JP4119698B2 - Oil-cooled compressor receiver tank - Google Patents

Oil-cooled compressor receiver tank Download PDF

Info

Publication number
JP4119698B2
JP4119698B2 JP2002209856A JP2002209856A JP4119698B2 JP 4119698 B2 JP4119698 B2 JP 4119698B2 JP 2002209856 A JP2002209856 A JP 2002209856A JP 2002209856 A JP2002209856 A JP 2002209856A JP 4119698 B2 JP4119698 B2 JP 4119698B2
Authority
JP
Japan
Prior art keywords
cooling oil
receiver tank
oil
discharge port
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002209856A
Other languages
Japanese (ja)
Other versions
JP2004052635A (en
Inventor
勇介 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2002209856A priority Critical patent/JP4119698B2/en
Publication of JP2004052635A publication Critical patent/JP2004052635A/en
Application granted granted Critical
Publication of JP4119698B2 publication Critical patent/JP4119698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油冷式圧縮機のレシーバタンクに関し、より詳細にはレシーバタンク内に貯留された冷却油を圧縮機本体に供給するに際し、この冷却油中にドレンやタンク内の圧縮気体が混入することを防止する構成を備えた油冷式圧縮機のレシーバタンクに関する。
【0002】
【従来の技術】
油冷式圧縮機1は、図6に示すように圧縮機本体30に吸入された空気やガスなどに冷却・潤滑・密封を目的として油(本明細書において「冷却油」という。)の噴射を行いながら圧縮作用を行うものであるため、圧縮機本体30より吐出された圧縮気体中には多量の冷却油が混在している。
【0003】
そのため、圧縮機本体30より吐出された圧縮気体はこれを消費側に供給する前に一旦レシーバタンク10内に導入し、レシーバタンク10内で大粒の油滴を一次分離後、油分離器13で一次分離しきれなかったミスト状の油分を分離・除去して清浄な空気と成し、これを消費側に供給するように構成している。
【0004】
そして、レシーバタンク10内で分離・貯留された冷却油40は、レシーバタンク10内に貯留する冷却油40中に没する位置において開口した冷却油排出口11を介してレシーバタンク内の圧縮気体の圧力によりレシーバタンク10外に圧送・排出され、この排出された冷却油40をオイルフィルタ、オイルクーラを通過させた後、再度圧縮機本体30の給油口31を介して作用空間内に導入して、再度作用空間の冷却、潤滑、密封を行うために使用している。また、この冷却油40は前記給油口31を介して圧縮機本体30に内蔵する軸受装置にも供給され、軸受装置の冷却、潤滑を行った後、作用空間内に回収されている。
【0005】
このように、圧縮気体と共に圧縮機本体30より吐出された冷却油40は、レシーバタンク10内において圧縮気体と分離された後、再度圧縮機本体30内に形成された作用空間内の冷却、潤滑、密封用及び軸受装置の冷却、潤滑用として圧縮機本体30内の各部に供給されるが、図6のようにレシーバタンク10の最も低い所に冷却油排出口11を開口すると、例えば圧縮気体の消費量が少なくなりレシーバタンク10内における圧縮気体の滞留時間が長くなると、圧縮気体の温度が低下して該圧縮気体中に含有する水分が結露しレシーバタンク10内にドレンが発生する。このドレンは一般に冷却油40よりも比重が重いことからレシーバタンク10の底部に貯留する冷却油40の底部側に溜まり、冷却油40と共に作用空間や軸受装置に供給される。このことから、作用空間の冷却・潤滑・密封や軸受装置の冷却・潤滑が十分に図れず、またドレンにより圧縮機本体30の各部が錆びるなどの問題がある。
【0006】
そのため、レシーバタンク10内にドレンが貯留されている場合にも、このドレンが混入することなく冷却油のみを圧縮機本体30に供給することができるよう工夫がされたレシーバタンク10がある。
【0007】
このようなレシーバタンク10の一例を図7に示す。図7に示すレシーバタンク10は、冷却油40に混在するドレン42が冷却油40よりも重く、冷却油40に比較してレシーバタンク10の底部側に溜まることを利用して冷却油40のみを圧縮機本体30に供給可能としたもので、このレシーバタンク10は、圧縮気体及び冷却油を貯留可能な圧力容器たるレシーバタンク本体10’と、このレシーバタンク本体10’の側壁を貫通しレシーバタンク本体10’内において一端を開口し、他端を圧縮機本体30に連通した排出管12を備えており、この排出管12の一端に形成する冷却油排出口11を冷却油中に没してレシーバタンク本体10’の底部に向けて開口している。
【0008】
そして、冷却油排出口11の開口方向前方に所定の間隔を介して邪魔板15を設け、レシーバタンク本体10’の底部に溜まったドレン42が冷却油排出口11に向かって流入することをこの邪魔板15により遮るよう構成したものである。
【0009】
なお、油分離器等のレシーバタンク10が備えるその他の構成については、図7において省略している。
【0010】
【発明が解決しようとする課題】
以上のような構造を備えた図7に示すレシーバタンク10にあっては、前述のように邪魔板15を設けることによりドレン42は圧縮機本体30に供給され難いものとなる。
【0011】
しかし、レシーバタンク10の底部に溜まったドレン42を吸い上げることなく冷却油のみを吸い上げるためには、冷却油排出口11は比較的長距離、タンク10の底部より離して配置する必要があり、これを底部に近づけて配置する場合には邪魔板15の存在に拘わらずドレン42が冷却油40に混入して排出される。
【0012】
一方、冷却油排出口11の配置位置は、レシーバタンク10内における冷却油の下限位置よりも低い位置に配置する必要があるが、冷却油排出口11の周縁部において冷却油排出口11に導入される冷却油の流速が比較的速いことから、冷却油排出口11の周縁部と油面OLとの距離Lが短いと、油面OLは冷却油排出口11の周縁部において図7に示すように陥没した状態となり、冷却油40と共にレシーバタンク10中の圧縮気体を吸い込んでしまう。そして、冷却油40と共に吸い込まれた圧縮気体が圧縮機本体30に供給されると、圧縮機本体30の作用空間内に噴射される冷却油量が不足し、十分な潤滑・密封・冷却を行うことができなくなる。
【0013】
そのため、圧縮機本体30に供給される冷却油40にドレン42と圧縮気体の双方が混入することを防止するためには、冷却油排出口11はタンク底部から十分な距離離れていると共に、下限位置における冷却油40の油面OLからも一定の距離離間している必要があり、さらに圧縮機の作動、停止における油面の変動を考慮して冷却油排出口11の位置と油面OL位置(油量)が決定されている。さらにレシーバタンク10の容量は、前述の油量に加え停止時における冷却油のフォーミングと油分離器13迄の空間容積を考慮して決定されているため、前述の構造のレシーバタンク10にあっては高さ方向においてレシーバタンク10の小型化が制約される。
【0014】
そこで本発明の目的は、上記従来技術における欠点を解消するためになされたものであり、冷却油にドレン及び圧縮空気のいずれもが混入することを防止するとができると共に、可及的に小型化することのできる構造を備えたレシーバタンクを提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明の油冷式圧縮機1のレシーバタンク10は、圧縮機本体30より圧縮気体と共に吐出された冷却油を導入し、圧縮気体と冷却油とに分離して底部に該冷却油を貯留すると共に、貯留された冷却油をこの冷却油中に没した位置で開口する冷却油排出口11を介して前記圧縮機本体30の作用空間に連通する給油口31に供給するレシーバタンク10において、
前記冷却油排出口11を該レシーバタンク10の底部に向けて開口すると共に、
前記冷却油排出口11の周縁部より外周方向に突出し、かつ、冷却油の油面OLに対して水平方向を成すフランジ14と、前記冷却油排出口11の開口方向前方において前記フランジ14と所定間隔を介して略平行に配置された邪魔板15を備えたことを特徴とする(請求項1)。
【0016】
前述の構成のレシーバタンク10において、前記冷却油排出口11の周縁部形状と前記フランジの周縁形状とを相似形又は略相似形とすれば好ましく(請求項2)、例えば、冷却油排出口11が円形形状を成す場合にはフランジ14についても同様に冷却油排出口11と同心を成す円形に形成する。
【0017】
また、前述の構成に加えて本発明のレシーバタンク10は、レシーバタンク10の底部を区画してレシーバタンク10内における上方の空間と連通する底部室(ドレンチャンバ16)を形成すると共に、前記底部室(ドレンチャンバ16)と前記上方空間を連通する連通路17を前記邪魔板15の下方に位置して形成する(請求項3;図5参照)。
【0018】
この場合、前記連通路17の開口面積を前記邪魔板15の面積よりも小さく形成すれば好適である(請求項4)。
【0019】
また、前記底部室(ドレンチャンバ16)を前記上方空間より区画する仕切壁18を、前記連通路17に向かって下方に傾斜する形状とすれば好適である(請求項5)。
【0020】
【発明の実施の形態】
つぎに、本発明の実施形態について添付図面を参照しながら以下説明する。
【0021】
図1に示すように、本発明のレシーバタンク10は、圧力容器であるレシーバタンク本体10’と、このレシーバタンク本体10’の側壁を貫通しレシーバタンク本体10’内において一端を開口し、他端を圧縮機本体30に連通した排出管12を備えており、この排出管12の一端に形成する冷却油排出口11を冷却油中に没してレシーバタンク本体10’の底部に向けて開口し、この冷却油排出口11を介してレシーバタンク10内の圧縮気体の圧力により押し出された冷却油40がレシーバタンク10外に排出されると共に、この排出された冷却油40が圧縮機本体30に供給されるよう構成されている点については、図7を参照して説明した前述の従来技術のレシーバタンク10と同様の構成である。
【0022】
本発明のレシーバタンク10にあっては、図1に示すように前述の冷却油排出口11の周縁部より外周方向に突出し、油面に対して略平行を成すフランジ14が設けられていると共に、前記冷却油排出口11の開口方向前方に位置し、前記フランジ14と所定間隔を介して略平行に配置された邪魔板15が設けられている。
【0023】
本実施形態において前述の冷却油排出口11は、レシーバタンク本体10’の壁面を貫通してレシーバタンク本体10’内に挿入された排油管12の一端開口より成り、前記フランジ14は矩形状の板体の略中央に前記排油管12の外周形状と同形の開孔を形成し、前記フランジ14の開孔内に前記排油管12の一端を挿入すると共に、溶着又は、その他の方法によりそれぞれを固着して、前述の冷却油排出口11の周縁部より外周方向に突出するように形成している〔図2(A)及び図2(B)参照〕。
【0024】
なお、図2(A)及び図2(B)に示す実施形態にあっては、このフランジ14を矩形状としているが、このフランジ14の形状は、冷却油排出口11の形状と相似形、例えば図3(A)及び図3(B)に示すように冷却油排出口11が断面円形に形成されている場合にはこの冷却油排出口11と同心を成す円形に形成しても良く、その他各種の形状に形成することができる。
【0025】
また、このフランジ14のサイズは、レシーバタンク10内の圧縮気体の圧力、レシーバタンク本体10’の断面形状その他各種の条件に応じてそのサイズを種々設定することができ、フランジ14の周縁部における冷却油の流速を減少し得るものであれば、その構成は前述の実施形態の例に限定されるものではない。
【0026】
このフランジ14と平行を成す邪魔板15は、図2(A)にあっては前記フランジ14の対角線を直径と成す円形板により形成しているが、この邪魔板15の形状及びサイズについても各種条件に従って変更可能であり、レシーバタンク10の底部に溜まったドレン42が、冷却油排出口11を介して冷却油40の排出を行う際に冷却油排出口11側に流れ込むことを遮ることができるものであれば、そのサイズ及び形状は各種のものに変更可能であり、例えば図2(A)に示す例にあっては、フランジ14と同様に矩形状に形成しても良い。
【0027】
フランジ14と邪魔板15との間にはそれぞれを連結する連結具19を設け、この連結具19によってフランジ14と邪魔板15とを所定の間隔を介して略平行に保持している。
【0028】
なお、この邪魔板15の取付方法は図示の例に限定されずフランジ14との間に所定の間隔を確保することができると共に、フランジ14と邪魔板15との間隔を介して冷却油40を冷却油排出口11に導入可能な構成であれば、その構成は図示の例に限定されるものではない。
【0029】
以上のように構成された本発明のレシーバタンク10において、レシーバタンク10内の冷却油40は該レシーバタンク10(レシーバタンク本体10’)の底部に向かって開口する冷却油排出口11を介してタンク10外に排出されるが、この冷却油排出口11の開口方向前方には邪魔板15が設けられているため、この冷却油排出口11に対する冷却油の流れは図4に示すように水平方向の流れとして生じ、レシーバタンク10の底部に溜まったドレン42を吸い上げる液流は発生しない。従って、冷却油40の排出に際し、この冷却油40と共にドレン42が排出されることがない。
【0030】
また、図4に示すように、冷却油排出口11の配置位置が冷却油40の油面OL付近にある場合であっても、冷却油排出口11に吸い込まれる冷却油40の流速が最も早い冷却油排出口11の周縁部にはフランジ14が設けられていることから、この部分を介してレシーバタンク10内の圧縮気体が冷却油排出口11に導入されることはなく、また、フランジ14の周縁部において冷却油40の油面OLを陥没させて圧縮気体を吸い込む程の流速はなく、レシーバタンク10より排出される冷却油に圧縮気体が混入するおそれもない。特に、フランジ14の形状を冷却油排出口11と相似形又は略相似形に形成した場合には、冷却油排出口11の周縁部からフランジ14の周縁部に至る距離が均一となるために、フランジ14の周縁部において冷却油排出口11側に向かう冷却油の流速が一定となる。その結果、フランジ14の形状を所望の効果を得るための最小の形状とすることができる。
【0031】
このように、前述のフランジ14と邪魔板15とを設けた本発明のレシーバタンク10にあっては、下限時における冷却油40の油面OLと冷却油排出口11の配置位置とを略同一の高さとすることができることから、図7における距離Lを可及的に短くすることができ、その結果、レシーバタンクの高さ方向におけるサイズの減少が可能となる。
【0032】
以上図1〜図4を参照して説明した本発明のレシーバタンク10にあっては、冷却油排出口11の部分にフランジ14と邪魔板15を設けた構成についてのみ説明したが、本発明のレシーバタンク10は、前述の構成に加えさらに図5に示すようにレシーバタンク本体10’の底部にドレンチャンバ(底部室)16を設けたレシーバタンク10とすることにより、冷却油40にドレン42が混入することをより効果的に防止することができる。
【0033】
このドレンチャンバ16は、図5に示す実施形態にあっては、底部に連通路17となる開口が形成されたレシーバタンク本体10’の下端に別個に形成された室16を取り付けて形成されており、従ってレシーバタンク本体10’の底壁がドレンチャンバ16とその上部に形成されたレシーバタンク本体10’内の空間を区画する仕切壁18となっているが、例えばこの構成に代えレシーバタンク本体10’の内壁から中心に向かって突出する仕切壁18を設け、レシーバタンク本体10’内を上下に仕切り、下部側の空間をドレンチャンバ16としても良い(図示せず)。
【0034】
このドレンチャンバ16とレシーバタンク本体10’間を連通する連通路17は、レシーバタンク本体10’の円筒部の水平方向断面に対して小径に形成し、冷却油排出口11を介して冷却油40の排出が行われることによりレシーバタンク本体10’内で液流が生じた場合であっても、ドレンチャンバ16内はこの液流の影響を受け難く形成されている。従って、一旦このドレンチャンバ16内にドレンが導入されると、ドレン42はレシーバタンク本体10’側に逆流し難い構成となっている。
【0035】
この連通路17は、冷却油排出口11の開口方向前方を遮る前述の邪魔板15取付位置の下方に形成し、好ましくはこの邪魔板15の面積に対して連通路17の開口面積を小さくする。
【0036】
なお、このドレンチャンバ16の上端を画成する仕切壁18は、好ましくは連通路17に向かって下方に傾斜する形状であることが好ましい。このように仕切壁18を連通路17に向かう傾斜形状とすることにより、連通路17の開口面積が狭く形成されている場合であっても冷却油40中のドレンをこの仕切壁18の傾斜に従って容易にドレンチャンバ内に導入することができると共に、開口面積の狭い連通路17を介してドレンチャンバ16内に導入されたドレン42は、より一層冷却油排出口11に向かって流動し難いものとなる。
【0037】
以上のように構成されたレシーバタンク10にあっては、ドレンチャンバ16を備えていないレシーバタンクに比較して冷却油排出口11をよりレシーバタンク10の底部に近づけた場合であってもドレン42が冷却油排出口11に吸い込まれることを防止できる。そのため、前述のフランジ14及び邪魔板15を設けたこととも相俟ってより一層レシーバタンク10の高さ方向におけるサイズを低減することができる。
【0038】
【発明の効果】
以上説明した本発明の構成により、圧縮機本体へ供給する冷却油に圧縮気体やドレンが混入することなく、しかも小型化が可能なレシーバタンクの構造を提供することができた。
【0039】
特に、レシーバタンクがドレンを導入するためのドレンチャンバを備える場合には、より一層レシーバタンクのサイズを小型化でき、しかも圧縮機本体に供給される冷却油にドレンが混入することのないレシーバタンクを提供することができた。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すレシーバタンクの概略断面図。
【図2】冷却油排出口部分の形成例を示し、(A)は平面図、(B)は正面図。
【図3】冷却油排出口部分の別の形成例を示し、(A)は平面図、(B)は正面図。
【図4】冷却油排出口部分における冷却油の流れを示す概略説明図。
【図5】ドレンチャンバ(底部室)を備えたレシーバタンクの概略説明図。
【図6】従来のレシーバタンクを備えた油例式圧縮機の概略説明図。
【図7】従来のレシーバタンクの概略断面図。
【符号の説明】
1 油例式圧縮機
10 レシーバタンク
10’ レシーバタンク本体
11 冷却油排出口
12 排油管
13 油分離器
14 フランジ
15 邪魔板
16 ドレンチャンバ(底部室)
17 連通路
18 仕切壁
19 連結具
30 圧縮機本体
31 給油口
40 冷却油
42 ドレン
L 油面−冷却油排出口間距離
OL 油面(下限)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a receiver tank of an oil-cooled compressor, and more specifically, when cooling oil stored in a receiver tank is supplied to a compressor body, drain or compressed gas in the tank is mixed in the cooling oil. The present invention relates to a receiver tank of an oil-cooled compressor having a configuration for preventing the above.
[0002]
[Prior art]
As shown in FIG. 6, the oil-cooled compressor 1 injects oil (referred to as “cooling oil” in this specification) for the purpose of cooling, lubrication, and sealing the air or gas drawn into the compressor body 30. Therefore, a large amount of cooling oil is mixed in the compressed gas discharged from the compressor main body 30.
[0003]
Therefore, the compressed gas discharged from the compressor main body 30 is once introduced into the receiver tank 10 before being supplied to the consumer side, and after the primary oil droplets are primarily separated in the receiver tank 10, the oil separator 13 It is configured to separate and remove the mist-like oil that could not be primarily separated to form clean air and supply it to the consumer side.
[0004]
Then, the cooling oil 40 separated and stored in the receiver tank 10 is supplied to the compressed gas in the receiver tank through the cooling oil discharge port 11 opened at a position immersed in the cooling oil 40 stored in the receiver tank 10. After being pumped and discharged out of the receiver tank 10 by pressure, the discharged cooling oil 40 is passed through an oil filter and an oil cooler, and then introduced again into the working space via the oil filler port 31 of the compressor body 30. Used again to cool, lubricate and seal the working space. The cooling oil 40 is also supplied to the bearing device built in the compressor main body 30 through the oil supply port 31, and after cooling and lubricating the bearing device, the cooling oil 40 is collected in the working space.
[0005]
Thus, the cooling oil 40 discharged from the compressor body 30 together with the compressed gas is separated from the compressed gas in the receiver tank 10, and then cooled and lubricated in the working space formed in the compressor body 30 again. When the cooling oil discharge port 11 is opened at the lowest part of the receiver tank 10 as shown in FIG. 6, for example, compressed gas is supplied to each part in the compressor body 30 for sealing and cooling and lubrication of the bearing device. When the consumption amount of the compressed gas decreases and the residence time of the compressed gas in the receiver tank 10 increases, the temperature of the compressed gas decreases, moisture contained in the compressed gas is condensed, and drainage is generated in the receiver tank 10. Since this drain generally has a higher specific gravity than the cooling oil 40, the drain accumulates on the bottom side of the cooling oil 40 stored at the bottom of the receiver tank 10, and is supplied to the working space and the bearing device together with the cooling oil 40. For this reason, there is a problem that the working space cannot be sufficiently cooled / lubricated / sealed and the bearing device cannot be sufficiently cooled / lubricated, and each part of the compressor body 30 is rusted by the drain.
[0006]
Therefore, even when drain is stored in the receiver tank 10, there is the receiver tank 10 devised so that only the cooling oil can be supplied to the compressor body 30 without mixing this drain.
[0007]
An example of such a receiver tank 10 is shown in FIG. The receiver tank 10 shown in FIG. 7 uses only the fact that the drain 42 mixed in the cooling oil 40 is heavier than the cooling oil 40 and accumulates on the bottom side of the receiver tank 10 compared to the cooling oil 40. The receiver tank 10 can be supplied to the compressor body 30. The receiver tank 10 penetrates through a receiver tank body 10 'that is a pressure vessel capable of storing compressed gas and cooling oil, and a side wall of the receiver tank body 10'. A discharge pipe 12 having one end opened in the main body 10 ′ and the other end communicating with the compressor main body 30 is provided. A cooling oil discharge port 11 formed at one end of the discharge pipe 12 is immersed in the cooling oil. It opens toward the bottom of the receiver tank body 10 '.
[0008]
Then, a baffle plate 15 is provided in front of the cooling oil discharge port 11 in the opening direction at a predetermined interval so that the drain 42 accumulated at the bottom of the receiver tank body 10 ′ flows into the cooling oil discharge port 11. It is configured to be blocked by the baffle plate 15.
[0009]
Note that other configurations of the receiver tank 10 such as an oil separator are omitted in FIG.
[0010]
[Problems to be solved by the invention]
In the receiver tank 10 shown in FIG. 7 having the above-described structure, the drain 42 is difficult to be supplied to the compressor body 30 by providing the baffle plate 15 as described above.
[0011]
However, in order to suck up only the cooling oil without sucking up the drain 42 accumulated at the bottom of the receiver tank 10, the cooling oil discharge port 11 needs to be arranged at a relatively long distance from the bottom of the tank 10. Is disposed close to the bottom, the drain 42 is mixed with the cooling oil 40 and discharged regardless of the presence of the baffle plate 15.
[0012]
On the other hand, the arrangement position of the cooling oil outlet 11, it is necessary to place at a position lower than the lower limit position of the cooling oil in the receiver tank 10, introduced into the cooling oil discharge port 11 at the periphery of the cooling oil discharge port 11 Since the flow rate of the cooling oil is relatively high, when the distance L between the peripheral portion of the cooling oil discharge port 11 and the oil surface OL is short, the oil surface OL is shown in FIG. 7 at the peripheral portion of the cooling oil discharge port 11. As a result, the compressed gas in the receiver tank 10 is sucked together with the cooling oil 40. When the compressed gas sucked together with the cooling oil 40 is supplied to the compressor body 30, the amount of cooling oil injected into the working space of the compressor body 30 is insufficient, and sufficient lubrication, sealing, and cooling are performed. I can't do that.
[0013]
Therefore, in order to prevent both the drain 42 and the compressed gas from being mixed into the cooling oil 40 supplied to the compressor body 30, the cooling oil discharge port 11 is separated from the tank bottom by a sufficient distance, and the lower limit. The cooling oil 40 at the position needs to be separated from the oil level OL by a certain distance, and the position of the cooling oil discharge port 11 and the oil level OL position in consideration of the fluctuation of the oil level when the compressor is operated and stopped. (Oil amount) has been determined. Further, the capacity of the receiver tank 10 is determined in consideration of the cooling oil forming at the time of stoppage and the space volume to the oil separator 13 in addition to the above-described oil amount. Therefore, downsizing of the receiver tank 10 is restricted in the height direction.
[0014]
Accordingly, an object of the present invention has been made to solve the drawbacks of the prior art, it is the this to prevent any of the drainage and compressed air is mixed into the cooling oil, as much as possible An object of the present invention is to provide a receiver tank having a structure that can be miniaturized.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the receiver tank 10 of the oil-cooled compressor 1 of the present invention introduces the cooling oil discharged together with the compressed gas from the compressor body 30 and separates it into the compressed gas and the cooling oil. The cooling oil is stored at the bottom, and the stored cooling oil is connected to the oil supply port 31 communicating with the working space of the compressor body 30 through the cooling oil discharge port 11 opened at a position where the cooling oil is submerged in the cooling oil. In the receiver tank 10 to be supplied,
While opening the cooling oil discharge port 11 toward the bottom of the receiver tank 10,
A flange 14 that protrudes in the outer circumferential direction from the peripheral edge of the cooling oil discharge port 11 and that is in a horizontal direction with respect to the oil level OL of the cooling oil, and the flange 14 and a predetermined front in the opening direction of the cooling oil discharge port 11 A baffle plate 15 is provided which is arranged substantially in parallel with an interval (Claim 1).
[0016]
In the receiver tank 10 having the above-described configuration, it is preferable that the peripheral shape of the cooling oil discharge port 11 and the peripheral shape of the flange are similar or substantially similar (claim 2). For example, the cooling oil discharge port 11 Is formed in a circular shape that is concentric with the cooling oil discharge port 11 in the same manner.
[0017]
In addition to the above-described configuration, the receiver tank 10 of the present invention forms a bottom chamber (drain chamber 16) that defines a bottom portion of the receiver tank 10 and communicates with an upper space in the receiver tank 10, and the bottom portion. A communication passage 17 that communicates the chamber (drain chamber 16) with the upper space is formed below the baffle plate 15 (Claim 3; see FIG. 5).
[0018]
In this case, it is preferable to form the opening area of the communication passage 17 smaller than the area of the baffle plate 15 (Claim 4).
[0019]
In addition, it is preferable that the partition wall 18 that divides the bottom chamber (drain chamber 16) from the upper space has a shape inclined downward toward the communication path 17 (Claim 5).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
[0021]
As shown in FIG. 1, a receiver tank 10 according to the present invention includes a receiver tank body 10 ′, which is a pressure vessel, and a side wall of the receiver tank body 10 ′ that is open at one end within the receiver tank body 10 ′. A discharge pipe 12 having an end communicating with the compressor body 30 is provided, and a cooling oil discharge port 11 formed at one end of the discharge pipe 12 is immersed in the cooling oil and opened toward the bottom of the receiver tank body 10 ′. Then, the cooling oil 40 pushed out by the pressure of the compressed gas in the receiver tank 10 through the cooling oil discharge port 11 is discharged to the outside of the receiver tank 10, and the discharged cooling oil 40 is discharged from the compressor main body 30. The point of being configured to be supplied to is the same as that of the above-described conventional receiver tank 10 described with reference to FIG.
[0022]
In the receiver tank 10 of the present invention, as shown in FIG. 1, a flange 14 that protrudes in the outer peripheral direction from the peripheral edge portion of the cooling oil discharge port 11 and is substantially parallel to the oil surface is provided. A baffle plate 15 is provided which is located in front of the cooling oil discharge port 11 in the opening direction and is arranged substantially parallel to the flange 14 with a predetermined distance therebetween.
[0023]
In the present embodiment, the cooling oil discharge port 11 described above is composed of one end opening of an oil discharge pipe 12 that passes through the wall surface of the receiver tank body 10 'and is inserted into the receiver tank body 10', and the flange 14 has a rectangular shape. An opening having the same shape as the outer peripheral shape of the oil draining pipe 12 is formed in the approximate center of the plate body, and one end of the oil draining pipe 12 is inserted into the hole of the flange 14 and welded or other methods are used. It adheres and forms so that it may protrude in the outer peripheral direction from the peripheral part of the above-mentioned cooling oil discharge port 11 (refer to Drawing 2 (A) and Drawing 2 (B)).
[0024]
In the embodiment shown in FIGS. 2 (A) and 2 (B), the flange 14 is rectangular, but the shape of the flange 14 is similar to the shape of the cooling oil discharge port 11, For example, when the cooling oil discharge port 11 is formed in a circular cross section as shown in FIGS. 3A and 3B, it may be formed in a circle concentric with the cooling oil discharge port 11, Other various shapes can be formed.
[0025]
Further, the size of the flange 14 can be variously set according to the pressure of the compressed gas in the receiver tank 10, the cross-sectional shape of the receiver tank body 10 ′ and other various conditions. As long as the flow rate of the cooling oil can be reduced, the configuration is not limited to the above-described embodiment.
[0026]
The baffle plate 15 that is parallel to the flange 14 is formed by a circular plate having the diameter of the diagonal line of the flange 14 in FIG. 2A, but there are various shapes and sizes of the baffle plate 15. can vary according to the conditions, drain 42 accumulated in the bottom portion of the receiver tank 10, can be blocked from flowing into the cooling oil discharge port 11 side at the time of performing discharge of the cooling oil 40 through the cooling oil discharge port 11 If it is a thing, the size and shape can be changed into various things. For example, in the example shown in FIG.
[0027]
A connecting tool 19 for connecting the flange 14 and the baffle plate 15 is provided between the flange 14 and the baffle plate 15. The connecting tool 19 holds the flange 14 and the baffle plate 15 substantially in parallel with each other at a predetermined interval.
[0028]
The mounting method of the baffle plate 15 is not limited to the illustrated example, and a predetermined gap can be secured between the flange 14 and the cooling oil 40 is supplied via the gap between the flange 14 and the baffle plate 15. The configuration is not limited to the illustrated example as long as the configuration can be introduced into the cooling oil discharge port 11.
[0029]
In the receiver tank 10 of the present invention configured as described above, the cooling oil 40 in the receiver tank 10 passes through the cooling oil discharge port 11 that opens toward the bottom of the receiver tank 10 (receiver tank body 10 '). Although it is discharged out of the tank 10, a baffle plate 15 is provided in front of the cooling oil discharge port 11 in the opening direction. Therefore, the flow of the cooling oil to the cooling oil discharge port 11 is horizontal as shown in FIG. A liquid flow that is generated as a directional flow and sucks up the drain 42 accumulated at the bottom of the receiver tank 10 does not occur. Therefore, when the cooling oil 40 is discharged, the drain 42 is not discharged together with the cooling oil 40.
[0030]
Further, as shown in FIG. 4, even when the arrangement position of the cooling oil discharge port 11 is near the oil level OL of the cooling oil 40, the flow velocity of the cooling oil 40 sucked into the cooling oil discharge port 11 is the fastest. Since the flange 14 is provided at the peripheral edge of the cooling oil discharge port 11, the compressed gas in the receiver tank 10 is not introduced into the cooling oil discharge port 11 through this portion. There is no flow rate enough to sink the compressed gas by sinking the oil level OL of the cooling oil 40 at the peripheral edge, and there is no possibility that the compressed gas is mixed into the cooling oil discharged from the receiver tank 10. Particularly, in the case of forming the shape of the flange 14 in a similar shape or shape similar to the cooling oil discharge port 11, in order to distance from the periphery of the cooling oil outlet 11 on the peripheral portion of the flange 14 is uniform, flow rate of the cooling oil towards the cooling oil discharge port 11 side is constant at the periphery of the flange 14. As a result, the shape of the flange 14 can be a minimum shape for obtaining a desired effect.
[0031]
Thus, in the receiver tank 10 of the present invention provided with the flange 14 and the baffle plate 15 described above, the oil level OL of the cooling oil 40 and the arrangement position of the cooling oil discharge port 11 at the lower limit are substantially the same. Therefore, the distance L in FIG. 7 can be made as short as possible, and as a result, the size of the receiver tank in the height direction can be reduced.
[0032]
In the receiver tank 10 of the present invention described above with reference to FIGS. 1 to 4, only the configuration in which the flange 14 and the baffle plate 15 are provided in the portion of the cooling oil discharge port 11 has been described. In addition to the above-described configuration, the receiver tank 10 is a receiver tank 10 in which a drain chamber (bottom chamber) 16 is provided at the bottom of the receiver tank body 10 'as shown in FIG. It can prevent more effectively mixing.
[0033]
In the embodiment shown in FIG. 5, the drain chamber 16 is formed by attaching a chamber 16 formed separately to the lower end of the receiver tank body 10 ′ having an opening serving as a communication path 17 at the bottom. Accordingly, the bottom wall of the receiver tank main body 10 'is a partition wall 18 that partitions the drain chamber 16 and the space in the receiver tank main body 10' formed on the drain chamber 16, but the receiver tank main body is replaced with this configuration, for example. A partition wall 18 protruding toward the center from the inner wall of 10 ′ may be provided, the receiver tank body 10 ′ may be partitioned vertically, and the lower space may be used as the drain chamber 16 (not shown).
[0034]
The drain chamber 16 and the receiver tank 10 'communicating passage 17 communicating between the receiver tank 10' to a smaller diameter with respect to the horizontal cross section of the cylindrical portion of the cooling oil 40 through the cooling oil discharge port 11 Even if a liquid flow is generated in the receiver tank body 10 'by the discharge of the water, the drain chamber 16 is formed so as not to be affected by the liquid flow. Therefore, once the drain is introduced into the drain chamber 16, the drain 42 is difficult to flow back to the receiver tank body 10 'side.
[0035]
The communication path 17 is formed below the above-described baffle plate 15 mounting position that blocks the front of the cooling oil discharge port 11 in the opening direction, and preferably the opening area of the communication path 17 is smaller than the area of the baffle plate 15. .
[0036]
The partition wall 18 that defines the upper end of the drain chamber 16 preferably has a shape that is inclined downward toward the communication path 17. In this way, the partition wall 18 is inclined toward the communication path 17, so that the drain in the cooling oil 40 can follow the inclination of the partition wall 18 even when the opening area of the communication path 17 is narrow. The drain 42 introduced into the drain chamber 16 through the communication passage 17 having a small opening area can be easily introduced into the drain chamber, and is more difficult to flow toward the cooling oil discharge port 11. Become.
[0037]
In the receiver tank 10 configured as described above, even if the cooling oil discharge port 11 is closer to the bottom of the receiver tank 10 than the receiver tank that does not include the drain chamber 16, the drain 42. Can be prevented from being sucked into the cooling oil discharge port 11. Therefore, combined with the provision of the flange 14 and the baffle plate 15 described above, the size of the receiver tank 10 in the height direction can be further reduced.
[0038]
【The invention's effect】
With the configuration of the present invention described above, it is possible to provide a receiver tank structure that can be reduced in size without mixing compressed gas or drain into the cooling oil supplied to the compressor body.
[0039]
In particular, when the receiver tank is provided with a drain chamber for introducing drain, the receiver tank can be further reduced in size, and drain does not enter the cooling oil supplied to the compressor body. Could be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a receiver tank showing an embodiment of the present invention.
FIG. 2 shows an example of forming a cooling oil discharge port, (A) is a plan view, and (B) is a front view.
FIGS. 3A and 3B show another example of forming a cooling oil discharge port, where FIG. 3A is a plan view and FIG. 3B is a front view.
FIG. 4 is a schematic explanatory view showing a flow of cooling oil in a cooling oil discharge port portion.
FIG. 5 is a schematic explanatory diagram of a receiver tank including a drain chamber (bottom chamber).
FIG. 6 is a schematic explanatory diagram of an oil-type compressor equipped with a conventional receiver tank.
FIG. 7 is a schematic cross-sectional view of a conventional receiver tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oil example type compressor 10 Receiver tank 10 'Receiver tank main body 11 Cooling oil discharge port 12 Oil drain pipe 13 Oil separator 14 Flange 15 Baffle plate 16 Drain chamber (bottom chamber)
17 Communication path 18 Partition wall 19 Connector 30 Compressor body 31 Oil supply port 40 Cooling oil 42 Drain L Distance between oil level and cooling oil discharge port OL Oil level (lower limit)

Claims (5)

圧縮機本体より圧縮気体と共に吐出された冷却油を導入し、圧縮気体と冷却油とに分離して底部に該冷却油を貯留すると共に、貯留された冷却油をこの冷却油中に没した位置で開口する冷却油排出口を介して前記圧縮機本体の作用空間に連通する給油口に供給するレシーバタンクにおいて、
前記冷却油排出口を該レシーバタンクの底部に向けて開口すると共に、
前記冷却油排出口の周縁部より外周方向に突出し、かつ、冷却油の油面に対して水平方向を成すフランジと、前記冷却油排出口の開口方向前方において前記フランジと所定間隔を介して略平行に配置された邪魔板を備えたことを特徴とする油冷式圧縮機のレシーバタンク。
The cooling oil discharged together with the compressed gas from the main body of the compressor is introduced, separated into the compressed gas and the cooling oil, the cooling oil is stored at the bottom, and the stored cooling oil is submerged in the cooling oil. In the receiver tank that supplies the oil supply port that communicates with the working space of the compressor body through the cooling oil discharge port that opens at
Opening the cooling oil outlet toward the bottom of the receiver tank;
A flange that protrudes in the outer circumferential direction from the peripheral edge of the cooling oil discharge port and that is horizontal to the oil surface of the cooling oil, and substantially in front of the flange in the opening direction of the cooling oil discharge port with a predetermined distance therebetween. A receiver tank for an oil-cooled compressor, comprising baffle plates arranged in parallel.
前記冷却油排出口の周縁部形状と前記フランジの周縁部形状とを相似形又は略相似形とした請求項1記載の油冷式圧縮機のレシーバタンク。The receiver tank of the oil-cooled compressor according to claim 1, wherein a peripheral edge shape of the cooling oil discharge port and a peripheral edge shape of the flange are similar or substantially similar. 前記レシーバタンクの底部を区画してレシーバタンク内における上方の空間と連通する底部室を形成すると共に、前記底部室と前記上方空間を連通する連通路を前記邪魔板の下方に位置して形成した請求項1又は2記載の油冷式圧縮機のレシーバタンク。  The bottom portion of the receiver tank is partitioned to form a bottom chamber that communicates with an upper space in the receiver tank, and a communication passage that communicates the bottom chamber and the upper space is formed below the baffle plate. The receiver tank of the oil-cooled compressor according to claim 1 or 2. 前記連通路の開口面積を前記邪魔板の面積よりも小さく形成した請求項3記載の油冷式圧縮機のレシーバタンク。  The receiver tank of the oil-cooled compressor according to claim 3, wherein an opening area of the communication path is formed smaller than an area of the baffle plate. 前記底部室を前記上方空間より区画する仕切壁が、前記連通路に向かって下方に傾斜する形状である請求項3又は4記載の油冷式圧縮機のレシーバタンク。  The receiver tank of the oil-cooled compressor according to claim 3 or 4, wherein a partition wall that divides the bottom chamber from the upper space is inclined downward toward the communication path.
JP2002209856A 2002-07-18 2002-07-18 Oil-cooled compressor receiver tank Expired - Fee Related JP4119698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209856A JP4119698B2 (en) 2002-07-18 2002-07-18 Oil-cooled compressor receiver tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209856A JP4119698B2 (en) 2002-07-18 2002-07-18 Oil-cooled compressor receiver tank

Publications (2)

Publication Number Publication Date
JP2004052635A JP2004052635A (en) 2004-02-19
JP4119698B2 true JP4119698B2 (en) 2008-07-16

Family

ID=31933585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209856A Expired - Fee Related JP4119698B2 (en) 2002-07-18 2002-07-18 Oil-cooled compressor receiver tank

Country Status (1)

Country Link
JP (1) JP4119698B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110680U (en) * 1987-01-09 1988-07-15
JPH088312Y2 (en) * 1990-09-28 1996-03-06 北越工業株式会社 Oil-cooled rotary compressor
JPH05296172A (en) * 1992-04-23 1993-11-09 Hitachi Ltd Oil tank for oil-cooled compressor
JP3456090B2 (en) * 1996-05-14 2003-10-14 北越工業株式会社 Oil-cooled screw compressor

Also Published As

Publication number Publication date
JP2004052635A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
KR101531067B1 (en) Oil pan intergrated with filter and other components
US7401599B2 (en) Vapor-liquid separator
US8157105B2 (en) Oil strainer for automatic transmission
JP4903147B2 (en) Fuel filter for internal combustion engine
JPH10141813A (en) Accumulator
JP2007178046A (en) Accumulator
US11167237B2 (en) Air/oil separator
JPH0540308Y2 (en)
JP4699801B2 (en) Gas-liquid separator
JP4119698B2 (en) Oil-cooled compressor receiver tank
KR101868914B1 (en) Moisture removal system for vacuum pump
CN210397031U (en) Oil-gas separator and compressor
CN201377946Y (en) Labyrinth centrifugal oil-gas separator
JP4352228B2 (en) Breather equipment
JPH10176667A (en) Oil separator for oil-cooled compressor
JP4978981B2 (en) Water / air separation device for suction work vehicle and suction work vehicle equipped with this device
JPS5832729Y2 (en) Oil separator for oil-cooled rotary compressor
WO2020107798A1 (en) Liquid storage tank applied to compressor
CN218494730U (en) Lubricating oil tank with backflow prevention function
CN206131525U (en) Oil return pipe and vapor-liquid separator
JP2006288648A (en) Reservoir for suction
JP2736287B2 (en) Liquid ring gas pump
JP2000234826A (en) Horizontal oil separation recovery apparatus for oil cooled compressor
CN113089637B (en) Water pumping device and water pumping system for soil solidification
JP4429594B2 (en) Pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees