JP3456090B2 - Oil-cooled screw compressor - Google Patents

Oil-cooled screw compressor

Info

Publication number
JP3456090B2
JP3456090B2 JP11939696A JP11939696A JP3456090B2 JP 3456090 B2 JP3456090 B2 JP 3456090B2 JP 11939696 A JP11939696 A JP 11939696A JP 11939696 A JP11939696 A JP 11939696A JP 3456090 B2 JP3456090 B2 JP 3456090B2
Authority
JP
Japan
Prior art keywords
oil
pipe
opening
drain water
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11939696A
Other languages
Japanese (ja)
Other versions
JPH09303279A (en
Inventor
正幸 山後
光雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP11939696A priority Critical patent/JP3456090B2/en
Priority to CN97102361A priority patent/CN1083537C/en
Publication of JPH09303279A publication Critical patent/JPH09303279A/en
Application granted granted Critical
Publication of JP3456090B2 publication Critical patent/JP3456090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、油冷式圧縮機に関
し、特にレシーバタンク内のドレン水抜き作業を不要と
した油冷式スクリュ圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-cooled compressor, and more particularly to an oil-cooled screw compressor that does not require drain water draining work in a receiver tank.

【0002】[0002]

【発明が解決しようとする課題】従来油冷式スクリュ圧
縮機は、吸込流路を介して導入した外気をシリンダに設
けた雄雌ー対のスクリュロータの回転により圧縮し、圧
縮空気はシリンダの吐出口から高温の圧縮気体と油の混
合流体となってレシーバタンク内に圧送される。その
後、大きな油滴は比重差により、レシーバタンク下方の
油溜に流下して溜る。一方ミスト状の圧縮空気と油の混
合気体はレシーバタンク内に設けられた油分離器により
圧縮気体と油とに分離され、清浄化された圧縮空気は供
給口から消費側に送り出される。また、レシーバタンク
下方の油溜に貯溜された油は、該タンク内の圧縮空気圧
力により圧縮作用空間内の冷却・潤滑、及びスクリュロ
ータとシリンダ間の密封やスクリュロータ軸を支持する
軸受、軸封装置等の潤滑のため供給される。
In the conventional oil-cooled screw compressor, the outside air introduced through the suction passage is compressed by the rotation of a pair of male and female screw rotors provided in the cylinder, and compressed air is compressed in the cylinder. From the discharge port, it becomes a mixed fluid of high-temperature compressed gas and oil and is pumped into the receiver tank. After that, the large oil drops flow down and accumulate in the oil reservoir below the receiver tank due to the difference in specific gravity. On the other hand, the mixed gas of mist-like compressed air and oil is separated into compressed gas and oil by an oil separator provided in the receiver tank, and the purified compressed air is sent out from the supply port to the consumer side. Further, the oil stored in the oil reservoir below the receiver tank is cooled and lubricated in the compression working space by the compressed air pressure in the tank, and the bearing between the screw rotor and the cylinder and the shaft and shaft supporting the screw rotor shaft are supported. Supplied for lubrication of sealing devices.

【0003】このような油冷式圧縮機においては、外気
を導入してこれを圧縮後レシーバタンク内に一時的に貯
溜した後消費側に供給するものであるが、圧縮空気の消
費量が少なくなるとレシーバタンク内における圧縮空気
の滞留時間が長くなり、したがってこの間に圧縮空気の
温度も低下するため、該空気中の水分がレシーバタンク
内で結露し、ドレン水となってレシーバタンク内の油溜
底部に溜る。そして、このドレン水が蓄積すると油と混
合して油の性状劣化や、乳化現象を引き起こす。これに
より劣化または乳化した油とドレン水の混合液がシリン
ダ内や軸受装置等に送出されるため、正常な冷却・潤滑
等の作用を行うことができず、摺動部の焼付や各機器の
内部に錆を発生させるという問題があった。このため、
毎日始業時にはレシーバタンクの油溜底部に溜まったド
レン水をいちいちドレンコックを開いて抜かなければな
らないという煩わしさがあった。
In such an oil-cooled compressor, the outside air is introduced, compressed and temporarily stored in the receiver tank and then supplied to the consumer side, but the consumption of compressed air is small. If so, the residence time of the compressed air in the receiver tank becomes longer, and therefore the temperature of the compressed air also drops during this time, so that the moisture in the air condenses in the receiver tank and becomes drain water, and the oil reservoir in the receiver tank accumulates. Collect at the bottom. When the drain water accumulates, it mixes with the oil, causing deterioration of the properties of the oil and an emulsification phenomenon. As a result, a mixed liquid of deteriorated or emulsified oil and drain water is sent to the inside of the cylinder, bearing device, etc., and normal cooling and lubrication operations cannot be performed, causing seizure of sliding parts and There was a problem that rust was generated inside. For this reason,
When starting work every day, the drain water that had collected at the bottom of the oil reservoir of the receiver tank had to be opened and drained one by one.

【0004】このようなドレン水抜き作業を不要する構
造として、例えば特公平7−117051号公報の油冷
式圧縮機が公知である。この従来の油冷式圧縮機では、
レシーバタンク下方に溜った油とドレン水の混合流体を
レシーバタンクの下部からこのレシーバタンク内の圧力
よりも低いロータ室に油分離器のヘッダー部に生じたド
レン水と共に差圧を利用して直接配管で導入するように
構成し、圧縮熱により昇温した圧縮空気と共に消費側に
排出することにより前記ドレン水抜き作業をなくするよ
うにしている。
An oil-cooled compressor disclosed in, for example, Japanese Patent Publication No. 7-117051, is known as a structure that does not require such drainage work. In this conventional oil-cooled compressor,
The mixed fluid of oil and drain water accumulated below the receiver tank is directly applied from the bottom of the receiver tank to the rotor chamber, which is lower than the pressure inside the receiver tank, together with the drain water generated in the header part of the oil separator by using the differential pressure. The drain water draining operation is eliminated by discharging the drain water together with the compressed air heated by the compression heat to the consumer side.

【0005】しかしながら、この従来のものは以下の問
題を有する。第一に、レシーバタンク下方から作用空間
内に導入される潤滑油は作用空間内の冷却・潤滑・密封
を行うものであるのに対し、ドレン水と油とが混合状態
で導入されるため、特に湿度が高くかつ消費空気量が少
なくレシーバタンク内における圧縮空気の滞留時間が長
い環境下ではドレン水の発生も多く、よって油中の水分
比率が多くなり、これにより各摺動部の潤滑不良による
焼付けや異常磨耗を促進する結果となる。第二に、ドレ
ン水を含む油の導入先は、圧縮機の吸入口から圧縮作用
空間に至る範囲の圧力の低い位置であるため、前記ドレ
ン水の導入先以降の通路や、作用空間内に多量の錆が発
生し易く、また圧縮初期の過程にある為圧縮空気の昇温
もそれ程高くない。第三には消費側の消費空気量に対応
してアンローダ装置を開閉制御する、いわゆる全負荷運
転と無負荷運転の繰返し時において、無負荷運転時には
アンローダ装置が閉弁状態となりシリンダ内への吸入空
気の流入が停止する。そのため、圧縮機本体内の吸入側
は負圧となりレシーバタンク内との差圧は一層大きくな
ってドレン水を含む潤滑油の作用空間内への流入量も増
大するため、圧縮機本体の動力ロスが一層大きくなると
いう問題を内在している。
However, this conventional device has the following problems. First, while the lubricating oil introduced into the working space from below the receiver tank cools, lubricates and seals the working space, the drain water and oil are introduced in a mixed state, Especially in an environment where the humidity is high and the amount of air consumed is small and the residence time of compressed air in the receiver tank is long, drain water is often generated, and the water content in the oil increases, which results in poor lubrication of each sliding part. As a result, it is possible to accelerate seizure and abnormal wear. Secondly, since the destination of the oil containing drain water is a position where the pressure in the range from the suction port of the compressor to the compression working space is low, the passage after the destination of the drain water and the working space are A large amount of rust is easily generated, and the temperature rise of the compressed air is not so high because it is in the early stage of compression. Thirdly, when the unloader device is controlled to open and close according to the amount of air consumed on the consuming side, so-called full-load operation and no-load operation are repeated, the unloader device is closed during no-load operation, and intake into the cylinder is performed. Air inflow stops. Therefore, the suction side in the compressor body becomes a negative pressure, and the differential pressure between the receiver tank and the receiver tank further increases, and the amount of lubricating oil containing drain water flowing into the working space also increases. Is inherent in the problem of becoming larger.

【0006】そこで、本発明は前記問題を解決して、雄
雌スクリュロータ、シリンダ等の各摺動部の潤滑を良好
に行うと共に、ドレン水の回収をも良好に行うことがで
きる油冷式スクリュ圧縮機を提供することを目的とす
る。
In view of the above, the present invention solves the above problems and satisfactorily lubricates the sliding parts of the male and female screw rotors, cylinders, etc., and also collects drain water satisfactorily. The object is to provide a screw compressor.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1の油冷
式スクリュ圧縮機は、ケーシング内に雄雌一対のスクリ
ュロータを回転自在に収納する圧縮機本体と、該圧縮機
本体の吸入口に設けた吸入空気量制御用のアンローダ装
置と、前記圧縮機本体の吐出口と連通して設けたレシー
バタンクと、このレシーバタンクと連通し、圧縮機本体
から吐出された圧縮空気中の油を分離する油分離器とを
設けた油冷式スクリュ圧縮機において、前記スクリュロ
ータを収納するケーシングのシリンダ内に、先行する雄
雌スクリュロータのシール線が吐出開始位置にあるとき
に、該スクリュロータの溝幅だけ吸入側に隣り合うシー
ル線の吸入側直近に第一の開口を穿設する一方、該第一
の開口よりもさらに吸入側寄りでかつ前記雄雌スクリュ
ロータの後行するシール線が吸入閉込み位置にあるとき
に、該スクリュロータの溝幅だけ吐出側に隣り合うシー
ル線よりも吐出側寄りの位置に第二の開口を穿設し、該
第二の開口にはレシーバタンクの油溜底部よりも上方位
置と連通する油供給用の第一の配管を連通させる一方、
レシーバタンクの油溜底部と連通するドレン水回収用の
第二の配管を、前記油分離器の底部と連通する油回収用
の第三の配管と合流させて前記ケーシングの第一の開口
に連通させて構成し、ドレン水を含まない清浄な油のみ
を、第一の配管を介して吸入空間と連通することのない
密閉状態の作用空間に開口する第二の開口へ導入し、雄
雌スクリュロータ及びシリンダの表面の油膜を確実に形
成させた後、油溜底部に溜ったドレン水のみを第二の配
管を介して取り出し、さらにこれを油分離器の底部から
回収される微量の回収油の管路である第三の配管を介し
て合流させて前記第一の開口に導入することにより、吐
出直前の高温の圧縮気体の圧縮熱によりドレン水を蒸発
させて圧縮空気と共にレシーバタンク外に排出するもの
である。
According to a first aspect of the present invention, there is provided an oil-cooled screw compressor, a compressor main body for rotatably housing a pair of male and female screw rotors in a casing, and a suction of the compressor main body. An unloader device for controlling the intake air amount provided in the mouth, a receiver tank provided in communication with the discharge port of the compressor body, and an oil in the compressed air discharged from the compressor body in communication with the receiver tank. In an oil-cooled screw compressor provided with an oil separator for separating the screw rotor, when the seal line of the preceding male and female screw rotor is located at the discharge start position in the cylinder of the casing that houses the screw rotor, The first opening is formed in the vicinity of the suction side of the seal line adjacent to the suction side by the groove width of the rotor, and is further closer to the suction side than the first opening and follows the male and female screw rotors. When the rule line is at the suction closed position, a second opening is formed at a position closer to the discharge side than the seal line adjacent to the discharge side by the groove width of the screw rotor, and the second opening is formed in the second opening. While connecting the first pipe for oil supply that communicates with the position above the oil reservoir bottom of the receiver tank,
A second pipe for collecting drain water communicating with the bottom of the oil reservoir of the receiver tank is joined to a third pipe for collecting oil communicating with the bottom of the oil separator to communicate with the first opening of the casing. Only the clean oil that does not contain drain water is introduced into the second opening that opens into the closed working space that does not communicate with the suction space through the first pipe. After surely forming the oil film on the surface of the rotor and cylinder, take out only the drain water accumulated at the bottom of the oil sump through the second pipe, and collect a small amount of recovered oil from the bottom of the oil separator. Of the drain water is evaporated by the heat of compression of the high-temperature compressed gas immediately before discharge, and is introduced outside the receiver tank together with the compressed air. It is what is discharged.

【0008】本発明の請求項2の油冷式スクリュ圧縮機
では、前記ケーシングに設けた前記第二の開口位置は、
第一の開口位置よりもスクリュロータの溝幅以上の間隔
を設けて穿設することにより、前記第二の開口より導入
された清浄な潤滑油により雄雌スクリュロータ及びシリ
ンダ内各部の油膜を予め確実に形成した後、第一の開口
によりドレン水を導入するようにしたので、該ドレン水
の導入に伴う摺動部の油膜切れによる弊害を防止でき
る。
In the oil-cooled screw compressor according to claim 2 of the present invention, the second opening position provided in the casing is
By drilling with a gap larger than the groove width of the screw rotor from the first opening position, the lubricating oil introduced into the male and female screw rotors and various parts in the cylinder is previously formed by the clean lubricating oil introduced from the second opening. Since the drain water is introduced through the first opening after the reliable formation, it is possible to prevent an adverse effect due to the oil film running out of the sliding portion due to the introduction of the drain water.

【0009】本発明の請求項3の油冷式スクリュ圧縮機
では、前記第二の配管途中に絞りを設けたことにより、
油溜底部に溜ったドレン水のみを第一の開口に導入して
回収するため動力ロスを最小限に抑えることができる。
In the oil-cooled screw compressor according to claim 3 of the present invention, since the throttle is provided in the middle of the second pipe,
Since only the drain water collected at the bottom of the oil sump is introduced into the first opening and collected, power loss can be minimized.

【0010】本発明の請求項4の油冷式スクリュ圧縮機
では、前記第二の配管の内径を、第一の配管内径よりも
小径とすることにより、第二の配管途中の絞りを省略で
きる。
In the oil-cooled screw compressor according to the fourth aspect of the present invention, by making the inner diameter of the second pipe smaller than the inner diameter of the first pipe, the throttle in the middle of the second pipe can be omitted. .

【0011】本発明の請求項5の油冷式スクリュ圧縮機
では、前記油溜に連通した前記第一の配管の油吸込み口
にドレン水吸込み防止体を設けたことにより、油吸込み
口からドレン水を吸入することを阻止してドレン水を含
まない清浄な潤滑油のみを作用空間に供給することがで
きる。
In the oil-cooled screw compressor according to a fifth aspect of the present invention, a drain water suction preventive member is provided at the oil suction port of the first pipe communicating with the oil sump, so that the drain is sucked from the oil suction port. It is possible to prevent the intake of water and supply only the clean lubricating oil containing no drain water to the working space.

【0012】[0012]

【発明の実施態様】以下、本発明の第1実施例を図1及
び図2を参照して説明する。図1に示すように油冷式圧
縮機本体1は、互いに噛合う雄雌ー対のスクリュロータ
2,2A(図1では雄スクリュロータ2のみを示してい
る)を、ケーシング3のシリンダ4内に回転自在に収納
している。このシリンダ4のー側に設けた吸入口5には
外気を導入するための吸入流路6が連通しており、この
吸入流路6には吸入フィルタ7が設けられ、そしてこの
吸入フィルタ7と吸入口5との間には後述するレシーバ
タンク内の圧力が設定圧力よりも高くなるとレギュレー
タ8を介して吸入流路6を閉じる吸入空気量制御用のア
ンローダ装置たる吸気閉塞弁9が設けられている。一
方、図中シリンダ4の下方に設けた吐出口10に逆止弁11
Aを備えた吐出流路11を介してレシーバタンク12が連通
している。このレシーバタンク12は下部に油溜13を設
け、上部に油分離用の油分離器14が設けられると共に、
この油分離器14の上部にヘッダー部15を設け、このヘッ
ダー部15には消費側16に接続するための開閉弁17が接続
されている。なお、シリンダ4には後述する第一及び第
二の配管が連通する第一及び第二の開口4A,4Bが穿
設しており、またヘッダー部15に一端を連通した制御用
流路18の他端を前記レギュレータ8に連通することによ
り、レシーバタンク12の内圧をレギュレータ8に導入し
て吸気閉塞弁9を開閉弁するようになっている。
DETAILED DESCRIPTION OF THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, the oil-cooled compressor body 1 includes a pair of male and female screw rotors 2 and 2A (only the male screw rotor 2 is shown in FIG. 1) that mesh with each other in a cylinder 4 of a casing 3. It is stored in a freely rotatable manner. An intake passage 6 for introducing outside air communicates with an intake port 5 provided on the negative side of the cylinder 4, and an intake filter 7 is provided in the intake passage 6 and An intake block valve 9 as an unloader device for controlling the intake air amount is provided between the intake port 5 and the receiver tank, which will be described later, and closes the intake passage 6 via a regulator 8 when the pressure in the receiver tank becomes higher than a set pressure. There is. On the other hand, the check valve 11 is attached to the discharge port 10 provided below the cylinder 4 in the figure.
A receiver tank 12 communicates with a discharge flow path 11 provided with A. This receiver tank 12 is provided with an oil reservoir 13 at the bottom and an oil separator 14 for oil separation at the top,
A header portion 15 is provided above the oil separator 14, and an opening / closing valve 17 for connecting to the consumer side 16 is connected to the header portion 15. The cylinder 4 is provided with first and second openings 4A and 4B for communicating first and second pipes, which will be described later, and a control channel 18 having one end communicating with the header portion 15 is formed. By communicating the other end with the regulator 8, the internal pressure of the receiver tank 12 is introduced into the regulator 8 to open and close the intake blocking valve 9.

【0013】さらに、前記雄雌ー対のスクリュロータ
2,2Aには夫々吸入側軸19と吐出側軸20が、該スクリ
ュロータ2と同軸上に設けられている。そして、ケーシ
ング3のー側に設けた軸受室3Aに内側より、吸入側軸
19を回動自在に支持する軸受22及び軸封装置23が設けら
れている。さらに雄スクリュロータ2の吸入側軸19の端
部に設けた従動側プーリ24と原動機たるモータ25の動力
軸に設けた駆動側プーリ26との間にベルト27が掛けられ
て雄スクリュロータ2を回動駆動し、同時に雄スクリュ
ロータ2と噛み合い回転する雌スクリュロータ2Aを回
転駆動する。さらに、ケーシング3の他側に設けた軸受
室3Bに内側より、軸封装置28及び吐出側軸20を回動自
在に支持する軸受29が設けられている。
Further, a suction side shaft 19 and a discharge side shaft 20 are provided coaxially with the screw rotor 2 in the male and female paired screw rotors 2 and 2A, respectively. Then, from the inside to the bearing chamber 3A provided on the negative side of the casing 3, the suction side shaft
A bearing 22 and a shaft sealing device 23 that rotatably support the 19 are provided. Further, a belt 27 is hung between a driven pulley 24 provided at the end of the intake side shaft 19 of the male screw rotor 2 and a drive pulley 26 provided on the power shaft of a motor 25, which is a prime mover. The female screw rotor 2A, which is rotationally driven and simultaneously meshes with the male screw rotor 2 to rotate, is rotationally driven. Further, a bearing 29 for rotatably supporting the shaft sealing device 28 and the discharge side shaft 20 is provided from the inside in a bearing chamber 3B provided on the other side of the casing 3.

【0014】さらに、レシーバタンク12の油溜13の底部
よりも上方位置に一端を油吸込み口30Aと連通した潤滑
油供給用の第一の配管30が接続し、その他端30Bをシリ
ンダ4に穿設した前記第一の開口4Aと連通し、この第
一の配管30の途中にはオイルクーラ31とオイルフィルタ
32が設けられている。また、油溜13の底部より上方に設
けた油吸込み口30Aにはドレン水吸込み防止体たる邪魔
板33が設けられており、オイルクーラ31の一次側には油
温に応じて開閉するバイパス弁34が設けられ、このバイ
パス弁34にオイルクーラ31と並列に設けるバイパス配管
35が設けられている。また、レシーバタンク12の油溜13
底部に一端36Aと連通したドレン水回収用の第二の配管
36が接続し、その他端36Bがシリンダ4に穿設した前記
第二の開口4Bに連通しており、この第二の配管36には
オイルフィルタ37、絞りたるオリフィス38が設けられて
いる。さらに、油分離器14の下部たる油溜39には一端40
Aを連通した分離油回収用の第三の配管40が接続し、そ
の他端40Bは、絞り40E、逆止弁40C、ストレーナ40D
を介して第二の配管36のオリフィス38の二次側と接続
し、前記油分離器14から回収される微量の分離油と合流
して、シリンダ4の第一の開口4Aに接続している。な
お、第二の配管36の配管内径は、第一の配管30の内径よ
り小さく形成されている。また第一の配管30に設けたオ
イルフィルタ32の二次側に第一、二の分岐配管41,42の
一端41A,42Aを夫々接続すると共に、それらの他端41
B,42Bを軸受室3A,3Bに夫々連通している。
Further, a first pipe 30 for supplying lubricating oil, one end of which communicates with the oil suction port 30A, is connected to a position above the bottom of the oil sump 13 of the receiver tank 12, and the other end 30B is bored in the cylinder 4. An oil cooler 31 and an oil filter are provided in the middle of the first pipe 30 which communicates with the first opening 4A provided.
32 are provided. Further, a baffle plate 33 serving as a drain water suction preventer is provided at the oil suction port 30A provided above the bottom of the oil sump 13, and a bypass valve that opens and closes according to the oil temperature is provided on the primary side of the oil cooler 31. 34 is provided, and bypass piping provided in parallel with the oil cooler 31 in this bypass valve 34
35 are provided. Also, the oil sump 13 of the receiver tank 12
Second piping for drain water recovery that communicates with one end 36A at the bottom
36 is connected, and the other end 36B communicates with the second opening 4B formed in the cylinder 4, and the second pipe 36 is provided with an oil filter 37 and an orifice 38 as a throttle. In addition, one end 40 is provided in the oil reservoir 39 that is the lower
A third pipe 40 for collecting separated oil, which communicates with A, is connected, and the other end 40B has a throttle 40E, a check valve 40C, and a strainer 40D.
Is connected to the secondary side of the orifice 38 of the second pipe 36, merges with a small amount of separated oil recovered from the oil separator 14, and is connected to the first opening 4A of the cylinder 4. . The inner diameter of the second pipe 36 is smaller than the inner diameter of the first pipe 30. Also, one ends 41A and 42A of the first and second branch pipes 41 and 42 are connected to the secondary side of the oil filter 32 provided in the first pipe 30, respectively, and the other end 41 thereof is also connected.
B and 42B communicate with the bearing chambers 3A and 3B, respectively.

【0015】次に前記第一の開口4A及び第二の開口4
Bについて説明する。図2は雄雌ー対のスクリュロータ
2,2Aの吸入側の端面を示したものであり、図中で二
点鎖線で囲んだ部分はケーシング3の吸入端面43であ
る。また図3はシリンダ4の内壁の展開図を示してお
り、図中下側は吸入口5を、図中上側は吐出口10を示し
ており、また図中a〜fはシリンダ4の内壁と雄スクリ
ュロータ2ののシール線の位置関係を示し、またg〜l
は雌スクリュロータ2Aのシール線の位置を示してい
る。そして、雄雌スクリュロータ2,2Aが噛み合いな
がら回転すると雄雌スクリュロータ2,2Aの各シール
線は吸入側から吐出側に向かって(図中上方)順次移動
し、その空間容積を次第に小さくして圧縮作用を連続的
に行う。なお、説明の都合上以下雄スクリュロータ2側
について説明するが雌スクリュロータ2A側についても
ほぼ対称でかつ同一空間であるから詳細な説明は省略す
る。まず雄スクリュロータ2の回転により先行するシー
ル線(以下先行シール線という)xがシール線bの位置
よりシール線c,d,e,fの位置に移動すると、雄ス
クリュロータ2の溝幅分、すなわち一ピッチ(P)後行
するシール線(以下後行シール線という)x´もaの位
置より順次シール線b,c,d,eへと移動する。同様
に雌スクリュロータ2Aの回転により先行するシール線
(以下先行シール線という)yがhの位置よりi,j,
j,k,lに移動すると、雌スクリュロータ2Aの溝幅
分、すなわち一ピッチ後行するシール線(以下後行シー
ル線という)y´もシール線gより順次h,i,j,k
の位置へと移動する。そして先行シール線x,yが吸入
閉じ込み位置であるシール線b,hに達すると共に後行
シール線x´y´がシール線a,gに達する間に前記先
行シール線x,yとで形成される溝空間内に空気の吸入
が行われる。さらに雄雌スクリュロータ2,2Aが回転
して先行シール線x,yがシール線c,iに達すると共
に後行シール線x´,y´がシール線b,hに達するま
で間、引き続き空気の吸入が行われる。そして後行シー
ル線x´,y´がシール線b,hに達したとき、すなわ
ち先行シール線x,yがc,iに達したときに空気の吸
入が終了し、同時にシール線b,c,h,i及びシリン
ダ4に囲まれた作用空間により圧縮が開始される。引き
続き雄雌ー対のスクリュロータ2,2Aの回転に伴い先
行シール線(x,y)がシール線(d,j),(e,
k)(f,l)に達し、同時に後行シール線(x´,y
´)が(c,h)(d,j),(f,k)に達する間、
吸入空気は順次容積が縮小変化しシール線c,d,i,
j及びシリンダ4に囲まれた作用空間、シール線d,
e,j,k及びシリンダ4に囲まれた作用空間、シール
線e,f,k,l及びシリンダ4に囲まれた作用空間に
進むにつれ圧縮される。さらに先行シール線x,yが吐
出開始位置であるシール線f,lに達すると(このとき
には後行シール線x´,y´はシール線e,kに位置す
る)、この位置から圧縮空気の吐出が開始され、そし
て、後行シール線x´,y´がシール線f,lに達する
と吐出が完了する。
Next, the first opening 4A and the second opening 4
B will be described. FIG. 2 shows the end faces on the suction side of the pair of male and female screw rotors 2 and 2A. The part surrounded by the chain double-dashed line in the drawing is the suction end face 43 of the casing 3. 3 shows a developed view of the inner wall of the cylinder 4, the lower side of the figure shows the suction port 5, the upper side of the figure shows the discharge port 10, and a to f in the figure are the inner wall of the cylinder 4. The positional relationship of the seal line of the male screw rotor 2 is shown, and g ~ l
Indicates the position of the seal line of the female screw rotor 2A. When the male and female screw rotors 2 and 2A rotate while meshing with each other, the seal lines of the male and female screw rotors 2 and 2A move sequentially from the suction side to the discharge side (upward in the figure) to gradually reduce the space volume. The compression action continuously. For convenience of description, the male screw rotor 2 side will be described below, but the female screw rotor 2A side is also substantially symmetrical and has the same space, so detailed description will be omitted. First, when the preceding seal line (hereinafter referred to as the preceding seal line) x is moved from the position of the seal line b to the positions of the seal lines c, d, e, f by the rotation of the male screw rotor 2, the groove width of the male screw rotor 2 is divided. That is, the seal line x'following by one pitch (P) (hereinafter referred to as the trailing seal line) also moves sequentially from the position a to the seal lines b, c, d, e. Similarly, when the female screw rotor 2A rotates, the preceding seal line (hereinafter referred to as the preceding seal line) y is i, j,
When moved to j, k, l, the groove width of the female screw rotor 2A, that is, the seal line y'following one pitch (hereinafter referred to as the trailing seal line) y'is also sequentially h, i, j, k from the seal line g.
Move to position. Formed by the preceding seal lines x, y while the preceding seal lines x, y reach the seal lines b, h which are the intake closing positions and the trailing seal lines x'y 'reach the seal lines a, g. Air is sucked into the groove space. Further, the male and female screw rotors 2 and 2A rotate, and the leading seal lines x and y reach the seal lines c and i and the trailing seal lines x ′ and y ′ reach the seal lines b and h. Inhalation is performed. When the trailing seal lines x ′, y ′ reach the seal lines b, h, that is, when the preceding seal lines x, y reach c, i, the suction of air is completed, and at the same time, the seal lines b, c are reached. , H, i and the working space surrounded by the cylinder 4 initiates the compression. Subsequently, as the male and female paired screw rotors 2 and 2A rotate, the preceding seal lines (x, y) are changed to seal lines (d, j), (e,
k) (f, l) is reached, and at the same time, the trailing seal line (x ', y)
′) Reaches (c, h) (d, j), (f, k),
The volume of the intake air is gradually reduced and the seal lines c, d, i,
j, the working space surrounded by the cylinder 4, the seal line d,
e, j, k and the working space surrounded by the cylinder 4, the seal lines e, f, k, l and the working space surrounded by the cylinder 4 are compressed as they proceed. When the preceding seal lines x and y reach the seal lines f and l which are the discharge start positions (at this time, the subsequent seal lines x'and y'are located at the seal lines e and k), compressed air is discharged from this position. When the discharge is started and the trailing seal lines x ′ and y ′ reach the seal lines f and l, the discharge is completed.

【0016】そして、前記第一の開口4Aは、雄スクリ
ュロータ3の先行シール線x,yが吐出開始位置である
シール線fにあるときに、該雄スクリュロータ3の溝
幅、すなわち一ピッチ(P)だけ吸入側に隣り合うシー
ル線eの吸入側直近に穿設している。一方、第二の開口
4Bは、第一の開口4Aよりもさらに吸入側寄りでか
つ、雄スクリュロータ3の後行するシール線x´によっ
て閉じられる吸入閉じ込み位置(シール線b)よりも吐
出側寄りの位置に穿設されている。この第二の開口4B
の位置は、第一の開口4Aの位置よりも雄スクリュロー
タ3の溝幅以上、すなわち一ピッチ以上の間隔Lを設け
て穿設する(L>P)ことが望ましいが、スクリュロー
タの長さを短く設計したものにおいては必ずしも一ピッ
チ以上なくともよい。
The first opening 4A has a groove width of the male screw rotor 3, that is, one pitch when the preceding seal lines x and y of the male screw rotor 3 are at the seal line f which is the discharge start position. Only (P) is provided near the suction side of the seal line e adjacent to the suction side. On the other hand, the second opening 4B is closer to the suction side than the first opening 4A and is discharged from a suction closing position (sealing line b) closed by the seal line x'following the male screw rotor 3. It is drilled at a position closer to the side. This second opening 4B
It is desirable that the positions of the holes are formed with a gap L which is larger than the groove width of the male screw rotor 3 than the position of the first opening 4A, that is, one pitch or more (L> P). In the case where the is designed to be short, it does not necessarily have to be one pitch or more.

【0017】次に前記構成の作用について説明する。モ
ータ25を起動すると、雄スクリュロータ2と雌スクリュ
ロータ2Aは互いに噛み合いながら回転し、これにより
外気は吸入フィルタ7を通って吸入流路6に流入し、開
弁状態の吸気閉塞弁9を通って吸入口5に至り、雄雌ス
クリュロータ2,2Aとケーシング4によって形成され
る作用空間により圧縮作用が行われる。この際、油溜13
の油吸込み口30Aからは第一の配管30を介してドレン水
Dを含まない清浄な油Oがレシーバタンク12内との圧力
差により作用空間に導入され、該作用空間内の冷却・潤
滑・密封を行い、この段階で油膜の形成を確実に行う。
そして該作用空間内で気液混合状態となった圧縮空気と
油は吐出口10へ吐出される。この吐出された気液混合状
態の圧縮空気と油は吐出流路11を介してレシーバタンク
12に圧送される。そしてこのレシーバタンク12内で、大
きな油滴は比重差により、レシーバタンク12の下方の油
溜13に滴下して貯溜される。一方ミスト状の圧縮空気と
油の混合気体は、油分離器14によって圧縮空気と油とに
分離され、清浄となった圧縮空気はヘッダー部15より消
費側16へ送出される。なお、第一の配管30を通る油の温
度が所定温度よりも低い場合にはバイパス弁34により一
部もしくは全部の油がバイパス配管35を通って作用空間
に供給され、一方油の温度が所定温度よりも高い場合に
はバイパス弁34によりオイルクーラ31を通って冷却され
た油が作用空間に供給されるようになっている。また、
第一の配管30途中から分岐した第一、二の分岐配管41,
42からは軸受22,29及び軸封装置23,28を収容する軸受
け室3A,3Bに対し、清浄な潤滑油Oが供給され、該
軸受22,29及び軸封装置23,28の冷却・潤滑・密封を行
うようにしている。
Next, the operation of the above configuration will be described. When the motor 25 is started, the male screw rotor 2 and the female screw rotor 2A rotate while meshing with each other, whereby the outside air passes through the suction filter 7 and flows into the suction passage 6, and then passes through the intake blocking valve 9 in the open state. To the suction port 5, and a compression action is performed by the action space formed by the male and female screw rotors 2 and 2A and the casing 4. At this time, the oil sump 13
Clean oil O containing no drain water D is introduced into the working space from the oil suction port 30A through the first pipe 30 due to the pressure difference between the working space and the cooling / lubrication of the working space. Sealing is performed, and the oil film is surely formed at this stage.
Then, the compressed air and the oil in the gas-liquid mixed state in the working space are discharged to the discharge port 10. The discharged compressed air and oil in the gas-liquid mixed state is sent to the receiver tank through the discharge passage 11.
Pumped to 12. Then, in the receiver tank 12, a large oil droplet is dropped and stored in the oil reservoir 13 below the receiver tank 12 due to the difference in specific gravity. On the other hand, the mist-like mixed gas of compressed air and oil is separated into compressed air and oil by the oil separator 14, and the purified compressed air is sent from the header portion 15 to the consumer side 16. When the temperature of the oil passing through the first pipe 30 is lower than the predetermined temperature, a part or all of the oil is supplied to the working space through the bypass pipe 35 by the bypass valve 34, while the temperature of the oil is kept at the predetermined temperature. When the temperature is higher than the temperature, the oil cooled by the bypass valve 34 through the oil cooler 31 is supplied to the working space. Also,
First and second branch pipes 41 branched from the middle of the first pipe 30
From 42, clean lubricating oil O is supplied to the bearing chambers 3A and 3B accommodating the bearings 22 and 29 and the shaft sealing devices 23 and 28, and the bearings 22 and 29 and the shaft sealing devices 23 and 28 are cooled and lubricated.・ It is designed to be sealed.

【0018】また、ヘッダー部15出口部の配管からは制
御用流路18を介してレギュレータ8と接続し、レシーバ
タンク12内の圧力が所定圧力に達すると吸気閉塞弁9を
閉弁するようになっている。
Further, the pipe at the outlet of the header portion 15 is connected to the regulator 8 via the control flow path 18, and the intake blocking valve 9 is closed when the pressure in the receiver tank 12 reaches a predetermined pressure. Has become.

【0019】さらに、レシーバタンク12の油溜13底部に
溜ったドレン水Dは、第二の配管36から油分離器14の油
溜39に溜った微量の分離油O´の回収路である第三の配
管40を介してその他端40Bで合流し、ドレン水Dと共に
第一の開口4Aを介して吐出直前の圧縮作用空間(シー
ル線d,e,j,k及びシリンダ4で囲まれた部分)内
へ導入される。なお、これら油O´及びドレン水Dの導
入はレシーバタンク12内の圧力と第一の開口4A側との
差圧により行われるが、該作用空間は後述するようにレ
シーバタンク12内との圧力差の比較的小さい作用空間で
あり、また吸入作用空間とは遠い位置である為、無負荷
運転時における負圧の影響に左右されにくい作用空間で
もある。このようにして第一の開口4Aより吐出直前の
圧縮作用空間に油O´混合状態で導入されたドレン水D
は、吐出直前の高温の圧縮空気の圧縮熱により蒸発して
圧縮空気と共に吐出流路11を介してレシーバタンク12内
へ圧送され、油分離器14を経た後レシーバタンク12外へ
排出される。
Further, the drain water D accumulated at the bottom of the oil sump 13 of the receiver tank 12 is a recovery passage for a minute amount of separated oil O ′ accumulated in the oil sump 39 of the oil separator 14 from the second pipe 36. The other end 40B merges through the third pipe 40 and the compression action space (sealing lines d, e, j, k and the cylinder 4 immediately before discharge together with the drain water D through the first opening 4A). ) Is introduced in. The introduction of the oil O ′ and the drain water D is performed by the pressure inside the receiver tank 12 and the pressure difference between the first opening 4A side. Since it is a working space with a relatively small difference and is located far from the suction working space, it is also a working space less susceptible to the influence of negative pressure during no-load operation. In this way, the drain water D introduced into the compression action space immediately before discharge from the first opening 4A in a mixed state of oil O ′
Is evaporated by the heat of compression of the high-temperature compressed air immediately before discharge, is pumped together with the compressed air into the receiver tank 12 through the discharge flow path 11, passes through the oil separator 14, and is discharged to the outside of the receiver tank 12.

【0020】以上のように、本実施例によればレシーバ
タンク13の油溜13底部に溜ったドレン水Dは圧縮機本体
1内の吐出直前の圧縮作用空間内において、高温の圧縮
空気の圧縮熱により蒸発し圧縮空気と共に吐出流路11、
レシーバタンク12、油分離器14を介してレシーバタンク
12外に排出するため、油溜13にはドレン水が溜ることは
ない。
As described above, according to this embodiment, the drain water D accumulated at the bottom of the oil reservoir 13 of the receiver tank 13 is compressed in the compression action space in the compressor body 1 immediately before being discharged, by the compression of the high temperature compressed air. Ejection flow path 11, which evaporates due to heat and compressed air,
Receiver tank 12, receiver tank via oil separator 14
Drain water is not discharged to the oil sump 13 because it is discharged to the outside.

【0021】また、前記第一の開口4Aのシリンダ4内
における位置関係についていうと、雄スクリュロータ2
の先行シール線xが吐出開始位置であるシール線fにあ
るとき、該雄スクリュロータ2の溝幅、即ちロータ溝の
一ピッチ(P)分だけ吸入側に隣り合うシール線e上の
吸入側直近に穿設している。この位置は、吐出口10とも
連通することがなく、かつ吸入作用空間から最も遠く、
むしろレシーバタンク12側の圧力に近い密閉空間である
ため、例えば消費空気量の変動に応じて圧縮機が全負
荷、無負荷を繰り返す場合であっても最も圧力変動が少
ない作用空間である。よって、レシーバタンク12内との
圧力差によって導入されるドレン水Dや油分離器14から
導入される分離油O´の流量変動も少い為、従来構造の
ように無負荷運転時に吸入作用空間内の負圧により多量
のドレン水Dと油O´が導入されて大幅な動力ロスを生
ずることもない。さらに、ドレン水Dは吐出直前の圧縮
作用空間に導入されるため、該ドレン水Dに混入してい
るごみやスラッジは直ちに吐出口10より排出される為、
雄雌スクリュロータ2,2A及びシリンダ4の隙間へ噛
み込まれて損傷する事故を防止できると共に、これによ
る雄雌スクリュロータ2,2A及びシリンダ4の磨耗も
ない。また、ドレン水Dは高温、高圧状態にある吐出直
前の作用空間に導入されるため、ドレン水Dを確実に蒸
発できる。しかも、ドレン水Dは第三の配管40により油
溜39の油O´と混合状態で圧縮作用空間に導入されるの
で、前記作用空間を形成する雄雌スクリュロータ2,2
A及びシリンダ4の潤滑性を低下させることはなく、常
に定量のドレン水Dのみを回収することができる。
Further, regarding the positional relationship of the first opening 4A in the cylinder 4, the male screw rotor 2 is described.
When the preceding seal line x is located on the seal line f, which is the discharge start position, the suction side on the seal line e adjacent to the suction side by the groove width of the male screw rotor 2, that is, one rotor groove pitch (P). It has been drilled most recently. This position does not communicate with the discharge port 10 and is farthest from the suction action space,
Rather, since it is a closed space close to the pressure on the receiver tank 12 side, it is the working space in which the pressure fluctuation is the smallest even when the compressor repeatedly repeats full load and no load depending on the fluctuation of the air consumption. Therefore, since the flow rate fluctuations of the drain water D introduced by the pressure difference between the inside of the receiver tank 12 and the separated oil O ′ introduced from the oil separator 14 are small, the suction action space at the time of no load operation as in the conventional structure. A large amount of drain water D and oil O'will not be introduced due to the negative pressure inside, and a large power loss will not occur. Furthermore, since the drain water D is introduced into the compression action space immediately before discharge, dust and sludge mixed in the drain water D is immediately discharged from the discharge port 10,
It is possible to prevent an accident in which the male and female screw rotors 2 and 2A and the cylinder 4 are bitten and damaged, and the male and female screw rotors 2 and 2A and the cylinder 4 are not worn. Further, since the drain water D is introduced into the working space immediately before the discharge in the high temperature and high pressure state, the drain water D can be surely evaporated. Moreover, since the drain water D is introduced into the compression working space by the third pipe 40 in a mixed state with the oil O ′ in the oil reservoir 39, the male and female screw rotors 2, 2 forming the working space are described.
It is possible to always collect only a fixed amount of drain water D without lowering the lubricity of A and the cylinder 4.

【0022】また、油溜13の油吸込み口30Aから第一の
配管30を介して清浄な油Oを第二の開口4Bからシール
線c,d,i,jで囲まれた圧縮作用空間に導入するの
で、雄雌スクリュロータ2,2A及びシリンダ4の冷却
・潤滑・密封を確実に行うことができる。さらに、前記
油Oは吸入工程が完了した後の圧縮作用空間内に導入す
るので、該油中に含まれる圧縮空気が吸入口5内で再膨
脹し、圧縮機の吸入空気量を減少させて性能を低下させ
たり、動力ロスを生ずることもない。また圧縮作用空間
内はドレン水Dの導入前の作用空間に油Oが導入される
ので、前記スクリュロータ2,2A及びシリンダ4の表
面に予め油膜を形成でき、潤滑を良好に行うことができ
ると共に、ドレン水Dによる錆の発生や潤滑不足による
焼き付きをなくすことができる。さらに清浄な油Oを第
一の配管30より分岐した第一、二の分岐配管41,42を介
して軸受室3A,3Bに導入するので、軸受22,29及び
軸封装置23,28の焼付きを防止でき、また軸封装置23,
28により気体の封止を行うことができる。
Further, clean oil O is supplied from the oil suction port 30A of the oil reservoir 13 through the first pipe 30 to the compression space surrounded by the seal lines c, d, i and j from the second opening 4B. Since it is introduced, cooling, lubrication, and sealing of the male and female screw rotors 2 and 2A and the cylinder 4 can be reliably performed. Further, since the oil O is introduced into the compression working space after the suction process is completed, the compressed air contained in the oil re-expands in the suction port 5 to reduce the intake air amount of the compressor. It does not reduce performance or cause power loss. Further, since the oil O is introduced into the working space before the drain water D is introduced into the compression working space, an oil film can be formed in advance on the surfaces of the screw rotors 2 and 2A and the cylinder 4, and good lubrication can be performed. At the same time, the occurrence of rust due to the drain water D and the seizure due to insufficient lubrication can be eliminated. Further, clean oil O is introduced into the bearing chambers 3A, 3B via the first and second branch pipes 41, 42 branched from the first pipe 30, so that the bearings 22, 29 and the shaft sealing devices 23, 28 are burned. Can be prevented from sticking, and the shaft sealing device 23,
The gas can be sealed by 28.

【0023】さらに、第二の配管36の途中には、絞りた
るオリフィス38を設けたことにより、レシーバタンク12
の油溜13底部から圧送されるドレン水Dに抵抗を与えて
その発生量に対応した排出量に制限することができるの
で、ドレン水Dのみを析出し、吐出直前の圧縮作用空間
で高温の圧縮空気により効率よく蒸発させてレシーバタ
ンク12外へ排出させることができる。
Further, by providing an orifice 38 which is a throttle in the middle of the second pipe 36, the receiver tank 12
Since it is possible to give resistance to the drain water D that is pressure-fed from the bottom of the oil sump 13 and limit the discharge amount corresponding to the generated amount, only the drain water D is deposited and high temperature is generated in the compression action space immediately before discharge. The compressed air can be efficiently evaporated and discharged to the outside of the receiver tank 12.

【0024】また、前記第二の配管36の内径は、第一の
配管30の内径よりも小径とすることにより、前記オリフ
ィス38を省略でき、レシーバタンク12の油溜13底部から
圧送されるドレン水Dはその通路断面を小さくでき、ド
レン水Dのみを吐出直前の圧縮作用空間内に導入し、該
作用空間で効率よく全量蒸発させることができる。
Further, by making the inner diameter of the second pipe 36 smaller than the inner diameter of the first pipe 30, the orifice 38 can be omitted, and the drain which is pressure-fed from the bottom of the oil reservoir 13 of the receiver tank 12. The passage section of the water D can be made small, and only the drain water D can be introduced into the compression action space immediately before discharge, and the entire amount can be efficiently evaporated in the action space.

【0025】しかも、油溜13に連通した第一の配管30の
油吸込み口30Aに邪魔板33を設けたことにより、油吸込
み口30Aからはドレン水Dが混入していない清浄な油O
のみを第二の開口4B側や軸受室3A,3Bに導入する
ことができる。
Moreover, since the oil suction port 30A of the first pipe 30 communicating with the oil reservoir 13 is provided with the baffle plate 33, the clean oil O is not mixed with the drain water D from the oil suction port 30A.
Only the second opening 4B can be introduced into the bearing chambers 3A and 3B.

【0026】なお、本発明は前記実施例に限定されるも
のではなく、例えば実施例では第一、二の開口は雄スク
リュロータ側のシリンダに設けたが、雌スクリュロータ
側のシリンダに設けてもよく、また実施例のような一段
圧縮機以外に多段圧縮機の高圧段側に同様の構造で適用
できる等各種の変形が可能である。
The present invention is not limited to the above-described embodiment. For example, in the embodiment, the first and second openings are provided in the cylinder on the male screw rotor side, but they are provided in the cylinder on the female screw rotor side. Also, various modifications are possible such as being applicable to the high-pressure stage side of a multi-stage compressor other than the one-stage compressor as in the embodiment with the same structure.

【0027】[0027]

【発明の効果】本発明の請求項1の油冷式スクリュ圧縮
機は、ケーシング内に雄雌一対のスクリュロータを回転
自在に収納する圧縮機本体と、該圧縮機本体の吸入口に
設けた吸入空気量制御用のアンローダ装置と、前記圧縮
機本体の吐出口と連通して設けたレシーバタンクと、こ
のレシーバタンクと連通し、圧縮機本体から吐出された
圧縮空気中の油を分離する油分離器とを設けた油冷式ス
クリュ圧縮機において、前記スクリュロータを収納する
ケーシングのシリンダ内に、先行する雄雌スクリュロー
タのシール線が吐出開始位置にあるときに、該スクリュ
ロータの溝幅だけ吸入側に隣り合うシール線の吸入側直
近に第一の開口を穿設する一方、該第一の開口よりもさ
らに吸入側寄りでかつ前記雄雌スクリュロータの後行す
るシール線が吸入閉込み位置にあるときに、該スクリュ
ロータの溝幅だけ吐出側に隣り合うシール線よりも吐出
側寄りの位置に第二の開口を穿設し、該第二の開口には
レシーバタンクの油溜底部よりも上方位置と連通する油
供給用の第一の配管を連通させる一方、レシーバタンク
の油溜底部と連通するドレン水回収用の第二の配管を、
前記油分離器の底部と連通する油回収用の第三の配管と
合流させて前記ケーシングの第一の開口に連通させたこ
とにより、レシーバタンクの油溜底部に溜ったドレン水
はドレン水回収用の第二の配管より第一の開口を介して
圧縮機本体の圧縮作用空間内に排出され高温の圧縮空気
の圧縮熱により蒸発し圧縮空気と共にレシーバタンク外
に排出するため、ドレン水抜き作業を不要とすることが
できる。さらに前記第一の開口の位置を、上述のように
吐出口に連通せず、かつ吸入作用空間から遠い位置の圧
縮作用空間に連通するようにしたので、レシーバタンク
内との圧力差が小さい状態の作用空間にドレン水や油分
離器から導入される分離油が導入されるのでその流量変
動は少く、常に定量のドレン水が導入されるのでこれに
よる動力ロスもない。またドレン水は吐出直前の作用空
間に導入されるため、該ドレン水に混入したごみやスラ
ッジは直ちに吐出口より排出されるので、ごみやスラッ
ジの噛み込みによる事故や磨耗を防止できると共に、ド
レン水は高温、高圧状態にある吐出直前の圧縮作用空間
に導入されるため、該ドレン水の蒸発も効果的に行われ
る。しかも、ドレン水は第三の配管により油溜の分離油
と混合状態で圧縮作用空間に導入されるので、前記圧縮
作用空間を形成するスクリュロータ及びシリンダの潤滑
性を低下させることはない。さらに、前記第二の開口を
上述のように吸入工程が完了した後の圧縮作用空間の位
置に設けることにより、油溜から第一の配管を介して清
浄な油のみを圧縮作用空間に導入し、スクリュロータ及
びシリンダの冷却・潤滑・密封を確実に行うことができ
ると共に、供給される清浄な油中に含まれる圧縮空気が
吸入口内で膨脹して圧縮機に吸入される吸入空気量を減
少させることもない。また圧縮作用空間内にはドレン水
を含まない清浄な油だけが導入されるので、スクリュロ
ータ及びシリンダの表面に均一な油膜を形成でき、良好
な潤滑を行うことができ、かつドレン水による錆の発生
や潤滑不良による焼き付きもない。
The oil-cooled screw compressor according to the first aspect of the present invention is provided with a compressor main body which rotatably accommodates a pair of male and female screw rotors in a casing, and an intake port of the compressor main body. An unloader device for controlling the intake air amount, a receiver tank provided in communication with the discharge port of the compressor body, and oil that communicates with the receiver tank and separates the oil in the compressed air discharged from the compressor body. In an oil-cooled screw compressor provided with a separator, when the seal line of the preceding male and female screw rotor is in the discharge start position in the cylinder of the casing that houses the screw rotor, the groove width of the screw rotor is While the first opening is bored in the vicinity of the suction side of the seal line adjacent to the suction side only, the seal line that is closer to the suction side than the first opening and that follows the male and female screw rotor is sucked. When in the retracted position, a second opening is formed at a position closer to the discharge side than the seal line adjacent to the discharge side by the groove width of the screw rotor, and the oil reservoir of the receiver tank is provided at the second opening. While connecting the first pipe for oil supply that communicates with the position above the bottom part, the second pipe for collecting drain water that communicates with the oil reservoir bottom part of the receiver tank,
The drain water collected at the bottom of the oil reservoir of the receiver tank is collected as drain water by joining the third pipe for oil recovery communicating with the bottom of the oil separator and communicating with the first opening of the casing. The drain water is drained to the outside of the receiver tank through the second pipe for use through the first opening into the compression action space of the compressor body and evaporates due to the compression heat of the hot compressed air and discharges it out of the receiver tank together with the compressed air. Can be eliminated. Further, since the position of the first opening is not communicated with the discharge port as described above and is communicated with the compression action space located far from the suction action space, the pressure difference between the inside of the receiver tank is small. Since the drain water or the separated oil introduced from the oil separator is introduced into the working space, the flow rate fluctuation is small, and since a fixed amount of the drain water is always introduced, there is no power loss due to this. In addition, since the drain water is introduced into the working space immediately before discharge, dust and sludge mixed in the drain water is immediately discharged from the discharge port, so that it is possible to prevent accidents and wear due to the trapping of dust and sludge, and to prevent drainage. Since the water is introduced into the compression action space immediately before the discharge in the high temperature and high pressure state, the drain water is effectively evaporated. Moreover, since the drain water is introduced into the compression action space by the third pipe in a mixed state with the separated oil in the oil sump, the lubricity of the screw rotor and the cylinder forming the compression action space is not deteriorated. Furthermore, by providing the second opening at the position of the compression action space after the suction process is completed as described above, only clean oil is introduced into the compression action space from the oil reservoir through the first pipe. The cooling, lubrication, and sealing of the screw rotor and cylinder can be reliably performed, and the compressed air contained in the supplied clean oil expands in the intake port, reducing the amount of intake air taken into the compressor. I won't let you. In addition, since only clean oil containing no drain water is introduced into the compression working space, a uniform oil film can be formed on the surface of the screw rotor and cylinder, good lubrication can be performed, and rust caused by drain water can be achieved. There is no seizure due to the occurrence of defects or poor lubrication.

【0028】本発明の請求項2の油冷式スクリュ圧縮機
は、前記ケーシングに設けた前記第二の開口位置を、第
一の開口位置よりもスクリュロータの溝幅以上の間隔を
設けて穿設したことにより、圧縮作用空間内はドレン水
の導入前の圧縮作用空間に清浄な油が導入されるので、
スクリュロータ及びシリンダの表面にドレン水が導入さ
れる前に予め油膜を確実に形成でき、この結果、スクリ
ュロータ及びシリンダの潤滑を一層良好に行うことがで
きる。
According to a second aspect of the present invention, in the oil-cooled screw compressor, the second opening position provided in the casing is opened at a distance larger than the groove width of the screw rotor from the first opening position. By installing, clean oil is introduced into the compression action space before the introduction of drain water in the compression action space,
An oil film can be surely formed in advance before the drain water is introduced to the surfaces of the screw rotor and the cylinder, and as a result, the screw rotor and the cylinder can be lubricated more favorably.

【0029】本発明の請求項3の油冷式スクリュ圧縮機
は、前記第二の配管途中に絞りを設けたことにより、レ
シーバタンクの油溜底部から圧送されるドレン水に抵抗
を与えてその発生量に対応した排出量に制限し、ドレン
水のみを析出して、吐出直前の高温の圧縮空気により効
率よく蒸発させることができる。
In the oil-cooled screw compressor according to the third aspect of the present invention, by providing the throttle in the middle of the second pipe, resistance is given to the drain water pressure-fed from the oil reservoir bottom of the receiver tank. It is possible to limit the discharge amount corresponding to the generated amount, deposit only drain water, and evaporate it efficiently by the high temperature compressed air immediately before discharge.

【0030】本発明の請求項4の油冷式スクリュ圧縮機
は、前記第二の配管の内径を、第一の配管内径よりも小
径とすることにより、ドレン水の通路断面を小さくし
て、オリフィス等を設けることなくドレン水のみを圧縮
作用空間で全量蒸発させることができる。
In the oil-cooled screw compressor according to claim 4 of the present invention, by making the inner diameter of the second pipe smaller than the inner diameter of the first pipe, the cross section of the passage of the drain water is reduced, Only the drain water can be completely evaporated in the compression action space without providing an orifice or the like.

【0031】本発明の請求項5の油冷式スクリュ圧縮機
は、前記油溜に連通した前記第一の配管の油吸込み口に
ドレン水吸込み防止体を設けたことにより、ドレン水や
ごみ、スラッジ等が混入しない清浄な油のみを圧縮作用
空間に導入できる。
In the oil-cooled screw compressor according to claim 5 of the present invention, a drain water suction preventive member is provided at the oil suction port of the first pipe communicating with the oil sump, whereby drain water and dust, Only clean oil that is not mixed with sludge can be introduced into the compression space.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の一実施例を示す吸入口側の断面図であ
る。
FIG. 2 is a sectional view of an inlet side showing an embodiment of the present invention.

【図3】本発明の一実施例を示すシリンダの展開図であ
る。
FIG. 3 is a development view of a cylinder showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機本体 2 雄スクリュロータ 2A 雌スクリュロータ 3 ケーシング 4 シリンダ 4A 第一の開口 4B 第二の開口 5 吸入口 6 アンローダ装置 10 吐出口 12 レシーバタンク 13 油溜 14 油分離器 30 第一の配管 30A 油吸入口 33 邪魔板(ドレン水吸込み防止体) 36 第二の配管 38 オリフィス(絞り) 40 第三の配管 P 溝幅 x 先行するシール線 x´ 後行するシール線 1 Compressor body 2 Male screw rotor 2A female screw rotor 3 casing 4 cylinders 4A First opening 4B Second opening 5 suction port 6 Unloader device 10 outlet 12 receiver tank 13 oil sump 14 Oil separator 30 First piping 30A oil inlet 33 Baffle plate (drain water suction prevention body) 36 Second piping 38 Orifice 40 Third pipe P groove width x Leading seal line x'The trailing seal line

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−279875(JP,A) 実開 昭62−78386(JP,U) 実開 昭59−45284(JP,U) 実開 昭49−84711(JP,U) 特公 平7−117051(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F04C 29/02 351 F04C 29/02 F04C 29/02 311 F04C 29/02 341 F04C 18/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-279875 (JP, A) Actual opening Sho 62-78386 (JP, U) Actual opening Sho 59-45284 (JP, U) Actual opening Sho 49- 84711 (JP, U) Japanese Patent Publication 7-117051 (JP, B2) (58) Fields surveyed (Int.Cl. 7 , DB name) F04C 29/02 351 F04C 29/02 F04C 29/02 311 F04C 29 / 02 341 F04C 18/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケーシング内に雄雌一対のスクリュロー
タを回転自在に収納する圧縮機本体と、該圧縮機本体の
吸入口に設けた吸入空気量制御用のアンローダ装置と、
前記圧縮機本体の吐出口と連通して設けたレシーバタン
クと、このレシーバタンクと連通し、圧縮機本体から吐
出された圧縮空気中の油を分離する油分離器とを設けた
油冷式スクリュ圧縮機において、前記スクリュロータを
収納するケーシングのシリンダ内に、先行する雄雌スク
リュロータのシール線が吐出開始位置にあるときに、該
スクリュロータの溝幅だけ吸入側に隣り合うシール線の
吸入側直近に第一の開口を穿設する一方、該第一の開口
よりもさらに吸入側寄りでかつ前記雄雌スクリュロータ
の後行するシール線が吸入閉込み位置にあるときに、該
スクリュロータの溝幅だけ吐出側に隣り合うシール線よ
りも吐出側寄りの位置に第二の開口を穿設し、該第二の
開口にはレシーバタンクの油溜底部よりも上方位置と連
通する油供給用の第一の配管を連通させる一方、レシー
バタンクの油溜底部と連通するドレン水回収用の第二の
配管を、前記油分離器の底部と連通する油回収用の第三
の配管と合流させて前記ケーシングの第一の開口に連通
させたことを特徴とする油冷式スクリュ圧縮機。
1. A compressor body for rotatably housing a pair of male and female screw rotors in a casing, and an unloader device for controlling an intake air amount provided at an intake port of the compressor body.
An oil-cooled screw provided with a receiver tank provided in communication with the discharge port of the compressor body, and an oil separator connected with the receiver tank and separating oil in compressed air discharged from the compressor body. In the compressor, when the seal line of the preceding male and female screw rotors is located at the discharge start position in the cylinder of the casing that houses the screw rotor, the seal line adjacent to the suction side by the groove width of the screw rotor is sucked. While the first opening is formed in the vicinity of the side, the screw rotor is further closer to the suction side than the first opening, and the seal line following the male and female screw rotor is at the suction closed position. A second opening is formed at a position closer to the discharge side than the seal line adjacent to the discharge side by the groove width of the above, and an oil supply communicating with a position above the oil reservoir bottom of the receiver tank is provided in the second opening. For While connecting the one pipe, the second pipe for collecting drain water, which communicates with the bottom of the oil reservoir of the receiver tank, is joined with the third pipe for collecting oil, which communicates with the bottom of the oil separator. An oil-cooled screw compressor characterized by being communicated with a first opening of a casing.
【請求項2】 前記ケーシングに設けた前記第二の開口
位置は、第一の開口位置よりもスクリュロータの溝幅以
上の間隔を設けて穿設されていることを特徴とする請求
項1記載の油冷式スクリュ圧縮機。
2. The second opening position provided in the casing is bored at a distance larger than the groove width of the screw rotor from the first opening position. Oil-cooled screw compressor.
【請求項3】 前記第二の配管途中には、絞りを設けた
ことを特徴とする請求項1または2記載の油冷式スクリ
ュ圧縮機。
3. The oil-cooled screw compressor according to claim 1, wherein a throttle is provided in the middle of the second pipe.
【請求項4】 前記第二の配管の内径は、第一の配管内
径よりも小径であることを特微とする請求項1または2
記載の油冷式スクリュ圧縮機。
4. The inner diameter of the second pipe is smaller than the inner diameter of the first pipe.
The oil-cooled screw compressor described.
【請求項5】 前記油溜に連通した前記第一の配管の油
吸込み口にドレン水吸込み防止体を設けたことを特徴と
する請求項1または2記載の油冷式スクリュ圧縮機。
5. The oil-cooled screw compressor according to claim 1, wherein a drain water suction preventive member is provided at an oil suction port of the first pipe communicating with the oil reservoir.
JP11939696A 1996-05-14 1996-05-14 Oil-cooled screw compressor Expired - Lifetime JP3456090B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11939696A JP3456090B2 (en) 1996-05-14 1996-05-14 Oil-cooled screw compressor
CN97102361A CN1083537C (en) 1996-05-14 1997-01-30 Oil cooling type screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11939696A JP3456090B2 (en) 1996-05-14 1996-05-14 Oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JPH09303279A JPH09303279A (en) 1997-11-25
JP3456090B2 true JP3456090B2 (en) 2003-10-14

Family

ID=14760468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11939696A Expired - Lifetime JP3456090B2 (en) 1996-05-14 1996-05-14 Oil-cooled screw compressor

Country Status (2)

Country Link
JP (1) JP3456090B2 (en)
CN (1) CN1083537C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564686B (en) * 2013-10-15 2017-01-18 株式会社神户制钢所 Screw compressor and oil supply method thereof

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1013221A3 (en) * 2000-01-11 2001-11-06 Atlas Copco Airpower Nv Water-injected screw compressor element.
JP4119698B2 (en) * 2002-07-18 2008-07-16 北越工業株式会社 Oil-cooled compressor receiver tank
JP4214013B2 (en) * 2003-07-29 2009-01-28 株式会社日立産機システム Oil-cooled air compressor
JP4043433B2 (en) * 2003-11-14 2008-02-06 株式会社神戸製鋼所 air compressor
WO2006013636A1 (en) * 2004-08-03 2006-02-09 Mayekawa Mfg.Co.,Ltd. Lubricant supply system and operating method of multisystem lubrication screw compressor
EP1917441B1 (en) * 2005-08-25 2016-07-13 Ateliers Busch S.A. Pump housing
BE1017001A3 (en) * 2006-03-07 2007-11-06 Atlas Copco Airpower Nv A RESERVOIR FOR A REPLACEMENT LIQUID OF AN APPARATUS AND AN APPARATUS, AND AN OIL SEPARATOR EQUIPPED WITH SUCH A RESERVOIR.
CN100564883C (en) * 2007-12-10 2009-12-02 攀枝花新钢钒股份有限公司 Fuel injection helical lobe compressor lubricant oil ancillary equipment
JP4431184B2 (en) * 2008-06-13 2010-03-10 株式会社神戸製鋼所 Screw compressor
JP2010031814A (en) 2008-07-31 2010-02-12 Hitachi Ltd Oil-cooled screw compressor, motor driving system and motor control device
JP5373335B2 (en) 2008-08-08 2013-12-18 株式会社神戸製鋼所 Refrigeration equipment
WO2010106787A1 (en) * 2009-03-16 2010-09-23 ダイキン工業株式会社 Screw compressor
JP4666086B2 (en) * 2009-03-24 2011-04-06 ダイキン工業株式会社 Single screw compressor
CN101943163B (en) * 2010-09-10 2011-12-07 宁波鲍斯能源装备股份有限公司 Two-stage medium-pressure screw-type air compressor set
CN103306981A (en) * 2012-03-12 2013-09-18 上海斯可络压缩机有限公司 Double-screw air compressor
CN103321879A (en) * 2012-03-22 2013-09-25 简明堃 Gas supply device
JP5950870B2 (en) * 2013-06-20 2016-07-13 株式会社神戸製鋼所 Oil-cooled screw compressor
CN104343683B (en) * 2013-07-31 2017-05-24 株式会社神户制钢所 Oil-cooled air compressor and control method thereof
JP6216204B2 (en) * 2013-10-10 2017-10-18 株式会社日立産機システム Lubricating compressor
US9915265B2 (en) * 2014-12-31 2018-03-13 Ingersoll-Rand Company Compressor system with variable lubricant injection orifice
TWI632298B (en) * 2016-04-19 2018-08-11 日商日立產機系統股份有限公司 Oil-cooled screw compressor
CN105889073B (en) * 2016-05-26 2018-04-20 珠海格力电器股份有限公司 Compressor, capacity modulation and its capacity regulation method
WO2017212623A1 (en) * 2016-06-10 2017-12-14 株式会社日立製作所 Air compressor
JP6778581B2 (en) * 2016-10-25 2020-11-04 株式会社神戸製鋼所 Oil-free screw compressor
JP7072350B2 (en) * 2017-05-24 2022-05-20 株式会社神戸製鋼所 Oil-cooled compressor
CN107269541B (en) * 2017-08-17 2020-06-16 陆亚明 Air compressor exhaust pipe mounting structure and screw air compressor
CN107269539B (en) * 2017-08-17 2020-06-19 宁波天风汽车科技有限公司 Oil gas filtering structure of air compressor and screw air compressor with oil gas filtering structure
JP6775482B2 (en) * 2017-11-09 2020-10-28 株式会社神戸製鋼所 Screw compressor
JP6836492B2 (en) * 2017-11-09 2021-03-03 株式会社神戸製鋼所 Liquid-cooled screw compressor
JP6850243B2 (en) * 2017-11-09 2021-03-31 株式会社神戸製鋼所 Liquid-cooled screw compressor
JP6789201B2 (en) * 2017-11-09 2020-11-25 株式会社神戸製鋼所 Liquid-cooled screw compressor
JP6843033B2 (en) * 2017-11-09 2021-03-17 株式会社神戸製鋼所 Refueling screw compressor
JP7366799B2 (en) * 2020-02-25 2023-10-23 株式会社日立産機システム Liquid feed type screw compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56580A (en) * 1979-06-12 1981-01-07 Tokico Ltd Oil-cooled compressor
DE3122361A1 (en) * 1981-06-05 1982-12-23 Bauer Schraubenverdichter GmbH, 8190 Wolfratshausen VALVE BLOCK FOR CONTROLLING THE OIL SUPPLY OF A SCREW COMPRESSOR
US4419865A (en) * 1981-12-31 1983-12-13 Vilter Manufacturing Company Oil cooling apparatus for refrigeration screw compressor
JP3059079B2 (en) * 1995-07-26 2000-07-04 三菱電機株式会社 Orientation detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564686B (en) * 2013-10-15 2017-01-18 株式会社神户制钢所 Screw compressor and oil supply method thereof

Also Published As

Publication number Publication date
JPH09303279A (en) 1997-11-25
CN1165249A (en) 1997-11-19
CN1083537C (en) 2002-04-24

Similar Documents

Publication Publication Date Title
JP3456090B2 (en) Oil-cooled screw compressor
JP3730260B2 (en) Scroll compressor
JPH0511232B2 (en)
EP1477680A2 (en) Scroll compressor
US8747091B2 (en) Water injection type screw compressor
EP1696128A1 (en) Scroll machine
JPH10159764A (en) Screw compressor
JPH0758074B2 (en) Oil-free screw compressor device
WO1996000851A1 (en) Oil level control device for a compressor
JP2011202817A (en) Refrigerating cycle device
JP4214013B2 (en) Oil-cooled air compressor
JP5680519B2 (en) Water jet screw compressor
JP4685466B2 (en) Secondary separation lubricating oil recovery structure for oil-cooled screw compressor
JP7229720B2 (en) screw compressor
JP2002349462A (en) Oil injection type screw compressor
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
JPH0139914Y2 (en)
JP2538453Y2 (en) Oil-cooled screw compressor
JP2558407Y2 (en) Oil-cooled compressor
JP3342615B2 (en) Oil-cooled screw double compressor
JP2012193711A (en) Lubricating device for internal combustion engine
JP2001153078A (en) Screw compressor
JPH088312Y2 (en) Oil-cooled rotary compressor
JPS6341593Y2 (en)
JP2510126Y2 (en) Screw compressor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term