JPH0139914Y2 - - Google Patents

Info

Publication number
JPH0139914Y2
JPH0139914Y2 JP1982002797U JP279782U JPH0139914Y2 JP H0139914 Y2 JPH0139914 Y2 JP H0139914Y2 JP 1982002797 U JP1982002797 U JP 1982002797U JP 279782 U JP279782 U JP 279782U JP H0139914 Y2 JPH0139914 Y2 JP H0139914Y2
Authority
JP
Japan
Prior art keywords
compressor
receiver tank
oil
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982002797U
Other languages
Japanese (ja)
Other versions
JPS58106588U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP279782U priority Critical patent/JPS58106588U/en
Publication of JPS58106588U publication Critical patent/JPS58106588U/en
Application granted granted Critical
Publication of JPH0139914Y2 publication Critical patent/JPH0139914Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は油冷式回転圧縮機すなわち、圧縮機の
圧縮室内へ潤滑油を噴射供給し、圧縮機の作用空
間内の冷却、潤滑、密封作用を行わしめる回転圧
縮機に関する。
[Detailed description of the invention] [Industrial application field] The present invention is an oil-cooled rotary compressor, that is, a compressor that injects lubricating oil into the compression chamber of the compressor to cool, lubricate, and seal the working space of the compressor. The present invention relates to a rotary compressor that performs operations.

〔従来の技術〕[Conventional technology]

従来この種圧縮機例えばスクリユ圧縮機では、
該圧縮機の圧縮室内へ潤滑油を圧送し噴射するポ
ンプをスクリユロータ軸端に有し、圧縮機の吐出
口より吐出された圧縮気体と前記潤滑油との混合
流体を逆止弁を介してレシーバタンクへ圧送し該
レシーバタンク内で、内蔵するセパレータにより
圧縮気体と潤滑油とを分離したのち、圧縮気体は
気体取出口により取り出され適宜使用に供され
る。一方、潤滑油は前記ポンプにより再び圧縮機
内へ噴射され、循環するように構成されている。
Conventionally, this type of compressor, for example, a screw compressor,
A pump for feeding and injecting lubricating oil into the compression chamber of the compressor is provided at the shaft end of the screw rotor, and a mixed fluid of the compressed gas discharged from the discharge port of the compressor and the lubricating oil is sent to a receiver via a check valve. After being pressure-fed to a tank and separating the compressed gas and lubricating oil by a built-in separator in the receiver tank, the compressed gas is taken out through a gas outlet and used as appropriate. On the other hand, the lubricating oil is again injected into the compressor by the pump and is circulated.

既知のように、レシーバタンク内の圧縮気体の
使用量が減少し又圧縮気体の使用を停止すると、
レシーバタンク内が昇圧し一定値(例えば7Kg/
cm2)を超えた時点でレギユレータ又は電磁弁が動
作し圧縮機の吸入口に設けた吸気閉塞式のアンロ
ーダがその吸気口面積を減少又は全閉し、被圧縮
気体の吸入量を調整すると共に、全閉時において
は、無負荷運転に移行し、圧縮機駆動用モータの
動力消費を節減したり、またエンジン駆動タイプ
にあつては該エンジンの回転数を下げることによ
つて動力消費の節減を図るようになつている。
As is known, when the amount of compressed gas used in the receiver tank decreases or the use of compressed gas is stopped,
The pressure inside the receiver tank increases to a constant value (for example, 7Kg/
cm 2 ), the regulator or solenoid valve operates, and the intake block type unloader installed at the compressor's intake port reduces or completely closes the intake port area, adjusts the intake amount of compressed gas, and , when fully closed, shifts to no-load operation to reduce power consumption of the compressor drive motor, and in the case of engine-driven types, reduces power consumption by lowering the rotational speed of the engine. The government is beginning to aim to achieve this goal.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記圧縮機の停止時には吐出途中にある高圧の
圧縮気体と潤滑油とが気液混合状態でシリンダー
の圧縮室内に逆流することによつて該圧縮室内に
潤滑油が滞留することになる。それと共に前記圧
縮室内への前記逆流現象により圧縮機が瞬時に逆
転し、各部を損傷させるという欠点を有してい
る。
When the compressor is stopped, the high-pressure compressed gas that is being discharged and the lubricating oil flow back into the compression chamber of the cylinder in a gas-liquid mixture, resulting in the lubricating oil remaining in the compression chamber. In addition, there is a drawback that the compressor is instantaneously reversed due to the backflow phenomenon into the compression chamber, damaging various parts.

また無負荷運転時には、前記アンローダの閉塞
によりシリンダー内の少なくとも吸入口付近すな
わち、吸入側は低圧状態となつていると共に、、
レシーバタンク内は高圧状態を維持しているた
め、この状態で圧縮機が停止すると前記レシーバ
タンク内に設けられた貯溜部の潤滑油に前記タン
ク内圧が加わり、この圧力差によりシリンダーの
圧縮室内へ潤滑油供給路を介して前記潤滑油が圧
縮室内へ除々に圧送され、ついには多量の潤滑油
がシリンダー内にたまる現象が生じる。。特に、
特開昭50−60811号の発明に見られるように前記
潤滑油噴射用ポンプに並設した他のポンプによつ
て、圧縮機の吐出室内の下方に流下する潤滑油を
配管を介して常時レシーバタンク内へ回収するこ
とにより、圧縮機の無負荷運転時前記吐出室内の
に前記スクリユロータにかかる背圧を除去して、
圧縮機の駆動力を節減するように構成した圧縮機
にあつては圧縮機の停止時には前記シリンダー内
は完全な真空状態となつているから、もし、この
状態で圧縮機の運転を停止すると、前記作用空間
内の負圧により前記貯溜部からスクリユロータ軸
端に設けた一のポンプを介してシリンダーの圧縮
室へ多量の潤滑油が流入する。かような、潤滑油
の流入は、言う迄もなく前記圧縮室内とレシーバ
タンク内との高低圧力差が解消しない限り避けら
れず、これによりシリンダー内の潤滑油量は不必
要な迄に増大するものとなるため、圧縮機の次回
始動時における、オイルロツクひいてはモータの
焼損、エンジンの始動不能等の故障の原因となる
ものであつた。
Furthermore, during no-load operation, due to the blockage of the unloader, at least the vicinity of the suction port in the cylinder, that is, the suction side, is in a low pressure state, and
Since the inside of the receiver tank maintains a high pressure state, when the compressor stops in this state, the tank internal pressure is added to the lubricating oil in the reservoir provided in the receiver tank, and this pressure difference causes the pressure to flow into the compression chamber of the cylinder. The lubricating oil is gradually forced into the compression chamber through the lubricating oil supply path, and eventually a large amount of lubricating oil accumulates in the cylinder. . especially,
As seen in the invention of JP-A No. 50-60811, the lubricating oil flowing downward into the discharge chamber of the compressor is constantly sent to the receiver via piping by another pump installed in parallel with the lubricating oil injection pump. By recovering the compressor into a tank, the back pressure applied to the screw rotor in the discharge chamber during no-load operation of the compressor is removed;
In a compressor configured to reduce the driving force of the compressor, the inside of the cylinder is in a complete vacuum state when the compressor is stopped, so if the compressor is stopped in this state, Due to the negative pressure in the working space, a large amount of lubricating oil flows from the reservoir into the compression chamber of the cylinder via one pump provided at the end of the screw rotor shaft. Needless to say, such an inflow of lubricating oil is unavoidable unless the pressure difference between the compression chamber and the receiver tank is resolved, and as a result, the amount of lubricating oil in the cylinder increases to an unnecessary extent. As a result, the next time the compressor is started, it causes failures such as oil lock, burnout of the motor, and inability to start the engine.

〔問題点を解決するための手段〕[Means for solving problems]

本考案はかような従来機における故障の原因を
除去すべく開発されたもので、図示の実施例によ
り構成を説明すると、吸入口26にアンローダ1
0を、吐出口38に逆止弁39を備え、該逆止弁
を介して連結したレシーバタンク40内をセパレ
ータ42により分割して、圧縮気体の前記セパレ
ータ通過前後を、それぞれ潤滑油の貯溜部65
と、油溜部50に分割形成し、前記貯溜部65を
ロータ21軸端に設けた一のポンプ24を介して
シリンダーの吸入気体の圧縮途中の圧縮室に開口
する噴射口27に配管接続し、さらに前記貯溜部
65をロータ21軸端に設けた他のポンプ25を
介して前記吐出口に配管接続し、且つ、前記油溜
部50を前記噴射口27よりも吐出側で、吐出口
38に連通しない位置にある圧縮室に電磁弁60
を介して配管接続すると共に、、前記電磁弁をレ
シーバタンクに取り付けた圧力スイツチ43およ
び圧縮機の停止スイツチPB−Sを介して電源に
接続し、前記電磁弁を、圧縮機の負荷運転中開放
し、ついで、前記吸入口26および吐出口38を
それぞれアンローダおよび逆止弁により閉塞し、
且つ前記電磁弁を閉鎖した無負荷運転の後、圧縮
機の停止と同時に、前記電磁弁60を開放して前
記油溜部とシリンダーの圧縮室を連通するよう構
成したことを特徴とするものである。
The present invention was developed to eliminate the causes of failures in conventional machines, and the configuration will be explained with reference to the illustrated embodiment.
0 is provided with a check valve 39 at the discharge port 38, and the inside of the receiver tank 40 connected through the check valve is divided by a separator 42, and the portions before and after the compressed gas passes through the separator are respectively connected to lubricating oil reservoirs. 65
The oil reservoir section 50 is divided and formed, and the reservoir section 65 is connected via a pump 24 provided at the end of the shaft of the rotor 21 to an injection port 27 that opens into a compression chamber in the middle of compressing intake gas of the cylinder. Further, the reservoir section 65 is connected to the discharge port via another pump 25 provided at the shaft end of the rotor 21, and the oil reservoir section 50 is connected to the discharge port 38 on the discharge side of the injection port 27. A solenoid valve 60 is installed in the compression chamber in a position that does not communicate with the
At the same time, the solenoid valve is connected to a power source through a pressure switch 43 attached to the receiver tank and a compressor stop switch PB-S, and the solenoid valve is opened during load operation of the compressor. Then, the suction port 26 and the discharge port 38 are respectively closed by an unloader and a check valve,
Further, after a no-load operation with the solenoid valve closed, the solenoid valve 60 is opened simultaneously with the stop of the compressor to communicate the oil sump with the compression chamber of the cylinder. be.

〔作用〕[Effect]

従つて、圧縮機の負荷運転中は前記圧力スイツ
チ43により電磁弁60を開放し、前記油溜部5
0の潤滑油を前記噴射口よりも吐出側で、吐出口
に連通しない位置に開口する回収孔61より圧縮
室内に回収する。
Therefore, during load operation of the compressor, the pressure switch 43 opens the solenoid valve 60 and the oil sump 5
0 lubricating oil is collected into the compression chamber through a collection hole 61 that opens at a position that is on the discharge side of the injection port and does not communicate with the discharge port.

また、無負荷運転への移行と同時に前記圧力ス
イツチ43により電磁弁を閉塞し、油溜部50内
の潤滑油の回収を停止すると共に、吸入口を閉塞
するため吐出口の逆止弁は閉塞し、他のポンプ2
5を介して前記吐出口38の下方に滞留する潤滑
油と気液混合状態の圧縮流体を貯溜部65に回収
すると共に吐出口内における圧縮機ロータの背圧
を除去しているから、作用空間内は負圧状態にあ
る。
Further, at the same time as the transition to no-load operation, the pressure switch 43 closes the electromagnetic valve to stop collecting the lubricating oil in the oil sump 50, and the check valve at the discharge port is closed to block the suction port. and other pump 2
5, the lubricating oil and the compressed fluid in a gas-liquid mixed state staying below the discharge port 38 are collected into the reservoir 65, and the back pressure of the compressor rotor in the discharge port is removed. is under negative pressure.

そして、圧縮機の停止と同時に、前記電磁弁を
開放し圧縮室内と、レシーバタンク内のセパレー
タにより分離形成された油溜部50とを連通する
ことにより、油溜部50の圧縮気体がシリンダー
内へ導入され、圧縮機の停止で各圧縮室間の潤滑
油の密封能力が無くなつているため、前記圧縮気
体の導入により、シリンダー内とレシーバタンク
内の圧力がすみやかに同圧となり、前記潤滑油の
貯溜部65とシリンダーの圧縮室との圧力差を解
消して前記潤滑油の貯溜部65からポンプ24を
介して噴射口27を経てシリンダーの圧縮室へ潤
滑油が流入することを阻止する。
At the same time as the compressor is stopped, the solenoid valve is opened to communicate the inside of the compression chamber with the oil sump 50 separated by the separator in the receiver tank, so that the compressed gas in the oil sump 50 is transferred into the cylinder. When the compressor is stopped, the sealing ability of the lubricating oil between each compression chamber is lost, so the introduction of the compressed gas quickly brings the pressure in the cylinder and the receiver tank to the same pressure, and the lubricating oil is removed. The pressure difference between the oil reservoir 65 and the compression chamber of the cylinder is eliminated to prevent lubricant oil from flowing from the lubricant reservoir 65 through the pump 24 and the injection port 27 into the compression chamber of the cylinder. .

〔実施例〕 以下、本考案の詳細を図示の一実施例にもとづ
き説明する。
[Example] Hereinafter, details of the present invention will be explained based on an illustrated example.

第1図は前述した特開昭50−60811号に示すス
クリユ圧縮機に本考案を用いた一例を示すもので
10はアンローダ、20はシリンダー、40はレ
シーバタンクである。。シリンダー20内に軸承
した雄ロータ21の吸入側の軸端22は図示せざ
るモータに連結され、シリンダー20の一方の端
壁23側すなわち吐出側の雄ロータ21の軸端に
は一のポンプ24及び他のポンプ25が並設され
ている。雄ロータ21はシリンダー20内で図示
せざる雌ロータに噛合し、両ロータは互いに反対
方向へ回転し、シリンダー20の吸入口26より
アンローダ10を介して作用気体を吸入し、吸入
側から吐出側へ容積を除々に減少する圧縮室によ
り圧縮して圧縮機の吐出口38より逆止弁39を
経由して圧縮気体をレシーバタンク40に供給す
る。一方、レシーバタンク内で圧縮気体からその
大半が分離された潤滑油はレシーバタンク内の下
部にある潤滑油の貯溜部65に流下し、そこから
オイルクーラ41により冷却され、雄ロータ21
の軸端に設けた前記一のポンプ24により油量調
整弁29を備える給油用の配管を介してシリンダ
ー20を成すケーシング20′に設けた噴射口2
7より圧縮室内へ噴射され、該圧縮室内の冷却、
潤滑、密封作用を行いながら、圧縮気体と共に吐
出口38へ吐出され、、そこから逆止弁39を介
してレシーバタンク40へ還流し以後上記作用を
反覆する。前記一のポンプ24に並設した他のポ
ンプ25は、吐出口38で分離し流下した潤滑油
と気液混合状態の圧縮流体を圧縮機の運転中常時
通孔28から吸入し、レシーバタンク40の貯留
部65へ回収する。
FIG. 1 shows an example in which the present invention is applied to the screw compressor disclosed in Japanese Patent Application Laid-Open No. 50-60811 mentioned above, in which 10 is an unloader, 20 is a cylinder, and 40 is a receiver tank. . A shaft end 22 on the suction side of the male rotor 21 supported in the cylinder 20 is connected to a motor (not shown), and a pump 24 is connected to the shaft end of the male rotor 21 on one end wall 23 side of the cylinder 20, that is, on the discharge side. and another pump 25 are arranged in parallel. The male rotor 21 meshes with a female rotor (not shown) inside the cylinder 20, and both rotors rotate in opposite directions, suck working gas through the unloader 10 from the suction port 26 of the cylinder 20, and move the working gas from the suction side to the discharge side. The compressed gas is compressed by a compression chamber whose volume gradually decreases, and the compressed gas is supplied to the receiver tank 40 from the discharge port 38 of the compressor via the check valve 39. On the other hand, the lubricating oil, most of which has been separated from the compressed gas in the receiver tank, flows down to the lubricating oil reservoir 65 located at the lower part of the receiver tank, from there it is cooled by the oil cooler 41, and the male rotor 21
The injection port 2 provided in the casing 20' forming the cylinder 20 is connected to the first pump 24 provided at the shaft end of the cylinder 20 via an oil supply pipe equipped with an oil amount adjustment valve 29.
7 into the compression chamber, cooling the compression chamber,
It is discharged together with the compressed gas to the discharge port 38 while performing lubrication and sealing action, and from there flows back to the receiver tank 40 via the check valve 39, whereupon the above-mentioned action is repeated. Another pump 25 installed in parallel with the first pump 24 sucks the compressed fluid in a gas-liquid mixed state with the lubricating oil separated at the discharge port 38 and flows through the receiver tank 40 at all times during operation of the compressor. Collected into the storage section 65 of.

レシーバタンク40内へ潤滑油と共に圧送され
た気液混合状態の圧縮気体は、仕切板45および
セパレータ42により潤滑油を分離した後、配管
46より保圧弁を介して使用に供される。レシー
バタンク40の圧縮気体の使用量が減少し、又圧
縮気体の使用を停止すると、レシーバタンク内の
圧力が所定値(7Kg/cm2)を超えることになる。
その時レシーバタンク40の圧力を検知して作動
する圧力スイツチ43により通電時閉型の電磁弁
11への電圧の印加が絶たれ該電磁弁11が開放
され、該電磁弁11を介してレシーバタンク40
の配管46と接続する配管12により、レシーバ
タンク内圧が、アンローダ10の1次側ダイアフ
ラム室に供給されダイヤフラム13を押圧し、ア
ンローダバルブ14が吸気口15を閉塞する。
The compressed gas in a gas-liquid mixed state that is pumped into the receiver tank 40 together with the lubricating oil is used after the lubricating oil is separated by the partition plate 45 and the separator 42 through the piping 46 and the pressure holding valve. When the amount of compressed gas used in the receiver tank 40 decreases and the use of compressed gas is stopped, the pressure inside the receiver tank exceeds a predetermined value (7 kg/cm 2 ).
At that time, the pressure switch 43, which is activated by detecting the pressure in the receiver tank 40, cuts off the voltage application to the electromagnetic valve 11, which is closed when energized, and opens the electromagnetic valve 11.
Receiver tank internal pressure is supplied to the primary side diaphragm chamber of the unloader 10 through the pipe 12 connected to the pipe 46 of the unloader 10 , presses the diaphragm 13 , and the unloader valve 14 closes the intake port 15 .

尚16は減圧弁で、該減圧弁16の入口側には
前記電磁弁11に接続する配管12を分岐接続
し、一方、減圧弁16の出口側はアンローダ10
の2次側ダイアフラム室に連通しダイヤフラム1
3と共働してアンローダバルブ14の作動圧力を
調整可能に設けられている。上記アンローダバル
ブ14による吸気口15の閉塞により圧縮機の吸
気は零となり、、ポンプ25により吐出口38内
の高圧圧縮気体が潤滑油と共に吸入されレシーバ
タンク40へと排出されており、また逆止弁39
がレシーバタンク40からの圧力と該逆止弁39
に設けた図示せざる発条の付勢により閉じられ、
無負荷運転に移行する。従つて、シリンダー20
内はほぼ真空に近い状態となり、レシーバタンク
40内の圧力と著しい格差を生ずる。
Reference numeral 16 designates a pressure reducing valve, and the inlet side of the pressure reducing valve 16 is connected to a branch pipe 12 that connects to the electromagnetic valve 11, while the outlet side of the pressure reducing valve 16 is connected to an unloader 10.
Diaphragm 1 communicates with the secondary diaphragm chamber of
3, the operating pressure of the unloader valve 14 can be adjusted. The intake air of the compressor becomes zero due to the blockage of the intake port 15 by the unloader valve 14, and the high-pressure compressed gas in the discharge port 38 is sucked together with lubricating oil by the pump 25 and discharged to the receiver tank 40. valve 39
is the pressure from the receiver tank 40 and the check valve 39
It is closed by the bias of a spring (not shown) provided in the
Shift to no-load operation. Therefore, the cylinder 20
The inside is almost in a vacuum state, creating a significant difference in pressure from the pressure inside the receiver tank 40.

一方、レシーバタンク40内には、圧縮気体中
に含まれた潤滑油分離のために、、仕切板45お
よびセパレータ42が設けられ、レシーバタンク
40内に送られた潤滑油は重力により圧縮気体か
らその大半が分離されレシーバタンク40内の仕
切板45の第1図右方の空間により形成される貯
溜部65に流下し、沈積する。圧縮気体から分離
されずにわずかに残つた霧状の油分は、セパレー
タ42を通過して圧縮気体と分離され、そこで分
離された潤滑油はセパレータ42及び前記圧縮気
体を外部へ供給する配管46の端部を連結したレ
シーバタンク40の側壁間のセパレータ42の第
1図左方に形成される空間から成る油溜部50に
浸潤する。。このように浸潤し、油溜部50に沈
積した油分によりセパレータ42の分離効果が低
下しないようにするために、前記油分の沈積個所
である油溜部50の底部近傍にここに沈積した潤
滑油の回収用配管44の一端を接続すると共に、
電磁弁60を介して、他端をケーシング20′の
前記噴射口よりも吐出側で、吐出口38に連通し
ない位置の圧縮室、図示の実施例では吐出口38
前の圧縮作用空間、に開口する回収孔61(第1
図)に接続している。すなわち、この圧縮室は前
記油溜部50内の圧力よりも低く且つ、前記潤滑
油中の圧縮気体が再膨張して圧縮機の負荷動力を
増加せしめることのない範囲の圧力状態にある作
用空間に相当する。
On the other hand, a partition plate 45 and a separator 42 are provided in the receiver tank 40 to separate the lubricating oil contained in the compressed gas, and the lubricating oil sent into the receiver tank 40 is separated from the compressed gas by gravity. Most of it is separated and flows down to a reservoir 65 formed by the space on the right side of the partition plate 45 in the receiver tank 40 in FIG. 1, where it is deposited. A small amount of mist-like oil that remains without being separated from the compressed gas passes through the separator 42 and is separated from the compressed gas, and the lubricating oil separated there is passed through the separator 42 and the piping 46 that supplies the compressed gas to the outside. The oil infiltrates into an oil sump 50 which is a space formed on the left side of the separator 42 in FIG. 1 between the side walls of the receiver tank 40 whose ends are connected. . In order to prevent the separation effect of the separator 42 from deteriorating due to the oil that has infiltrated and deposited in the oil sump 50, the lubricating oil that has been deposited near the bottom of the oil sump 50, where the oil is deposited, is While connecting one end of the recovery pipe 44,
Via the electromagnetic valve 60, the other end of the compression chamber is located on the discharge side of the injection port of the casing 20' and does not communicate with the discharge port 38, in the illustrated embodiment, the discharge port 38.
A recovery hole 61 (first
(Figure). In other words, this compression chamber is a working space in which the pressure is lower than the pressure in the oil sump 50 and within a pressure range in which the compressed gas in the lubricating oil does not expand again and increase the load power of the compressor. corresponds to

そして、レシーバタンク内の圧力が一定値以上
のとき、すなわち、無負荷運転時においては前記
アンローダ10の閉塞により該レシーバタンク内
は圧縮気体の流通が停止し、セパレータによる油
分離作用も停止するから前記電磁弁60を閉じて
シリンダー内に不必要に圧縮気体が供給されない
ようにし、又レシーバタンク内の圧力が一定値以
下のとき、すなわち、負荷運転時においては、前
記電磁弁60を開いて、セパレータで分離され油
溜部50の下方に沈積した油分を圧力差を利用し
て前記圧縮室へ回収するようになつている。
When the pressure in the receiver tank is above a certain value, that is, during no-load operation, the unloader 10 is blocked, and the flow of compressed gas in the receiver tank is stopped, and the oil separation action by the separator is also stopped. The solenoid valve 60 is closed to prevent compressed gas from being unnecessarily supplied into the cylinder, and the solenoid valve 60 is opened when the pressure in the receiver tank is below a certain value, that is, during load operation. The oil separated by the separator and deposited below the oil sump 50 is recovered into the compression chamber using a pressure difference.

本考案の実施例は、セパレータで分離された油
分を圧縮機のシリンダー内へ回収する前記電磁弁
60を有する回収用配管44を、圧縮機停止と同
時に圧縮機のシリンダー内とレシーバタンクとを
連通する均圧通路として利用するものである。
In the embodiment of the present invention, the recovery piping 44 having the electromagnetic valve 60 for recovering the oil separated by the separator into the cylinder of the compressor is connected to the inside of the cylinder of the compressor and the receiver tank at the same time as the compressor is stopped. It is used as a pressure equalizing passage.

すなわち、前記電磁弁60を通電時閉型とし、
圧力スイツチ43のA接点側に接続することによ
り、無負荷運転時、負荷運転時の電磁弁60の前
記作用をそこなうことなく、圧縮機停止と同時に
電磁弁60を開いてレシーバタンクとシリンダー
の圧縮作用空間内とを連通し、両空間内をすみや
かに同圧として、潤滑油のシリンダー内への逆流
を防止するもので、電磁弁60を通電時閉型とし
圧力スイツチ43のA接点側に、直列に接続し、
同様にアンローダ10に至る電磁弁11を通電時
閉型として圧力スイツチ43のB接点側に直列に
接続する。
That is, the solenoid valve 60 is of a closed type when energized,
By connecting to the A contact side of the pressure switch 43, the solenoid valve 60 is opened at the same time as the compressor is stopped, and the receiver tank and cylinder are compressed without impairing the action of the solenoid valve 60 during no-load operation or load operation. The solenoid valve 60 is closed when energized and is connected to the A contact side of the pressure switch 43. connect in series,
Similarly, a solenoid valve 11 leading to the unloader 10 is closed when energized and is connected in series to the B contact side of the pressure switch 43.

すなわち、第2図に示すように、電源Eと接続
されるラインl,l′間に、前記圧力スイツチ43
のA接点、電磁弁60からなる直列回路、圧力ス
イツチ43のB接点、電磁弁11からなる直列回
路、図示しない圧縮機駆動用モータの接点を開閉
するリレーM、自己保持用接点Xaを開閉するリ
レーXを並列に接続し、ラインl間に、前記接点
Xaと並列に接続された圧縮機起動スイツチPB−
L、圧縮機停止スイツチPB−Sを直列に接続す
る。
That is, as shown in FIG. 2, the pressure switch 43 is connected between the lines l and l' connected to the power source E.
A series circuit consisting of the A contact of the pressure switch 43, a series circuit consisting of the solenoid valve 60, a B contact of the pressure switch 43, a series circuit consisting of the solenoid valve 11, a relay M that opens and closes the contacts of the compressor drive motor (not shown), and a self-holding contact Xa that opens and closes it. Relays X are connected in parallel, and the contacts are connected between lines L.
Compressor start switch PB− connected in parallel with Xa
Connect L and compressor stop switch PB-S in series.

しかして、起動スイツチPB−Lを押すとリレ
ーXが励磁され、接点XaをONとし、自己保持
するとともに、同時にリレーMが励磁され、圧縮
機駆動用モータの接点がONとなつて圧縮機は駆
動される。レシーバタンク40内の圧力が一定値
以下のときは、圧力スイツチ43は第2図の位置
にあり、接点AはOFF、接点BはONとなつてお
り電磁弁11は通電され、閉じており、一方電磁
弁60は非通電のため開いている。従つて、セパ
レータ42で分離されたセパレータの油溜部50
に沈積した油分は回収用配管44を介して圧縮機
のシリンダー内へ回収される。圧縮気体の使用量
が減少し、レシーバタンク内圧が一定の圧力まで
上昇すると、圧力スイツチ43が作動し、その接
点AはON、接点BはOFFとなる。従つて、電磁
弁11は非通電となり電磁弁11は開かれ、前述
のように配管12を介してレシーバタンク内圧
が、アンローダ10の1次側ダイアフラム室に供
給されダイヤフラム13を押圧し、アンローダ1
0は吸気を閉塞し、圧縮機は無負荷運転に移行す
る。このとき、電磁弁60は圧力スイツチ43の
接点AのONで閉じられる。一方油量調整弁29
も前記電磁弁11に連動して油通路を狭小にして
流量を減量調整する。またアンローダ10の吸気
閉塞により逆止弁39が閉じるから吐出口38内
はレシーバタンクに至る配管と遮断され作用空間
内は負圧となる。このとき、ポンプ25の吸引作
用により前記吐出口内に残留する圧縮気体と潤滑
油の気液混合状態の圧縮流体がレシーバタンクへ
回収されるので前記吐出口内は急速に圧力を低下
させ該吐出口内において圧縮機ロータに作用する
背圧も除去される。これによりシリンダーの圧縮
作用空間内はほぼ真空に近い状態で無負荷運転を
継続することとなる。
When start switch PB-L is pressed, relay Driven. When the pressure in the receiver tank 40 is below a certain value, the pressure switch 43 is in the position shown in FIG. 2, contact A is OFF, contact B is ON, and the solenoid valve 11 is energized and closed. On the other hand, the solenoid valve 60 is open because it is not energized. Therefore, the oil reservoir portion 50 of the separator separated by the separator 42
The oil deposited in the compressor is recovered into the cylinder of the compressor via the recovery piping 44. When the amount of compressed gas used decreases and the internal pressure of the receiver tank rises to a certain level, the pressure switch 43 is activated, and its contact A is turned ON and its contact B is turned OFF. Therefore, the solenoid valve 11 is de-energized, the solenoid valve 11 is opened, and as described above, the receiver tank internal pressure is supplied to the primary side diaphragm chamber of the unloader 10 through the piping 12, presses the diaphragm 13, and the unloader 1
0 closes the intake air and the compressor shifts to no-load operation. At this time, the solenoid valve 60 is closed by turning on the contact A of the pressure switch 43. On the other hand, oil amount adjustment valve 29
In conjunction with the electromagnetic valve 11, the oil passage is narrowed to reduce the flow rate. Further, since the check valve 39 is closed due to the intake blockage of the unloader 10, the inside of the discharge port 38 is cut off from the piping leading to the receiver tank, and the inside of the working space becomes negative pressure. At this time, the compressed fluid in the gas-liquid mixed state of compressed gas and lubricating oil remaining in the discharge port is recovered to the receiver tank by the suction action of the pump 25, so that the pressure in the discharge port is rapidly reduced and the pressure in the discharge port is reduced. Back pressure acting on the compressor rotor is also removed. As a result, no-load operation continues with the compression space of the cylinder in a nearly vacuum state.

もし、この状態で圧縮機の運転を停止すると、
前述のように、前記作用空間内の負圧により前記
貯溜部65をロータ21の軸端に設けた一のポン
プ24を介してシリンダーの吸入気体の圧縮途中
の圧縮室に連通する噴射口27から大量の潤滑油
が送り込まれる結果になる。
If the compressor is stopped in this condition,
As mentioned above, the negative pressure in the working space causes the reservoir 65 to flow from the injection port 27 communicating with the compression chamber in the middle of compressing the intake gas of the cylinder via one pump 24 provided at the shaft end of the rotor 21. This results in a large amount of lubricant being pumped.

本考案においては、次いで、停止スイツチPB
−Sを押すとリレーX,M、電磁弁11,60は
いずれも非通電となり、圧縮機は停止し、電磁弁
11は非通電であるから開いた状態のままであ
り、一方、電磁弁60も非通電したがつて開とな
る。従つて、レシーバタンク40内の高圧圧縮気
体が回収用配管44を介し負圧の状態にあるシリ
ンダー20の作用空間内へ供給され、これにより
シリンダー内の圧力は速やかに昇圧しレシーバタ
ンク40内の圧力と同じになる。従つて、レシー
バタンク40の貯溜部65とケーシング20′に
設けた噴射口27を接続する配管からシリンダー
20内への潤滑油の流入が阻止される。
In the present invention, next, the stop switch PB
- When S is pressed, relays X and M and solenoid valves 11 and 60 are all de-energized, the compressor is stopped, and solenoid valve 11 remains open because it is de-energized, while solenoid valve 60 is de-energized. is also de-energized and becomes open. Therefore, the high-pressure compressed gas in the receiver tank 40 is supplied through the recovery pipe 44 into the working space of the cylinder 20, which is in a negative pressure state, and as a result, the pressure in the cylinder increases rapidly and the pressure in the receiver tank 40 increases. It will be the same as the pressure. Therefore, lubricating oil is prevented from flowing into the cylinder 20 from the pipe connecting the reservoir 65 of the receiver tank 40 and the injection port 27 provided in the casing 20'.

尚62は電磁弁で、アンローダ10に至る電磁
弁11と同様非通電時開型から成り、従つて、停
止スイツチPB−SOFFで開き、レシーバタンク
内の高圧ガスを除々に大気へ放出する。
Reference numeral 62 designates a solenoid valve, which, like the solenoid valve 11 leading to the unloader 10, is of the type that opens when energized, and is therefore opened by the stop switch PB-SOFF to gradually release the high pressure gas in the receiver tank to the atmosphere.

なお、本考案は上記実施例に限定されるもので
なくレシーバタンク及びセパレータの構造も、本
考案の前記作用を損わない範囲のものであれば公
知のいかなる構造のものであつてもよいことは言
うまでもない。又、本考案は叙上のスクリユ回転
圧縮機に限らず、例えば実公昭42−13732号、実
公昭55−22227号、特開昭55−43211号等に示され
るように、ロータ外周に設けたロータ溝にベーン
を有するベーン型、また特開昭50−72206号、実
公昭52−6884号、実公昭56−53102号等に示され
るように、ロータ外周にウオームを有するウオー
ム型の油冷式回転圧縮機においても、また、特開
昭51−28207号に示されるごとく、ウオーム型、
ベーン型を含む他の油冷式回転圧縮機において
も、圧縮室を形成する具体的手段が異なるほかは
略同様の構成を有して全体を構成しており、した
がつて、本願考案と同様の技術的課題が潜在し、
かような他の型式の油冷式回転圧縮機にも本願考
案を適用して本願考案の作用、効果を得ることが
可能である。
Note that the present invention is not limited to the above embodiments, and the structure of the receiver tank and separator may be any known structure as long as it does not impair the above-mentioned effects of the present invention. Needless to say. Furthermore, the present invention is not limited to the screw rotary compressor mentioned above, but is also applicable to compressors provided on the outer periphery of the rotor, as shown in, for example, Japanese Utility Model Publication No. 42-13732, Japanese Utility Model Publication No. 55-22227, and Japanese Unexamined Patent Publication No. 55-43211. A vane type with a vane in the rotor groove, and a worm type oil-cooled type with a worm on the outer periphery of the rotor, as shown in Japanese Patent Application Laid-Open No. 72206/1983, Japanese Utility Model Publication No. 52-6884, Japanese Utility Model Publication No. 56-53102, etc. In rotary compressors, worm type,
Other oil-cooled rotary compressors, including vane-type rotary compressors, have substantially the same overall structure except for the specific means for forming compression chambers, and therefore are similar to the invention of the present invention. potential technical challenges,
It is possible to apply the present invention to such other types of oil-cooled rotary compressors to obtain the functions and effects of the present invention.

〔効果〕〔effect〕

以上のように本考案によれば、シリンダーの圧
縮室へ圧縮気体を導入する配管を、圧縮室内の潤
滑・密封・冷却を行うためのレシーバタンクの潤
滑油の貯溜部とシリンダーの圧縮室とを連通する
潤滑油の給油用配管とは別個に設けた、レシーバ
タンク内の油溜部に沈積した分離油をシリンダー
へ回収する管路とし、該管路はレシーバタンク内
の油溜部からシリンダーの前記噴射口よりも吐出
側で、吐出口に連通しない位置にある圧縮室へ連
通されているものである。すなわち、圧縮気体は
圧縮機の停止と同時にシリンダーの前記圧縮室内
に導入し、速やかにシリンダーの内圧を高め、噴
射口から流入する潤滑油を直ちに阻止する。
As described above, according to the present invention, the piping for introducing compressed gas into the compression chamber of the cylinder is connected to the lubricating oil reservoir of the receiver tank for lubricating, sealing, and cooling the compression chamber and the compression chamber of the cylinder. A pipe is provided separately from the lubricating oil supply pipe that communicates with the cylinder to collect the separated oil deposited in the oil sump in the receiver tank, and the pipe is connected to the cylinder from the oil sump in the receiver tank. It communicates with a compression chamber located on the discharge side of the injection port and not in communication with the discharge port. That is, the compressed gas is introduced into the compression chamber of the cylinder at the same time as the compressor is stopped, and the internal pressure of the cylinder is immediately increased to immediately block the lubricating oil flowing from the injection port.

したがつて、圧縮機を無負荷運転から停止した
場合に従来発生した、潤滑油のレシーバタンクか
らシリンダー内への大量流入という事態を阻止し
て次回始動時におけるオイルロツクを防ぎ、圧縮
機の故障を無くすと共に円滑な始動運転を可能に
したものである。
Therefore, this prevents a large amount of lubricating oil from flowing into the cylinder from the receiver tank, which conventionally occurs when the compressor is stopped from no-load operation, thereby preventing oil lock at the next startup and preventing compressor failure. This eliminates the problem and enables smooth starting operation.

また、停止後に発生するレシーバタンクからシ
リンダー内への潤滑油の流入を最小限にとどめる
ことができると共に、停止時に瞬間的に生じる圧
縮機の逆転現象も回避できる。付言するならば、
実測値で機械停止時のシリンダー内の油量を約20
%強減少した(37KWで3→0.58)。かよう
にオイルロツクによる故障の発生を完全に防止し
て、前記動力消費節減機構を一層有効たらしめ、
極めて効果大なるものといえる。
Further, it is possible to minimize the inflow of lubricating oil from the receiver tank into the cylinder after the engine is stopped, and it is also possible to avoid the reversal phenomenon of the compressor that occurs instantaneously when the engine is stopped. If I may add,
The amount of oil in the cylinder when the machine is stopped is approximately 20% by actual measurement.
It decreased by just over % (3 at 37KW → 0.58). In this way, the occurrence of failures due to oil lock is completely prevented, and the power consumption saving mechanism is made even more effective.
It can be said that it is extremely effective.

さらにまた、本考案は従来より設けられていた
セパレータで分離された油をシリンダー内に回収
する通路を圧縮機停止時シリンダー内とレシーバ
タンクを同圧とする均圧通路として利用するもの
であるから、その構造も極めて簡単でその実用的
効果は大なるものといえる。
Furthermore, the present invention utilizes the conventional path for collecting oil separated by a separator into the cylinder as a pressure equalizing path that maintains the same pressure in the cylinder and receiver tank when the compressor is stopped. Its structure is extremely simple, and its practical effects can be said to be great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案の一実施例を示すもので、第1図は
本考案を実施したスクリユ圧縮機を示し、第2図
は本考案のシーケンスの一例を示す。 10……アンローダ、20……シリンダー、2
1……スクリユロータ、24,25……ポンプ、
26……吸入口、38……吐出口、39……逆止
弁、40……レシーバタンク、42……セパレー
タ、45……仕切板、43……圧力スイツチ、4
4……回収用配管、46……配管、50……油溜
部、60……電磁弁、65……貯溜部、PB−S
……圧縮機停止スイツチ。
The drawings show an embodiment of the present invention; FIG. 1 shows a screw compressor implementing the present invention, and FIG. 2 shows an example of the sequence of the present invention. 10...Unloader, 20...Cylinder, 2
1... Screw rotor, 24, 25... Pump,
26... Suction port, 38... Discharge port, 39... Check valve, 40... Receiver tank, 42... Separator, 45... Partition plate, 43... Pressure switch, 4
4...Recovery piping, 46...Piping, 50...Oil reservoir section, 60...Solenoid valve, 65...Storage section, PB-S
...Compressor stop switch.

Claims (1)

【実用新案登録請求の範囲】 吸入口にアンローダを、吐出口に逆止弁を備
え、該逆止弁を介して吐出口に連結したレシーバ
タンクを有し、該レシーバタンク内をセパレータ
により分割して、圧縮気体の前記セパレータ通過
前後を、それぞれ潤滑油の貯溜部と、油溜部に分
割形成し、前記貯溜部をロータ軸端に設けた一の
ポンプを介してシリンダーの吸入気体の圧縮途中
の圧縮室に開口する噴射口に配管接続し、さらに
前記貯溜部をロータ軸端に設けた他のポンプを介
して前記吐出口に配管接続し、前記吸入口および
吐出口をそれぞれアンローダおよび逆止弁により
閉塞した無負荷運転の後、運転を停止せしめる油
冷式回転圧縮機において、 前記油溜部を前記噴射口よりも吐出側で、吐出
口に連通しない位置にある圧縮室に電磁弁を介し
て配管接続すると共に、前記電磁弁を、圧縮機の
負荷運転中および停止と同時に開放し無負荷運転
移行時に閉鎖するよう、レシーバタンクに取り付
けた圧力スイツチおよび圧縮機の停止スイツチを
介して、電源に接続したことを特徴とする油冷式
回転圧縮機。
[Claims for Utility Model Registration] A receiver tank is provided with an unloader at the suction port and a check valve at the discharge port, the receiver tank is connected to the discharge port via the check valve, and the inside of the receiver tank is divided by a separator. The portions before and after the compressed gas passes through the separator are divided into a lubricating oil reservoir and an oil reservoir, respectively, and the reservoir is used during compression of the gas taken into the cylinder through a pump provided at the end of the rotor shaft. The reservoir section is connected via piping to an injection port opening into a compression chamber, and the reservoir section is connected via piping to the discharge port via another pump provided at the end of the rotor shaft. In an oil-cooled rotary compressor that stops operation after a no-load operation that is blocked by a valve, a solenoid valve is installed in a compression chamber in which the oil reservoir is located on the discharge side of the injection port and does not communicate with the discharge port. via a pressure switch attached to the receiver tank and a compressor stop switch, so that the solenoid valve is opened during load operation and at the same time as the compressor is stopped, and closed when transitioning to no-load operation. An oil-cooled rotary compressor characterized by being connected to a power source.
JP279782U 1982-01-14 1982-01-14 oil-cooled rotary compressor Granted JPS58106588U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP279782U JPS58106588U (en) 1982-01-14 1982-01-14 oil-cooled rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP279782U JPS58106588U (en) 1982-01-14 1982-01-14 oil-cooled rotary compressor

Publications (2)

Publication Number Publication Date
JPS58106588U JPS58106588U (en) 1983-07-20
JPH0139914Y2 true JPH0139914Y2 (en) 1989-11-30

Family

ID=30015753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP279782U Granted JPS58106588U (en) 1982-01-14 1982-01-14 oil-cooled rotary compressor

Country Status (1)

Country Link
JP (1) JPS58106588U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356044B2 (en) * 2021-03-31 2023-10-04 ダイキン工業株式会社 Screw compressor and refrigeration equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144890U (en) * 1979-04-04 1980-10-17

Also Published As

Publication number Publication date
JPS58106588U (en) 1983-07-20

Similar Documents

Publication Publication Date Title
JP3456090B2 (en) Oil-cooled screw compressor
JPS5930919B2 (en) Liquid volume and gas capacity adjustment device for liquid-cooled rotary compressors
KR101291228B1 (en) Rotary vacuum pump
US6599109B2 (en) Scroll compressor with improved oil flow
US4553906A (en) Positive displacement rotary compressors
JP2000080983A (en) Compressor
US5098266A (en) Lubrication of a horizontal rotary compressor
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
US5341658A (en) Fail safe mechanical oil shutoff arrangement for screw compressor
JP4145830B2 (en) Oil-cooled compressor
JPH0139914Y2 (en)
JP2008128085A (en) Oil cooled screw compressor and load reducing method for oil cooled screw compressor
EP0761975A1 (en) Gas compressor
JPH0231595Y2 (en)
JPH08543Y2 (en) Oil-cooled screw compressor
JP2583944B2 (en) Compressor
JP2002317784A (en) Rotary two-stage compressor
JPH088312Y2 (en) Oil-cooled rotary compressor
JP3487737B2 (en) Oil-cooled compressor
JPH10196575A (en) Oil feeding structure of oil-cooled screw compressor
JPH0227198Y2 (en)
JPS61101693A (en) Oil free displacement type hydraulic machine
JPS6341593Y2 (en)
JPH0121193Y2 (en)
JPS5941036B2 (en) oil-cooled rotary compressor