casing 18 and the bearing 19.

一方、吸入側の軸封室14内に対しては、油量
調整弁の一次側油通路である油通路24より分岐
した油通路27を介して直接潤滑油が供給され
る。
On the other hand, lubricating oil is directly supplied into the shaft sealing chamber 14 on the suction side through an oil passage 27 branched from the oil passage 24, which is the primary oil passage of the oil amount adjustment valve.

軸受室14内にはロータ16を支承する軸受6
5、及び軸封装置66が配設され、各々はロータ
軸67の基部に嵌着する絞り機構68を介して軸
受空間69及び軸封空間70を形成して配設され
ている。
A bearing 6 that supports the rotor 16 is provided in the bearing chamber 14.
5 and a shaft sealing device 66 are disposed, each of which forms a bearing space 69 and a shaft sealing space 70 via a throttle mechanism 68 fitted to the base of the rotor shaft 67.

絞り機構68の外周とケーシング2の吸入側端
壁71間は僅かな空隙を有して、軸封室14と吸
入室42と連通しており、前記軸封室内に供給さ
れた潤滑油は絞り機構68により、該軸封室内を
常時正の所定圧力以上(概ね1〜2Kgf/cm2ゲー
ジ圧力程度)に保持しながら吸入側端壁71より
吸入室42内に回収される。
There is a slight gap between the outer periphery of the throttle mechanism 68 and the suction side end wall 71 of the casing 2, which communicates with the shaft sealing chamber 14 and the suction chamber 42, and the lubricating oil supplied into the shaft sealing chamber is passed through the throttle. The mechanism 68 collects the oil into the suction chamber 42 through the suction side end wall 71 while maintaining the inside of the shaft sealed chamber at a constant positive predetermined pressure or higher (approximately 1 to 2 Kgf/cm 2 gauge pressure).

油量調整弁25は、第2図に示す如くボデイ5
1内に摺動自在なピストン52と、該ピストンの
摺動動作を付勢するスプリング53により構成さ
れており、圧縮機の無負荷運転時吸気閉塞弁5に
よつて吸入空気が遮断されると同時に、通路36
より供給された圧縮空気圧力によりピストン52
が図中左方向に移動し、一次側油通路24と二次
側油通路26をシート部54により閉じ、ピスト
ン52に形成された絞り通路55によつて、前記
両通路は一定油量に制限される。
The oil amount adjustment valve 25 is connected to the body 5 as shown in FIG.
It is composed of a piston 52 that can freely slide inside the compressor 1, and a spring 53 that biases the sliding movement of the piston. At the same time, passage 36
Piston 52 due to compressed air pressure supplied from
moves to the left in the figure, the seat portion 54 closes the primary oil passage 24 and the secondary oil passage 26, and a throttle passage 55 formed in the piston 52 restricts both passages to a constant oil amount. be done.

また、通路36からの圧縮空気の供給が止まる
とピストン52はスプリング53の付勢により図
中右方向に移動し、一次側の油通路24と二次側
の油通路26は全開となる。
Further, when the supply of compressed air from the passage 36 is stopped, the piston 52 moves to the right in the figure due to the bias of the spring 53, and the primary oil passage 24 and the secondary oil passage 26 are fully opened.

このように、圧縮機の無負荷運転時油量調整弁
25によつて潤滑油の供給量を制限する目的は、
該圧縮機の無負荷運転時は作用空間13内での空
気の圧縮作用は行われない為、それに伴う発熱は
生じないので潤滑と密封を目的とした極く少量の
潤滑油が供給されていれば足りる為であり、これ
により潤滑油の過剰な供給に伴う消費動力も減少
する。
In this way, the purpose of limiting the supply amount of lubricating oil by the oil amount adjustment valve 25 during no-load operation of the compressor is to
During no-load operation of the compressor, the air is not compressed in the working space 13, so no heat is generated, so a very small amount of lubricating oil for lubrication and sealing is supplied. This is because the amount of lubricating oil is sufficient, and thereby the power consumption due to excessive supply of lubricating oil is also reduced.

また、絞り通路55の大きさは圧縮機の種類に
より適宜選択される。
Further, the size of the throttle passage 55 is appropriately selected depending on the type of compressor.

第3図は本考案の第2実施例で、吸入側の軸封
室14の要部詳細図である。
FIG. 3 shows a second embodiment of the present invention, which is a detailed view of the main part of the shaft sealing chamber 14 on the suction side.

ケーシング2の吸入側端壁71とロータ軸67
の基部外周との間には吸入室42と軸受空間69
とを連通する通路38が設けられ、また軸受空間
69と軸封空間70との間には軸受65を介して
絞り機構75が配設されている。
Suction side end wall 71 of casing 2 and rotor shaft 67
There is a suction chamber 42 and a bearing space 69 between the base outer periphery of the
A passage 38 is provided to communicate with the bearing space 69 and the shaft sealing space 70, and a throttle mechanism 75 is provided via a bearing 65 between the bearing space 69 and the shaft sealing space 70.

絞り機構75はロータ軸67の外周部と僅かな
空隙を設けてケーシング2に対し嵌入し固定され
ている。
The throttle mechanism 75 is fitted into and fixed to the casing 2 with a slight gap between the outer periphery of the rotor shaft 67 and the outer periphery of the rotor shaft 67 .

したがつて、軸封室14内に供給された潤滑油
は、前記空隙を経て軸受65を潤滑した後軸受空
間69通路38を通り吸入室42内に流入する。
Therefore, the lubricating oil supplied into the shaft sealing chamber 14 lubricates the bearing 65 through the gap, and then flows into the suction chamber 42 through the bearing space 69 passage 38.

本考案の実施例は以上の通りであり、次に作用
について説明する。
The embodiment of the present invention is as described above, and the operation will be explained next.

まず、図示してない始動器のスイツチを投入す
ると、タイマーが働き三方電磁弁SV1は非通電と
なり、圧力気槽兼液体溜4内に連通する回路31
と回路32は開、回路32と回路35は閉、同時
に三方電磁弁SV2は非電通状態で回路31と減圧
弁30を介した回路33は閉、回路33と回路3
4は開となつている。
First, when the switch of the starter (not shown) is turned on, a timer is activated and the three-way solenoid valve SV 1 is de-energized, and the circuit 31 communicating with the pressure tank/liquid reservoir 4 is turned on.
and circuit 32 is open, circuit 32 and circuit 35 are closed, and at the same time three-way solenoid valve SV 2 is de-energized, circuit 31 and circuit 33 via pressure reducing valve 30 are closed, circuit 33 and circuit 3
4 is open.

この状態で、吸入空気はアンローダ装置の吸入
口41から吸入室42に流入し、作用空間13で
圧縮され吐出室7、吐出管43を経て圧力気槽兼
液体槽4内に蓄積される。
In this state, suction air flows into the suction chamber 42 from the suction port 41 of the unloader device, is compressed in the working space 13, passes through the discharge chamber 7 and the discharge pipe 43, and is accumulated in the pressure tank/liquid tank 4.

そして、前記圧力気槽内の圧力が液体溜内に貯
留する潤滑油を圧送するに充分な最低圧力(1〜
2Kgf/cm2ゲージ圧力)に達すると、回路31か
らの圧縮空気圧力によりアンローダピストン44
を図中左側に摺動移動させ、吸気閉塞弁5を閉じ
圧縮機1は無負荷状態となり、吸入室42は負圧
となる。
Then, the pressure in the pressure tank is a minimum pressure (1 to
2Kgf/cm 2 gauge pressure), the compressed air pressure from the circuit 31 causes the unloader piston 44 to
is slid to the left in the figure, the intake blockage valve 5 is closed, the compressor 1 is placed in an unloaded state, and the suction chamber 42 becomes under negative pressure.

と同時に回路32,36も連通状態にある為、油
量調整弁25もピストン52を閉動作させ、油通
路24と26を絞り、作用空間13及び吐出側軸
封機構15に対する潤滑油供給量を減少させる。
At the same time, since the circuits 32 and 36 are in communication, the oil amount adjustment valve 25 also closes the piston 52, throttles the oil passages 24 and 26, and reduces the amount of lubricating oil supplied to the working space 13 and the discharge side shaft sealing mechanism 15. reduce

一方、吸入側の軸封室14に対しては油量調整
弁25の一次側油通路24から分岐した潤滑油が
直接導入されているので、前記油量調整弁の閉動
作に関係なく常時定量の潤滑油が供給されると共
に、作用空間13及び吐出側軸封機構15に対す
る給油量も吸入室42内の負圧に左右されること
なく定量に維持される。
On the other hand, since the lubricating oil branched from the primary oil passage 24 of the oil volume adjustment valve 25 is directly introduced into the shaft sealing chamber 14 on the suction side, the lubricating oil is constantly supplied at a fixed amount regardless of the closing operation of the oil volume adjustment valve. lubricating oil is supplied, and the amount of oil supplied to the working space 13 and the discharge side shaft sealing mechanism 15 is also maintained at a fixed amount without being affected by the negative pressure in the suction chamber 42.

また、軸封室14に流入した潤滑油は、絞り機
構68の介在により該軸封室内の内圧を正の所定
圧力以上に保持しながら軸封装置66及び軸受6
5を潤滑した後前記絞り機構を介して吸入側端壁
71から吸入室42に回収される。
Furthermore, the lubricating oil that has flowed into the shaft sealing chamber 14 is transferred to the shaft sealing device 66 and the bearing 6 while maintaining the internal pressure in the shaft sealing chamber at a positive predetermined pressure or higher through the intervention of the throttle mechanism 68.
5 is lubricated and then collected into the suction chamber 42 from the suction side end wall 71 via the throttle mechanism.

そして作用空間13内に噴射された少量の潤滑
油と共に前記作用空間内の潤滑を行い、吐出口6
より排出される。
Then, the working space is lubricated together with a small amount of lubricating oil injected into the working space 13, and the discharge port 6
more excreted.

そして、その潤滑油は吐出室7の底壁に流下
し、残留する圧縮気体と共に液体抜き口10より
液体抜きポンプ11によつて液体溜12内に圧入
される。
Then, the lubricating oil flows down to the bottom wall of the discharge chamber 7, and is forced into the liquid reservoir 12 through the liquid extraction port 10 by the liquid extraction pump 11 together with the remaining compressed gas.

すると、前記吐出室内の残留気体は拡散し、圧
力が0Kgf/cm2ゲージ圧力程度まで低下する。
Then, the residual gas in the discharge chamber is diffused, and the pressure is reduced to about 0 kgf/cm 2 gauge pressure.

これにより、スクリユロータの吐出口6に加わ
る背圧が除去されるから、圧縮機始動時の負荷が
大巾に軽減された状態で起動することになる。
As a result, the back pressure applied to the discharge port 6 of the screw rotor is removed, so that the compressor starts with the load greatly reduced.

以上の動作後、圧縮機は定常運転に移行する。 After the above operations, the compressor shifts to steady operation.

その後タイマー(図示せず)の動作により三方
電磁弁SV1及びSV2各々に通電され、回路31と
回路32は閉、代わつて回路36,32は回路3
5,34を介して吸入室に連通、回路31と回路
33は連通、代わつて回路33と回路34は閉と
なりよつてアンローダピストン44は図中右方向
に移動し、吸気閉塞弁5が開き圧縮機は全負荷運
転に移行する。
Thereafter, the three-way solenoid valves SV 1 and SV 2 are energized by the operation of a timer (not shown), circuits 31 and 32 are closed, and circuits 36 and 32 are replaced by circuit 3.
5 and 34, the circuit 31 and the circuit 33 are in communication, and the circuit 33 and the circuit 34 are closed, and the unloader piston 44 moves to the right in the figure, and the intake block valve 5 opens to perform compression. The machine transitions to full load operation.

さらに、圧力気槽兼液体溜槽内の圧力が規定圧
力に達すると圧力スイツチPS1が動作し、定常運
転下に於ける無負荷運転状態に移行し、前述した
如くの吸気閉塞、給油量の制限、吐出室内の残留
圧力の除去等の動作を行い該無負荷運転時の消費
動力を大巾に低減する。
Furthermore, when the pressure in the pressure air tank/liquid storage tank reaches the specified pressure, the pressure switch PS 1 is activated and the state shifts to no-load operation under steady-state operation, resulting in air intake blockage and oil supply restriction as described above. , performs operations such as removing residual pressure in the discharge chamber, and greatly reduces power consumption during no-load operation.

そして以降は同様の繰り返し動作を行う。 After that, similar repeated operations are performed.

また、第3図に示す第2実施例に於ては、軸封
空間70と軸受空間69間に絞り機構75を設
け、前記軸受空間側に軸受65を配設したので、
軸封室14内に供給された潤滑油は絞り機構75
により軸封空間70内の圧力を正の所定圧力以上
に保持しつつ、軸封装置66の潤滑を行つて前記
絞り機構とロータ軸67間の僅かな空隙を経て軸
受65を潤滑する。
Further, in the second embodiment shown in FIG. 3, a throttle mechanism 75 is provided between the shaft seal space 70 and the bearing space 69, and the bearing 65 is disposed on the bearing space side.
The lubricating oil supplied into the shaft sealing chamber 14 is passed through the throttle mechanism 75.
While maintaining the pressure in the shaft sealing space 70 above a predetermined positive pressure, the shaft sealing device 66 is lubricated, and the bearing 65 is lubricated through a small gap between the throttle mechanism and the rotor shaft 67.

即ち、軸受空間69内は絞り機構75によつて
絞られた微量の潤滑油が供給されることになるの
で、第1図に示す第1実施例の構造のように軸封
室14内に充満した潤滑油を軸受65の撹拌作用
によつて昇温させることが無くなり、該軸受及び
軸封装置66の耐久性も向上し、特に高速回転用
の圧縮機に適する。
That is, since the inside of the bearing space 69 is supplied with a small amount of lubricating oil squeezed by the throttle mechanism 75, the inside of the shaft sealing chamber 14 is filled as in the structure of the first embodiment shown in FIG. This eliminates the need to raise the temperature of the lubricating oil due to the stirring action of the bearing 65, and the durability of the bearing and shaft sealing device 66 is improved, making it particularly suitable for high-speed rotation compressors.

(考案の効果) 本考案は、以上の構成とすることにより、圧縮
機の起動時、起動負荷軽減装置が動作し、吸気閉
塞弁が閉じ、油量調整弁による圧縮機への給油量
が制限された時点に於ても、吸入側の軸封室内は
絞り機構の作用により常に所定圧力以上に保持さ
れるので、高価な軸封装置を用いることなく常に
安定した軸封機能を維持できる。
(Effects of the invention) With the above configuration, the present invention operates when the compressor starts up, the startup load reduction device operates, the intake blockage valve closes, and the oil amount adjustment valve limits the amount of oil supplied to the compressor. Even at the time when the shaft is sealed, the inside of the shaft sealing chamber on the suction side is always maintained at a predetermined pressure or higher by the action of the throttle mechanism, so that a stable shaft sealing function can always be maintained without using an expensive shaft sealing device.

また、無負荷運転時においても、吸入側軸封装
置の軸封部からの大気流入もなくなる他、該軸封
部からの潤滑油漏洩の不具合も解消されると共に
圧力気槽兼液体槽内の昇圧も皆無となる。
In addition, even during no-load operation, there is no air inflow from the shaft seal part of the suction side shaft seal device, and the problem of lubricating oil leaking from the shaft seal part is also eliminated, and the leakage of lubricating oil in the pressure air tank and liquid tank is also eliminated. There will be no pressure increase.

また、軸封室への給油を作用空間及び吐出側軸
封機構への給油通路と分離させ、油量調整弁の一
次側油通路より直接導入したことにより、特に起
動時の無負荷運転の際に生じていた吐出側軸封機
構に対する給油不足も解消し、ロータ及びケーシ
ングの吐出側端面の焼付きも防止できない。
In addition, the oil supply to the shaft seal chamber is separated from the oil supply passage to the working space and the discharge side shaft seal mechanism, and is introduced directly from the primary oil passage of the oil amount adjustment valve. The lack of oil supply to the discharge side shaft sealing mechanism that had occurred in the previous example was resolved, and seizure of the discharge side end face of the rotor and casing could not be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による圧縮機の全体図、第2図
は油量調整弁の拡大断面図。第3図は第2実施例
の軸封室の要部詳細図、第4図は従来の圧縮機の
全体図を示す。 1……圧縮機、3……アンローダ装置、4……
圧力気槽兼液体槽、5……吸気閉塞弁、6……吐
出口、7……吐出室、8……逆止弁、9……気体
口、10……液体抜き口、11……液体抜きポン
プ、12……液体溜、13……作用空間、15…
…軸封機構、14……軸封室、25……油量調整
弁、24……油通路(一次側)、65……軸受、
66……軸封装置、68……絞り機構、69……
軸受空間、70……軸封空間、75……絞り機
構。
FIG. 1 is an overall view of the compressor according to the present invention, and FIG. 2 is an enlarged cross-sectional view of the oil amount regulating valve. FIG. 3 is a detailed view of the main parts of the shaft sealing chamber of the second embodiment, and FIG. 4 is an overall view of a conventional compressor. 1... Compressor, 3... Unloader device, 4...
Pressure air tank/liquid tank, 5...Intake blockage valve, 6...Discharge port, 7...Discharge chamber, 8...Check valve, 9...Gas port, 10...Liquid outlet, 11...Liquid Bleeding pump, 12...Liquid reservoir, 13...Working space, 15...
... Shaft sealing mechanism, 14 ... Shaft sealing chamber, 25 ... Oil amount adjustment valve, 24 ... Oil passage (primary side), 65 ... Bearing,
66... Shaft sealing device, 68... Throttle mechanism, 69...
Bearing space, 70... Shaft seal space, 75... Throttle mechanism.

Claims (1)

【実用新案登録請求の範囲】 (1) 圧縮機の作用空間及び吸入側軸封室、吐出側
軸封機構のそれぞれと接続する潤滑油供給回路
中に、圧縮機の無負荷運転時吸気閉塞弁の閉動
作と連動して該圧縮機への潤滑油供給油量を全
負荷運転時以下に制限する油量調整弁を有する
と共に、前記圧縮機の吐出室には逆止弁を介し
て圧力気槽兼液体槽に連通する気体口と、該気
体口より低水準位置に液体抜き口を設け、運転
中吐出口より吐出された圧縮空気と潤滑油の混
合流体中の圧縮気体を前記気体口から圧力気槽
兼液体槽へ、潤滑油は前記液体抜き口より液体
抜きポンプを介して液体溜にそれぞれ圧入する
ように構成したスクリユ圧縮機に於て、前記吸
入側軸封室の軸封空間と吸入側端壁間には絞り
機構を設けると共に、前記油量調整弁の一次側
油通路を圧縮機の吸入側軸封室と、該調整弁の
二次側油通路を作用空間及び吐出側軸封機構と
にそれぞれ接続したことを特徴とするスクリユ
圧縮機の給油装置。 (2) 前記絞り機構を、圧縮機の吸入側軸受空間と
吸入側端壁との間に設けたことを特徴とする実
用新案登録請求の範囲第1項記載のスクリユ圧
縮機の給油装置。 (3) 前記絞り機構を、圧縮機の吸入側軸受空間と
軸封空間との間に設けたことを特徴とする実用
新案登録請求の範囲第1項記載のスクリユ圧縮
機の給油装置。
[Scope of Claim for Utility Model Registration] (1) An intake blockage valve during no-load operation of the compressor is installed in the lubricating oil supply circuit connected to the working space of the compressor, the suction side shaft sealing chamber, and the discharge side shaft sealing mechanism. It has an oil amount adjustment valve that limits the amount of lubricating oil supplied to the compressor to less than that during full-load operation in conjunction with the closing operation of the compressor, and pressurized air is supplied to the discharge chamber of the compressor via a check valve. A gas port communicating with the tank/liquid tank and a liquid outlet located at a lower level than the gas port are provided, and the compressed gas in the mixed fluid of compressed air and lubricating oil discharged from the discharge port during operation is discharged from the gas port. In a screw compressor configured so that the lubricating oil is pressurized into the liquid reservoir from the liquid extraction port via the liquid extraction pump, the lubricating oil is transferred to the shaft sealing space of the suction side shaft sealing chamber and to the pressure air tank and liquid tank. A throttling mechanism is provided between the suction side end walls, and the primary oil passage of the oil amount adjustment valve is connected to the suction side shaft sealed chamber of the compressor, and the secondary oil passage of the adjustment valve is connected to the working space and the discharge side shaft. An oil supply device for a screw compressor, characterized in that it is connected to a sealing mechanism. (2) The oil supply device for a screw compressor according to claim 1, wherein the throttle mechanism is provided between a suction side bearing space and a suction side end wall of the compressor. (3) The oil supply device for a screw compressor according to claim 1, wherein the throttle mechanism is provided between a suction side bearing space and a shaft sealing space of the compressor.
JP1985126121U 1985-08-20 1985-08-20 Expired JPH0231595Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985126121U JPH0231595Y2 (en) 1985-08-20 1985-08-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985126121U JPH0231595Y2 (en) 1985-08-20 1985-08-20

Publications (2)

Publication Number Publication Date
JPS6236268U JPS6236268U (en) 1987-03-03
JPH0231595Y2 true JPH0231595Y2 (en) 1990-08-27

Family

ID=31019628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985126121U Expired JPH0231595Y2 (en) 1985-08-20 1985-08-20

Country Status (1)

Country Link
JP (1) JPH0231595Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033400B2 (en) * 2006-11-20 2012-09-26 北越工業株式会社 Method for reducing load of oil-cooled screw compressor and oil-cooled screw compressor
JP6126512B2 (en) * 2013-10-15 2017-05-10 株式会社神戸製鋼所 Compressor
JP6948208B2 (en) * 2017-09-29 2021-10-13 北越工業株式会社 Oil-cooled screw compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214909A (en) * 1975-07-25 1977-02-04 Hitachi Ltd Oil cooling type screw compressor
JPS5941036A (en) * 1982-08-31 1984-03-07 Toshiba Corp Method for discriminating shifting state of key

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214909A (en) * 1975-07-25 1977-02-04 Hitachi Ltd Oil cooling type screw compressor
JPS5941036A (en) * 1982-08-31 1984-03-07 Toshiba Corp Method for discriminating shifting state of key

Also Published As

Publication number Publication date
JPS6236268U (en) 1987-03-03

Similar Documents

Publication Publication Date Title
KR100359045B1 (en) Scroll compressor
JPS5930919B2 (en) Liquid volume and gas capacity adjustment device for liquid-cooled rotary compressors
US3936249A (en) Rotary compressor of oil cooling type with appropriate oil discharge circuit
CN100412381C (en) Scroll compressor
JPH0231595Y2 (en)
JPH02294584A (en) Scroll compressor
JPH08543Y2 (en) Oil-cooled screw compressor
JPH0139914Y2 (en)
JPH0227198Y2 (en)
WO1995012060A1 (en) Improved engine oiling system
JP2005127173A (en) Scroll compressor
JPH0144915B2 (en)
JPH0121193Y2 (en)
JPH04159480A (en) Screw compressor
JPS5852393Y2 (en) Screw compressor oil supply system
JPS5954784A (en) Compressor
JPH0512552B2 (en)
JPS5941036B2 (en) oil-cooled rotary compressor
JPH05231322A (en) Reciprocating type compressor
JPH02558B2 (en)
JPS59208196A (en) Scroll type compressor
KR890000401Y1 (en) Scroll compressor
JPH0129997B2 (en)
JPH0133836Y2 (en)
GB2269424A (en) Preventing oil supply to screw compressor on shutdown