JPH0121193Y2 - - Google Patents

Info

Publication number
JPH0121193Y2
JPH0121193Y2 JP65580U JP65580U JPH0121193Y2 JP H0121193 Y2 JPH0121193 Y2 JP H0121193Y2 JP 65580 U JP65580 U JP 65580U JP 65580 U JP65580 U JP 65580U JP H0121193 Y2 JPH0121193 Y2 JP H0121193Y2
Authority
JP
Japan
Prior art keywords
oil
cylinder
chamber
pipe
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP65580U
Other languages
Japanese (ja)
Other versions
JPS56103693U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP65580U priority Critical patent/JPH0121193Y2/ja
Publication of JPS56103693U publication Critical patent/JPS56103693U/ja
Application granted granted Critical
Publication of JPH0121193Y2 publication Critical patent/JPH0121193Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Description

【考案の詳細な説明】 本考案は油冷コンプレツサのオイルロツク防止
装置に係り、特にベーンロータリ型コンプレツサ
のオイルロツク防止装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil lock prevention device for an oil-cooled compressor, and more particularly to an oil lock prevention device for a vane rotary type compressor.

従来、この種のエンジン駆動型油冷コンプレツ
サは本機シリンダとオイルチヤンバとの内圧差を
利用してそのオイルチヤンバ下部の油溜めより本
機シリンダのエアーエンド内に冷却油を注入する
ものが多く使用されている。しかしこの種のもの
にあつては、エンジンの停止後、直ちに自動開放
する自動放出弁によつて前記オイルチヤンバ内の
圧縮空気を外気中に放出するようにはなつている
が、オイルチヤンバ内が大気圧までに減圧される
には多少の時間を要し、大気圧まで減圧される間
はオイルチヤンバ内の圧力が本機シリンダ内より
高いために、過剰の冷却油が本機シリンダのエア
ーエンド内に注入される。この冷却油の注入量
は、本機シリンダ内の容積の半分以上にも達す
る。運転の停止時にあつては、本機シリンダ内の
吸気行程から圧縮行程が行われる間の位置は、ベ
ーンと本機シリンダの内壁面とが単に接し合うの
みである。このため、本機シリンダ内の吸気行程
から圧縮行程が行われる間の位置に、残留する冷
却油は、ベーンと本機シリンダの内壁面を通過し
た後、送気管を介してオイルチヤンバ内に抜き出
されるが、これでも多少本機シリンダ内の吸気行
程の位置から圧縮行程の位置間に冷却油が残留し
て、次の起動時にロータを回転不能にする所謂オ
イルロツク現象を招くことがある。これを解消す
べく本機シリンダの吸気行程の位置から圧縮行程
の位置間に、残留する冷却油を抜き出すための弁
機構から成るオイルロツク防止装置を設けたもの
が知られるところである。しかし、上記の如きオ
イルロツク防止装置を付設しても、オイルロツク
現象が発生することがあつた。つまり、本機シリ
ンダの圧縮行程の位置から次の吸気行程が行われ
る位置の間は、周知の如く、本機シリンダの壁面
に、ベーンのみならずロータの周面が接し合い、
乃至はこの間が極めて狭い間隙になつている。こ
のため、圧縮行程の位置から次の吸気行程が行わ
れる位置の間に残留する冷却油、特に次の吸気行
程が行われる始端の部分に多く残留する冷却油
は、上記の如き本機シリンダとロータの周面との
間を通過できないために抜き出されず、そのま
ま、吸気行程が行われる始端側の本機シリンダ内
に残留することになる。このように本機シリンダ
の吸気行程の始端側に残留する冷却油によつて、
次の起動の際に、オイルロツク現象が生じること
になつていた。
Conventionally, many engine-driven oil-cooled compressors of this type have used the internal pressure difference between the cylinder and the oil chamber to inject cooling oil into the air end of the cylinder from the oil reservoir at the bottom of the oil chamber. ing. However, in this type of engine, the compressed air in the oil chamber is released to the outside air by an automatic release valve that automatically opens immediately after the engine stops, but the pressure inside the oil chamber is at atmospheric pressure. It takes some time for the pressure to be reduced to atmospheric pressure, and while the pressure is being reduced to atmospheric pressure, the pressure inside the oil chamber is higher than that inside the machine's cylinder, so excess cooling oil is injected into the air end of the machine's cylinder. be done. The amount of cooling oil injected reaches more than half of the volume inside the cylinder of this machine. When the operation is stopped, the vane and the inner wall surface of the cylinder of the machine simply come into contact at a position between the intake stroke and the compression stroke in the cylinder of the machine. Therefore, the remaining cooling oil in the cylinder of this machine between the intake stroke and the compression stroke passes through the vane and the inner wall of the cylinder of this machine, and then is extracted into the oil chamber via the air pipe. However, even with this, some cooling oil may remain between the intake stroke position and the compression stroke position in the cylinder of this machine, causing a so-called oil lock phenomenon that makes the rotor unable to rotate at the next startup. In order to solve this problem, it is known that an oil lock prevention device is provided between the intake stroke position and the compression stroke position of the cylinder of this machine, which is comprised of a valve mechanism for extracting the remaining cooling oil. However, even with the provision of the oil lock prevention device as described above, the oil lock phenomenon sometimes occurs. In other words, as is well known, between the position of the compression stroke of the cylinder of this machine and the position of the next intake stroke, not only the vanes but also the circumferential surface of the rotor are in contact with the wall surface of the cylinder of this machine.
The space between them is an extremely narrow gap. For this reason, the cooling oil that remains between the compression stroke position and the next intake stroke position, especially the cooling oil that remains in large amounts at the starting end where the next intake stroke takes place, is removed from the cylinder of this machine as described above. Since it cannot pass between the rotor and the circumferential surface of the rotor, it is not extracted and remains in the cylinder of the machine at the starting end where the intake stroke is performed. In this way, the cooling oil remaining at the start of the intake stroke of the cylinder of this machine causes
An oil lock phenomenon was to occur during the next start-up.

これを解消するには、従来より知られている方
法、つまり実公昭31−6940号公報及び実公昭36−
18975号公報に記載された考案がある。何れの考
案も、オイルチヤンバと本機シリンダとの間に配
管された送油管にダイヤフラムを備えた閉塞装置
を設け、運転を停止させた時、直ちに大気圧とな
る本機シリンダ内の圧力と応動するダイヤフラム
の動作により閉塞装置が閉じてオイルチヤンバか
ら本機シリンダ内に供給される冷却油を遮断する
ようにし、これにより次の起動時にオイルロツク
現象が発生することを防止したものである。しか
し、いま、実公昭31−6940号公報に開示された構
成を第2図に示すと、101はシリンダ、102
は軸109をモータMで回転駆動されるロータ、
104は羽根、106は吸入口、108は空気槽
であり、空気槽108とシリンダ101との間に
設けた配管114に歯車ポンプ110、冷却器1
13を取付け、歯車ポンプ110がロータ軸10
9の回転により空気槽108内の水または油等の
液111を吸上げ、孔112を介してシリンダ1
01内に注入し、冷却、潤滑を行う従来装置に対
し、配管114の適所に第3図に示す如きダイヤ
フラム・ピストン・パルブ115を介在せしめ、
ピストン116側を水又は油等の液体通路に連通
せしめ、ダイヤフラム117側を配管120によ
りシリンダ101内の最終圧縮室121に連通せ
しめる。そして、圧縮機が正規運転中には、最終
圧縮機室121の圧力が空気槽108の圧力と同
一程度まで上昇しているから、シリンダ圧力がダ
イヤフラム117の下側に作用して調整発條11
8の力に抗してピストンバルブ116を開いて水
又は油等の液体が配管114に流れるので何等の
支障がない。次にアンローダの作用時や不意の停
電時により空気槽108内に圧力がかかつた状態
でモータが停止すれば塞止弁107が作用するか
ら空気槽108内の圧縮空気は逆流しない。従つ
て、シリンダ101内は大気圧になり、ダイヤフ
ラム117は調整発條118に押されてピストン
バルブ116を下方に押し下げ、水又は油の液体
通路を閉塞する。以上要約すると、この閉塞装置
はダイヤフラム、ピストン・バルブ115を配管
114に取付け、このバルブ115は第3図に示
すように、調整発條118、ピストン116を設
ける外に、シリンダ101側配管120と連通さ
せる配管口、および配管114との吸入口、排出
口が形成され、配管120と114とをピストン
116で開閉可能に作成される必要がある。従つ
て、ダイヤ・フラム・バルブ115を設けない場
合に比べ、この提案は上記バルブ115に関連す
る組立て部品が多くなつて複雑となり、加工数も
増加する外に、ダイヤフラム117についての加
工が精度を要するので、構造複雑なことと相まつ
て、その分製作コスが上昇するものであつた。
In order to solve this problem, there are conventionally known methods, namely, Utility Model Publication No. 31-6940 and Utility Model Publication No. 36-
There is an idea described in Publication No. 18975. In both designs, a blocking device equipped with a diaphragm is installed in the oil feed pipe installed between the oil chamber and the cylinder of the machine, and when the operation is stopped, the pressure inside the cylinder of the machine immediately becomes atmospheric pressure. The closing device closes due to the operation of the diaphragm and shuts off the cooling oil supplied from the oil chamber into the cylinder of the machine, thereby preventing the oil lock phenomenon from occurring at the next startup. However, when the configuration disclosed in Japanese Utility Model Publication No. 31-6940 is shown in FIG. 2, 101 is a cylinder, 102
is a rotor whose shaft 109 is rotationally driven by a motor M,
104 is a blade, 106 is an inlet, 108 is an air tank, and a gear pump 110 and a cooler 1 are connected to a pipe 114 provided between the air tank 108 and the cylinder 101.
13 is installed, and the gear pump 110 is attached to the rotor shaft 10.
9 sucks up the liquid 111 such as water or oil in the air tank 108 and transfers it to the cylinder 1 through the hole 112.
01, a diaphragm piston valve 115 as shown in FIG.
The piston 116 side is connected to a liquid passage such as water or oil, and the diaphragm 117 side is connected to a final compression chamber 121 in the cylinder 101 via a pipe 120. During normal operation of the compressor, the pressure in the final compressor chamber 121 rises to the same level as the pressure in the air tank 108, so the cylinder pressure acts on the lower side of the diaphragm 117 to adjust the adjustment pressure 11.
Since the piston valve 116 is opened against the force of 8 and liquid such as water or oil flows into the pipe 114, there is no problem. Next, if the motor is stopped with pressure built up in the air tank 108 due to operation of the unloader or unexpected power outage, the compressed air in the air tank 108 will not flow back because the blocking valve 107 is activated. Therefore, the inside of the cylinder 101 becomes atmospheric pressure, and the diaphragm 117 is pushed by the regulating spring 118 to push the piston valve 116 downward, thereby closing the water or oil liquid passage. In summary, this closure device has a diaphragm and a piston valve 115 attached to the pipe 114, and as shown in FIG. It is necessary to form a piping port for communication, an inlet port, and an exhaust port with the piping 114, and to make the piping 120 and 114 openable and closable with the piston 116. Therefore, compared to the case where the diaphragm valve 115 is not provided, this proposal increases the number of assembly parts related to the valve 115 and becomes complex, and the number of machining increases. This, together with the complicated structure, increased production costs accordingly.

そこで、本考案は、上記事情に鑑みなされたも
ので、運転停止時において、本機シリンダの圧縮
行程の位置から次の吸気行程が行われる位置間に
残留する冷却油を抜き出して、次の起動時にオイ
ルロツク現象が生ずることを効果的に防止し得
て、かつ構造も極めて簡易であり、又価格も極め
て低廉で耐久性にも優れたコンプレツサのオイル
ロツク防止装置を提供することを目的とする。
Therefore, the present invention was developed in view of the above circumstances, and when the machine is stopped, the cooling oil remaining between the compression stroke position and the next intake stroke position of the cylinder of the machine is extracted, and the remaining cooling oil is removed during the next startup. To provide an oil lock prevention device for a compressor which can effectively prevent oil lock phenomenon from occurring at times, has an extremely simple structure, is extremely low in price, and has excellent durability.

本考案は、上記目的を達成するために、ベーン
ロータリー型油冷コンプレツサにおいて、本機シ
リンダ内の吸気行程の始端側に位置する壁部と、
オイルチヤンバ上方壁部との間に油回収シリンダ
を介在させて連通し、この油回収シリンダ内には
常時バネ部材によつてオイルチヤンバ側に付勢さ
れたピストンを内装してなるコンプレツサのオイ
ルロツク防止装置を特徴とするものである。
In order to achieve the above object, the present invention provides a vane rotary type oil-cooled compressor with a wall portion located on the starting end side of the intake stroke in the cylinder of the machine;
An oil lock prevention device for the compressor is provided, which communicates with the upper wall of the oil chamber through an oil recovery cylinder, and includes a piston inside the oil recovery cylinder that is always urged toward the oil chamber by a spring member. This is a characteristic feature.

以下本考案に係る装置の一実施例を図面に基づ
き説明する。
An embodiment of the device according to the present invention will be described below based on the drawings.

この説明に先だつて従来公知のベーンロータリ
ー型油冷コンプレツサにおいては、本機シリンダ
1は内部にロータ2を有し、かつ壁部には吸気口
20が開口されている。この吸気口20には容量
レギユレータ並びにエアークリーナが接続される
ことはもとよりである。前記ロータ2はエンジン
の起動により偏心軸5を中心にして矢印A方向に
回転するようになつており、かつその周面からは
前記偏心軸5の方向に向う適宜数の嵌入溝4を有
し、この嵌入溝4内には先端が本機シリンダ1の
内壁面に当接するように回転に伴い出没するベー
ン3が夫々嵌入され、その出没動作により前記吸
気口20から吸気して圧縮するようになつてい
る。又本機シリンダ1のエアーエンド内即ち圧縮
行程の最終部とオイルチヤンバ7内とが送気管6
によつて連通されており、かつオイルチヤンバ7
下部の油溜めと、本機シリンダ1内の圧縮行程の
初期部等の1又は複数の適宜位置が送油管8によ
つて連通されている。この場合、送油管8にオイ
ルクーラを付設しておき、オイルチヤンバ7から
このオイルクーラを介して本機シリンダ1内に注
油するようにしてもよいことはもとよりである。
一方オイルチヤンバ7の吐出口21内方にはオイ
ルセパレータ10が付設されており、オイルチヤ
ンバ7からはそのオイルセパレータ10によつて
冷却油19の分離された圧縮空気が空気量調整用
のサービスバルブ11を介して外部負荷装置に供
給されるようになつている。又この吐出口21に
はエンジンの停止後直ちに自動開放してオイルチ
ヤンバ7内を大気圧まで減圧する自動放出弁12
が付設されている。
Prior to this explanation, in a conventionally known vane rotary type oil-cooled compressor, a cylinder 1 of this machine has a rotor 2 therein, and an intake port 20 is opened in a wall portion. It goes without saying that a capacity regulator and an air cleaner are connected to this intake port 20. The rotor 2 is adapted to rotate in the direction of arrow A around an eccentric shaft 5 when the engine is started, and has an appropriate number of fitting grooves 4 extending from its circumferential surface in the direction of the eccentric shaft 5. Vanes 3 that protrude and retract as they rotate are fitted into the fitting grooves 4 so that their tips abut against the inner wall surface of the cylinder 1 of the machine, and their protruding and retracting movements cause air to be sucked in from the intake port 20 and compressed. It's summery. Also, the inside of the air end of the cylinder 1 of this machine, that is, the final part of the compression stroke, and the inside of the oil chamber 7 are connected to the air supply pipe 6.
and oil chamber 7.
The lower oil reservoir is communicated with one or more appropriate positions within the cylinder 1 of this machine, such as at the initial stage of the compression stroke, through an oil feed pipe 8. In this case, it goes without saying that an oil cooler may be attached to the oil feed pipe 8, and oil may be supplied from the oil chamber 7 into the cylinder 1 of the machine via this oil cooler.
On the other hand, an oil separator 10 is attached inside the discharge port 21 of the oil chamber 7, and the compressed air from which the cooling oil 19 has been separated by the oil separator 10 passes through the service valve 11 for adjusting the air amount. It is designed to be supplied to an external load device via the external load device. Further, this discharge port 21 is provided with an automatic release valve 12 that automatically opens immediately after the engine stops to reduce the pressure inside the oil chamber 7 to atmospheric pressure.
is attached.

本考案は上記のベーンロータリー型油冷コンプ
レツサにおいて、本機シリンダ1内の吸気行程が
行われる最も始端に位置する壁部に、油回収口1
4を穿設すると共に、オイルチヤンバ7の油溜め
上方壁部に通気口22を穿設し、この油回収口1
4と通気口22とを順次に油回収管23、油回収
シリンダ13及び通気管24を介して連通接続
し、この油回収シリンダ13内にはシールリング
16の嵌着されたピストン15を、そのシールリ
ング16によりピストン15の外周面と油回収シ
リンダ13の内壁面とがシールされた状態で摺動
可能に内装すると共に、そのピストン15を常時
オイルチヤンバ7の方向に付勢するコイルスプリ
ング17を内装する。更に前記通気管24の内壁
面にその管径を絞る如くノズル18を形成する。
The present invention is based on the vane rotary type oil-cooled compressor mentioned above.
At the same time, a vent hole 22 is bored in the upper wall of the oil reservoir of the oil chamber 7, and this oil recovery port 1
4 and the vent 22 are sequentially connected through an oil recovery pipe 23, an oil recovery cylinder 13, and a vent pipe 24, and a piston 15 fitted with a seal ring 16 is inserted into the oil recovery cylinder 13. The outer circumferential surface of the piston 15 and the inner wall surface of the oil recovery cylinder 13 are slidably sealed with a seal ring 16, and a coil spring 17 that constantly urges the piston 15 in the direction of the oil chamber 7 is also provided inside. do. Further, a nozzle 18 is formed on the inner wall surface of the ventilation pipe 24 so as to narrow the pipe diameter.

上記構成のエンジン駆動型コンプレツサのオイ
ルロツク防止装置において、まずエンジンを起動
させてロータ2を回転させると、吸気口20から
吸気して圧縮行程が行われる部屋、即ち圧縮室の
容積減少に伴い圧縮した後、この圧縮空気を送気
管6を介してオイルチヤンバ7内に送り込む。こ
れによりオイルチヤンバ7内が昇圧して圧縮空気
の供給が可能になると共に、オイルチヤンバ7内
が本機シリンダ1内の注油口9,9′付近に比し
て高圧になつていることから、その差圧によりオ
イルチヤンバ7下部の油溜めより送油管8を介し
て圧縮室やロータ側面等本機シリンダ1内に注油
される。この冷却油19は圧縮空気やその他本機
シリンダ1内の各部を冷却すると共に各摺動部の
潤滑並びにシール作用を行なうもので、これらの
機能を果した後圧縮空気と共に送気管6を介して
オイルチヤンバ7内に回収され、このオイルチヤ
ンバ7内で霧状の冷却油をオイルセパレータ10
にて圧縮空気から分離し、オイルチヤンバ7の下
部に溜めて再び前記と同様な循環を繰返す。
In the oil lock prevention device for an engine-driven compressor configured as described above, when the engine is first started and the rotor 2 is rotated, air is taken in from the intake port 20 and compressed as the volume of the compression chamber decreases. After that, this compressed air is sent into the oil chamber 7 via the air supply pipe 6. This increases the pressure inside the oil chamber 7, making it possible to supply compressed air, and since the inside of the oil chamber 7 is at a higher pressure than the vicinity of the oil filler ports 9 and 9' in the cylinder 1 of this machine, there is a difference in pressure. Due to the pressure, oil is supplied from the oil reservoir at the bottom of the oil chamber 7 through the oil feed pipe 8 into the cylinder 1 of the machine, such as the compression chamber and the side surface of the rotor. This cooling oil 19 cools the compressed air and other parts in the cylinder 1 of this machine, and also lubricates and seals each sliding part. After fulfilling these functions, it is sent together with the compressed air through the air pipe 6. The cooling oil is collected in the oil chamber 7, and the mist cooling oil is transferred to the oil separator 10 in the oil chamber 7.
The oil is separated from the compressed air and stored in the lower part of the oil chamber 7, and the same circulation as described above is repeated again.

ところで、ピストン15はコンプレツサの起動
前においては、オイルチヤンバ7の内圧が、本機
シリンダ1と同圧になつていて、コイルスプリン
グ17の付勢によりオイルチヤンバ7側に押圧さ
れている。コンプレツサを起動すると前記の如く
オイルチヤンバ7の内圧が上昇し、このオイルチ
ヤンバ7内が前記注油口14の付近に比して高圧
になることから、オイルチヤンバ7内の圧縮空気
がノズル18を経て油回収シリンダ13内に導入
され、前記コイルスプリング17の付勢に抗して
ピストン15が本機シリンダ1側に押圧される。
このピストン15はノズル18の作用により動作
が規制されるために緩慢である。斯様な状態から
エンジンを停止させるとロータ2も停止し、これ
に伴い自動放出弁12が自動開放する。この時、
オイルチヤンバ7の内圧と本機シリンダ1の内圧
とが瞬時に同圧とはならず、このため本機シリン
ダ1の内圧がオイルチヤンバ7の内圧より低い間
は注油口9,9′から本機シリンダ1内に冷却油
が注入される。一方前記オイルチヤンバ7の内圧
が低下するに従つてピストン15もコイルスプリ
ング17の付勢によつてオイルチヤンバ7側に摺
動し、このピストン15の動作によつて本機シリ
ンダ1の吸気行程が行われる部屋、特に吸気行程
の始端側に溜まつた過剰の冷却油19を油回収シ
リンダ13内に吸入させ、その吸気行程が行われ
る部屋、即ち吸気室の始端側から過剰の冷却油1
9を除去する。
By the way, before the compressor is started, the internal pressure of the oil chamber 7 is the same as that of the cylinder 1 of the present invention, and the piston 15 is pressed toward the oil chamber 7 by the bias of the coil spring 17. When the compressor is started, the internal pressure of the oil chamber 7 increases as described above, and the pressure inside the oil chamber 7 becomes higher than that near the oil filler port 14, so the compressed air inside the oil chamber 7 passes through the nozzle 18 and is sent to the oil recovery cylinder. 13, and the piston 15 is pressed toward the cylinder 1 of the machine against the bias of the coil spring 17.
The movement of this piston 15 is regulated by the action of the nozzle 18, so it is slow. When the engine is stopped in such a state, the rotor 2 also stops, and the automatic release valve 12 automatically opens accordingly. At this time,
The internal pressure of the oil chamber 7 and the internal pressure of the cylinder 1 of this machine do not become the same pressure instantly, so while the internal pressure of the cylinder 1 of this machine is lower than the internal pressure of the oil chamber 7, the oil filler ports 9 and 9' are connected to the cylinder 1 of this machine. Cooling oil is injected into the tank. On the other hand, as the internal pressure of the oil chamber 7 decreases, the piston 15 also slides toward the oil chamber 7 due to the bias of the coil spring 17, and the action of the piston 15 causes the intake stroke of the cylinder 1 of the machine to be performed. The excess cooling oil 19 that has accumulated in the room, especially the starting end of the intake stroke, is sucked into the oil recovery cylinder 13, and the excess cooling oil 1 is removed from the room where the intake stroke is performed, that is, the starting end of the intake chamber.
Remove 9.

なお本考案はモータ駆動のコンプレツサについ
ても同様にオイルロツクを防止できるものであ
る。ただし、モータ駆動の場合では通常モータ停
止後オイルチヤンバ内圧縮空気を大気中に放出す
ることはないが、前記オイルロツク現象について
はエンジン駆動の場合と同様であり、本考案の技
術思想はモータ駆動においても同様に適用できる
ものである。又、次にコンプレツサを起動させた
時には、オイルチヤンバ内の圧が上がり、徐々に
ピストン15が押し上げられ、油回収シリンダ1
3内から本機シリンダ1内に吐出され、注油口
9,9′からの注油と同様に潤滑や冷却などのた
めに供される。
The present invention can similarly prevent oil lock in motor-driven compressors. However, in the case of motor drive, the compressed air in the oil chamber is not normally released into the atmosphere after the motor stops, but the oil lock phenomenon described above is the same as in the case of engine drive, and the technical idea of the present invention also applies to motor drive. It is similarly applicable. Also, when the compressor is started next time, the pressure inside the oil chamber increases and the piston 15 is gradually pushed up, causing the oil recovery cylinder 1 to rise.
The oil is discharged into the cylinder 1 of the machine from inside 3 and is used for lubrication, cooling, etc. in the same way as oil from the oil filler ports 9 and 9'.

以上の如く本考案に係るコンプレツサのオイル
ロツク防止装置によれば、動力源の停止直後にオ
イルチヤンバと本機シリンダとの内圧差を利用し
てピストンを吸入動作させ、これにより、動力源
の停止直後に本機シリンダ内の吸気行程の始端側
の位置に過剰に残留する冷却油を油回収シリンダ
内に吸入させて除去することから、次にコンプレ
ツサを起動する際には過剰の冷却油により発生す
るオイルロツク現象を効果的に防止し得、しかも
前記ピストンを摺動させるに何等動力源を要しな
いばかりか、構造が極めて簡易で価格も低廉であ
る等種々の効果を有する。
As described above, according to the compressor oil lock prevention device according to the present invention, the piston is suctioned by using the internal pressure difference between the oil chamber and the cylinder of the machine immediately after the power source stops, and thereby, the piston is sucked immediately after the power source stops. Excessive cooling oil remaining at the start end of the intake stroke in the cylinder of this machine is sucked into the oil recovery cylinder and removed, so the next time the compressor is started, the oil lock generated by the excess cooling oil will be removed. This phenomenon can be effectively prevented, and it has various effects such as not only does it not require any power source to slide the piston, but also has an extremely simple structure and is inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1面は本考案に係るコンプレツサのオイルロ
ツク防止装置の一実施例を示す断面図、第2図第
3図は従来装置の図面で、第2図は内冷式回転圧
縮機の作動説明図、第3図はダイヤフラムピスト
ンバルブの縦断面図である。 1……本機シリンダ、7……オイルチヤンバ、
13……油回収シリンダ、15……ピストン。
The first page is a cross-sectional view showing an embodiment of the compressor oil lock prevention device according to the present invention, FIG. 2, FIG. 3 are drawings of the conventional device, and FIG. FIG. 3 is a longitudinal sectional view of the diaphragm piston valve. 1... Machine cylinder, 7... Oil chamber,
13...oil recovery cylinder, 15...piston.

Claims (1)

【実用新案登録請求の範囲】 ベーンロータリー型油冷コンプレツサにおい
て、 本機シリンダ1内の圧縮行程の最終部を送気管
6を介してオイルチヤンバ7内に連通し、 該オイルチヤンバ7下部を送油管8を介して本
機シリンダ1内の圧縮行程初期部の壁面に設けた
注油口9,9′に連通し、 前記オイルチヤンバ7上方壁面に設けた吐出口
21の内方にはオイルセパレータ10を設けると
共に吐出口21の外方に向けてエンジンの停止後
に作動する自動放出弁12を設け、 本機シリンダ1内の吸気行程の始端側に位置す
る壁部とオイルチヤンバ7上方壁部との間に、油
回収管23、油回収シリンダ13および通気管2
4を介して連通接続し、 油回収シリンダ13内にはシーリング16が嵌
着されたピストン15をシールされた状態で摺動
可能に内装すると共に、油回収管23側室内には
ピストン15を常時チヤンバ7の方向に付勢する
コイルスプリング17を内装し、通気管24側室
は内壁面に管壁を絞る如くノズル18を形成した
通気管24に直接連通して構成したことを特徴と
するコンプレツサのオイルロツク防止装置。
[Scope of Claim for Utility Model Registration] In a vane rotary type oil-cooled compressor, the final part of the compression stroke in the cylinder 1 of this machine is communicated with an oil chamber 7 via an air pipe 6, and the lower part of the oil chamber 7 is connected to an oil pipe 8. It communicates with the oil filling ports 9 and 9' provided on the wall surface at the initial stage of the compression stroke in the cylinder 1 of this machine, and an oil separator 10 is provided inside the discharge port 21 provided on the upper wall surface of the oil chamber 7. An automatic release valve 12 is provided toward the outside of the outlet 21 that operates after the engine has stopped, and an oil recovery valve 12 is installed between the wall located on the start end side of the intake stroke in the cylinder 1 of this machine and the upper wall of the oil chamber 7. pipe 23, oil recovery cylinder 13 and vent pipe 2
4, and a piston 15 fitted with a seal 16 is installed inside the oil recovery cylinder 13 so as to be able to slide in a sealed state, and the piston 15 is always kept in a chamber on the side of the oil recovery pipe 23. This compressor is characterized in that a coil spring 17 is installed inside to bias the chamber 7, and the side chamber of the ventilation pipe 24 is configured to directly communicate with the ventilation pipe 24 in which a nozzle 18 is formed on the inner wall surface so as to narrow the pipe wall. Oil lock prevention device.
JP65580U 1980-01-08 1980-01-08 Expired JPH0121193Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP65580U JPH0121193Y2 (en) 1980-01-08 1980-01-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP65580U JPH0121193Y2 (en) 1980-01-08 1980-01-08

Publications (2)

Publication Number Publication Date
JPS56103693U JPS56103693U (en) 1981-08-13
JPH0121193Y2 true JPH0121193Y2 (en) 1989-06-23

Family

ID=29597505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP65580U Expired JPH0121193Y2 (en) 1980-01-08 1980-01-08

Country Status (1)

Country Link
JP (1) JPH0121193Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189391U (en) * 1982-06-09 1983-12-16 デンヨ−株式会社 Compressor oil lock prevention device

Also Published As

Publication number Publication date
JPS56103693U (en) 1981-08-13

Similar Documents

Publication Publication Date Title
US4245465A (en) Gas turbine engine lubrication system including three stage flow control valve
KR101291228B1 (en) Rotary vacuum pump
JPS5930919B2 (en) Liquid volume and gas capacity adjustment device for liquid-cooled rotary compressors
US2159720A (en) Pump
US5564917A (en) Rotary compressor with oil injection
JPH0643286U (en) Rotary compressor
US2654532A (en) Rotary compressor
JPH0121193Y2 (en)
JPS60230590A (en) Rotary compressor
US4525129A (en) Oil-sealed vacuum pump
US4498853A (en) Vane-type compressor
EP0761975A1 (en) Gas compressor
JPH0137189Y2 (en)
JPH0231595Y2 (en)
US2049794A (en) Pump
JPH0139914Y2 (en)
JPH0452476Y2 (en)
WO1995012060A1 (en) Improved engine oiling system
JPH0645668Y2 (en) Air compressor
JPS59208196A (en) Scroll type compressor
CN220151544U (en) Adjustable pressure relief structure of electronic oil pump
JPS6325196B2 (en)
JPH04365982A (en) Scroll type fluid machine
JPH0528397Y2 (en)
JPH0129997B2 (en)